SYNTHESIS AND PROPERTIES OF NANOCRYSTALLINE TUNGSTEN HEAVY ALLOY POWDERS CONSOLIDATED BY PULSED ELECTRIC CURRENT SINTERING by Steven James Livers A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Materials Science and Engineering Boise State University May 2014 © 2014 Steven James Livers ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Steven James Livers Thesis Title: Synthesis and Properties of Nanocrystalline Tungsten Heavy Alloy Powders Consolidated by Pulsed Electric Current Sintering Date of Final Oral Examination: 10 December 2013 The following individuals read and discussed the thesis submitted by student Steven James Livers, and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Megan Frary, Ph.D. Chair, Supervisory Committee Rick Ubic, Ph.D. Member, Supervisory Committee Dmitri Tenne, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Megan Frary, Ph.D., Chair of the Supervisory Committee. The thesis was approved for the Graduate College by John R. Pelton, Ph.D., Dean of the Graduate College. ACKNOWLEDGEMENTS I would like to thank my faculty advisors, Dr. Megan Frary and Dr. Michael Hurley, for their continued support and advice throughout my graduate program. I would also like to thank my thesis committee members, Dr. Frary, Dr. Ubic, and Dr. Tenne for their advice and contributions to completing this work. A special thanks to the collaborators at MIT for their contributions in the powder processing required for this project. I would also like to thank the Defense Threat Reduction Agency for funding this project for basic research to improve our capabilities to counter threats. Additional thanks to the Center for Advanced Energy Studies, which housed the pulsed electric current sintering machine and Dr. Allahar and Brian Forsmann for their expertise with its operation. This work wouldn’t have been completed in a timely manner without undergraduate support and the Frary Research group. Megan Beck, Kosette Leperi, and Chris Stifter contributed hard work and dedication to this project, which was greatly appreciated. Family support also contributed to this work. Thank you, Peter Livers and Barbara Livers, for your continued support and words of encouragement. Special thanks to James Livers, my grandfather, who has helped all of his grandchildren complete graduate school. iv ABSTRACT Amorphous and nanocrystalline W-based materials are candidate alloys where high toughness and abrasion resistance are required, such as for kinetic energy penetrators (KEPs). Using a bottom-up approach to produce a tungsten heavy alloy (WHA), W-based alloys, including W-Mo-Fe and W-Cr-Fe, have been produced using high-energy ball milling and consolidated with pulsed electric current sintering (PECS). Powder consolidation using PECS allows for fast consolidation and for high relative densities to be achieved after sintering at a fraction of the melting temperature. Rapid consolidation of the alloyed powders also reduces grain growth, resulting in improved mechanical properties. During consolidation of mechanically alloyed powders, the structure evolves with sintering conditions due to the residual stress introduced during ball milling and the addition of other component elements added to promote amorphization. Multiple nanoscale crystalline microstructures were seen in the W based alloys depending on processing conditions. Negligible porosity was achieved at nearly one third of homologous temperature, 1050 °C for W-Mo-Fe and 1200 °C for W-Cr-Fe, using nanocrystalline powders and consolidating with PECS. Specimens containing nanocrystalline microstructures showed extremely high hardness and improved mechanical properties over several baseline microcrystalline tungsten alloys. Consolidated alloys had improved hardnesses over baseline materials, up to 300%. Intermetallic phase formation aided sintering by filling in pores and acting as a binder phase between nanocrystalline powder particles. At temperatures above 1500 °C, liquid- v phase sintering characteristics were observed, including the formation of spheroidal grains and rapid grain growth. PECS offers a novel processing route for tailoring the structure and properties of these advanced alloys by altering the grain size. The ballistic performance of these alloys under selected process parameters will be evaluated during subsequent studies and will determine whether or not these alloys can be used as effective KEPs. vi TABLE OF CONTENTS ACKNOWLEDGEMENTS ..................................................................................................... iv ABSTRACT .............................................................................................................................. v LIST OF TABLES .................................................................................................................... x LIST OF FIGURES ................................................................................................................ xii LIST OF ABBREVIATIONS .............................................................................................. xviii CHAPTER ONE: INTRODUCTION ....................................................................................... 1 CHAPTER TWO: BACKGROUND ........................................................................................ 3 2.1 Kinetic Energy Penetrators ..................................................................................... 3 2.1.1 Depleted Uranium .................................................................................... 3 2.1.2 Tungsten Heavy Alloys............................................................................ 4 2.2 Amorphous Metals .................................................................................................. 6 2.2.1 Amorphous Metal Glass-Forming Principles .......................................... 6 2.2.2 Amorphous Metal Processing .................................................................. 6 2.2.3 Amorphous Tungsten ............................................................................... 7 2.2.4 Amorphous Metal Deformation ............................................................... 8 2.3 Nanocrystalline Metals ........................................................................................... 9 2.3.1 Nanocrystalline Metals Processing .......................................................... 9 2.3.2 Nanocrystalline Tungsten ...................................................................... 10 2.3.3 Hall-Petch Relationship and Breakdown ............................................... 11 vii 2.4 Powder Metallurgy................................................................................................ 11 2.4.1 Mechanical Alloying .............................................................................. 12 2.4.2 Solid-State Amorphization ..................................................................... 13 2.4.3 Sintering ................................................................................................. 14 2.4.4 Pulsed Electric Current Sintering ........................................................... 15 2.4.5 Pulsed Electric Current Sintering of Amorphous and Nanocrystalline Powders ........................................................................................................... 16 CHAPTER THREE: EXPERIMENTAL ................................................................................ 18 3.1 Mechanical Alloying ............................................................................................. 18 3.2 Die Assembly ........................................................................................................ 19 3.3 Pulsed Electric Current Sintering.......................................................................... 20 3.4 Specimen Preparation ........................................................................................... 23 3.5 Analysis Techniques ............................................................................................. 25 3.5.1 Vickers Microhardness .......................................................................... 25 3.5.2 Archimedes Principle ............................................................................. 25 3.5.3 Scanning Electron Microscopy .............................................................. 26 3.5.4 Grain Size Analysis ................................................................................ 27 3.5.5 Transmission Electron Microscopy ....................................................... 27 3.5.6 X-ray Diffraction ................................................................................... 28 3.5.7 Williamson-Hall Technique ................................................................... 29 3.5.8 Lattice-Parameter Determination ........................................................... 29 3.6 Baseline Kinetic Energy Penetrator Materials ...................................................... 30 CHAPTER FOUR: RESULTS AND DISCUSSION ............................................................. 32 4.1 Powder Analysis ................................................................................................... 32 viii 4.2 Density of Consolidated Alloys ............................................................................ 39 4.3 Porosity ................................................................................................................. 41 4.4 Vickers Microhardness ......................................................................................... 44 4.5 Consolidated Specimen Morphology .................................................................... 46 4.5.1 W+ Alloy Morphology .......................................................................... 46 4.5.2 WCr Alloy Morphology ......................................................................... 51 4.5.3 WMo Alloy Morphology ....................................................................... 61 4.5.4 Intermetallic Phase Evolution ................................................................ 66 4.5.5 Liquid-Phase Sintering ........................................................................... 72 4.6 Crystal Structure of Milled Powders and Consolidated Specimens ..................... 76 4.6.1 Lattice-Parameter Determination ........................................................... 81 4.7 Grain Size Analysis............................................................................................... 82 4.7.1 Crystallite Size Analysis ........................................................................ 83 4.7.2 Grain Size vs. Hardness ......................................................................... 87 4.7.3 Hall-Petch Relationship ......................................................................... 88 CHAPTER FIVE: CONCLUSIONS ...................................................................................... 91 CHAPTER SIX: FUTURE WORK ........................................................................................ 93 REFERENCES ....................................................................................................................... 95 APPENDIX A ....................................................................................................................... 107 Other Common Names for Pulsed Electric Current Sintering87 ............................... 107 APPENDIX B ....................................................................................................................... 110 Results for PECS W+, W9Cr1, W8Cr2, W9Mo1, and W8Mo2 Specimens ............ 110 ix LIST OF TABLES Table 1 HP specimen matrix for 1 min and 20 min dwell times. .......................... 22 Table 2 LP specimen matrix for 1 min and 20 min dwell times. ........................... 23 Table 3 Powder composition measured by EDS in at.% for candidate alloys milled for 10 and 20 hours, estimated error +/- 0.5 (at.%)................................... 32 Table 4 Crystallite size and mean particle diameter for initial powders. ............... 38 Table 5 Highest hardnesses of HP W+, W9Cr1, W8Cr2, W9Mo1, and W8Mo2 alloys with consolidation temperature, dwell time and homologous temperature. .............................................................................................. 46 Table 6 EDS results in at.% for W+-1100C-1min-HP, corresponding with Figure 19a. ............................................................................................................ 48 Table 7 EDS results in at.% for W9Cr1-1100C-1min-HP, corresponding to Figure 23............................................................................................................... 53 Table 8 EDS results in at.% for W8Cr2-1100C-20min-HP, corresponding to Figure 25. .................................................................................................. 57 Table 9 EDS results in at.% for the intermetallic phase seen in W8Mo2-1100C- 20min-HP, corresponding to spectrum locations in Figure 31. ................ 65 Table 10 EDS results in at.% for the intermetallic phase seen in W8Mo2-1100C- 20min-HP, corresponding to spectrum locations in Figure 32. ................ 66 Table 11 Selected point EDS analysis in at.% of the intermetallic phase in W9Cr1- 1400C-20min-LP, corresponding to spectrum point in Figure 33. ........... 68 Table 12 Selected point EDS analysis in at.% of the W solid solution in W9Cr1- 1400C-20min-LP, corresponding to spectrum point in Figure 34. ........... 68 Table 13 EDS results in at.% of a drip from W9Cr1-1600C-1min-LP, corresponding to Figure 41. .............................................................................................. 75 x
Description: