ebook img

Synchrotron Radiation PDF

280 Pages·2003·7.266 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Synchrotron Radiation

Synchrotron Radiation Advanced Texts in Physics This program of advanced texts covers a broad spectrum of topics which are of current and emerging interest in physics. Each book provides a comprehensive and yet accessible introduction to a field at the forefront of modern research. As such, these texts are intended for senior undergraduate and graduate students at the MS and PhD level; however, research scientists seeking an introduction to particular areas of physics will also benefit from the titles in this collection. Springer-Verlag Berlin Heidelberg GmbH ONLINE LIBRARY Physics and Astronomy http://www.springer.de/phys/ Helmut Wiedemann Synchrotron Radiation With 89 Figures, 7 Tables, 100 Exercises and 55 Selected Solutions t Springer Professor Helmut Wiedemann Applied Physics Department and SSRLlSLAC Stanford University P.O. Box 20450 Stanford, CA 94309 USA E-mail: wiedemann(\)SLAC. Stanford. edu Cover picture: Distortion of electrical field lines due to transverse acceleration of a charge (Figure 2.6) ISSN 1439-2674 Library of Congress Cataloging-in-Publication Data Wiedemann, Helmut, 1938- Synchrotron radiation / Helmut Wiedemann. p.cm. - (Advanced texts in physics) Includes bibliographical references and index. ISBN 978-3-642-07777-7 ISBN 978-3-662-05312-6 (eBook) DOI 10.1007/978-3-662-05312-6 1. Synchrotron radiation. I. Title. II. Series. QC793.5.E627 W4 5 2002 539.7'35-dc21 2002021668 This work is subject to copyright. AU rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of iliis publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current vers ion, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. http://www.springer.de © Springer-Verlag Berlin Heidelberg 2003 OriginaUy published by Springer-Verlag Berlin Heidelberg New York in 2003 Softcover reprint of ilie hardcover Ist edition 2003 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro tective laws and regulations and therefore free for general use. Typesetting by the author using a Springer T}lX macro package Cover design: design & production GmbH, Heidelberg Printed on acid-free paper SPIN 10872093 57/3141/di 5 4 3 2 1 o To my family and students Preface This book covers the physical aspects of synchrotron radiation generation and is designed as a textbook and reference for graduate students, teachers and scientists utilizing synchrotron radiation. It is my hope that this text may help especially students and young researchers entering this exciting field to gain insight into the characteristics of synchrotron radiation. Discovered in 1945, synchrotron radiation has become the source of pho tons from the infrared to hard x-rays for a large community of researchers in basic and applied sciences. This process was particularly supported by the development of electron accelerators for basic research in high energy physics. Specifically, the development of the storage ring and associated technologies resulted in the availability of high brightness photon beams far exceeding other sources. In this text, the physics of synchrotron radiation for a variety of magnets is derived from first principles resulting in useful formulas for the practitioner. Since the characteristics and quality of synchrotron radiation are intimately connected with the accelerator and electron beam producing this radiation, a short overview of relevant accelerator physics is included. In the first four chapters radiation phenomena in general and synchrotron radiation in particular are introduced based on more visual and basic phys ical concepts. Where exact formulas are required, we borrow results from rigorous derivations in Chaps. 9 and 10. This way the physics of synchrotron radiation can be discussed without extensive deviations into mathematical manipulations, which can be quite elaborate although straightforward. The consequence for the reader, of this dual approach to synchrotron radiation is that, here and there, one will find some repetitive discussions, which the au thor hopes will provide easier reading and continuity in the train of thought. Chapters 5 to 8 give an overview of beam dynamics in storage rings and guidance for the optimization of a storage ring for synchrotron radiation pro duction. The theory of synchrotron radiation is derived rigorously in Chap. 9 and that of undulator or insertion device radiation in Chap. 10. Finally, in Chap. 11 the physics of a free electron laser is discussed. Each chapter includes a set of exercises. For those exercises which are marked with the argument (S), solutions are provided in Appendix A. In support of the practitioner utilizing synchrotron radiation most relevant for- VIII Preface mulas together with useful mathematical and physical formulae and constants are compiled in Appendices B - D. The author would like to thank the editorial staff at Springer Verlag and especially Drs. H. Lotsch and C. Ascheron for suggesting the writing of this book. The trained eyes of Dr. A. Lahee and Mrs. Dimler contributed much to minimize typographical errors and to greatly improve the overall appearance of the book. Special thanks goes to Professors J. Dorfan and K. Hodgson at Stanford University for granting a sabbatical and to Professor T. Vilaithong at the Chiang Mai University in Thailand for providing a quiet and peaceful environment during the final stages of writing this book. Chiang Mai, Helmut Wiedemann July 2002 Contents 1. Charges and Fields .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Radiation from Moving Charges . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Why do Charged Particles Radiate? ................ 2 1.1. 2 Spontaneous Synchrotron Radiation .. . . . . . . . . . . . . . . 2 1.1.3 Stimulated Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 Electron Beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Maxwell's Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Conversion from cgs to MKS Units. . . . . . . . . . . . . . . . . 6 1.2.2 Lorentz Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 The Lorentz Transformations ............................ 10 1.3.1 Lorentz Transformation of Coordinates. . . . . . . . . . . . .. 11 1.3.2 Energy and Momentum . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 2. Fundamental Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 2.1 Conservation Laws and Radiation. . . . . . . . . . . . . . . . . . . . . . .. 17 2.1.1 Cherenkov Radiation ............................. 18 2.1.2 Compton Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 2.2 The Poynting Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 2.3 Electromagnetic Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 2.3.1 Coulomb Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 2.3.2 Radiation Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 2.4 Spatial and Spectral Properties of Radiation. . . . . . . . . . . . . .. 26 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 3. Overview of Synchrotron Radiation. . . . . . . . . . . . . . . . . . . . . .. 31 3.1 Radiation Power ....................................... 32 3.2 Spectrum.............................................. 36 3.3 Spatial Photon Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41 3.4 Fraunhofer Diffraction .................................. 42 3.5 Spatial Coherence ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 3.6 Temporal Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47 3.7 Spectral Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 3.7.1 Matching ........................................ 51 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 X Contents 4. Radiation Sources ........................................ 55 4.1 Bending Magnet Radiation .............................. 55 4.2 Superbends............................................ 56 4.3 Wavelength Shifter ..................................... 57 4.4 Wiggler Magnet Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 4.5 Undulator Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62 4.6 Back Scattered Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68 4.6.1 Photon Flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 5. Accelerator Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 Exercise ................................................... 76 6. Particle Beam Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 77 6.1 Deflection in Bending Magnets. . . . . . . . . . . . . . . . . . . . . . . . . .. 77 6.2 Beam Focusing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 6.2.1 Principle of Focusing ............................. 80 6.2.2 Quadrupol Magnet ............................... 80 6.3 Equation of Motion .................................... , 82 6.3.1 Solutions of the Equations of Motion. . . . . . . . . . . . . . .. 84 6.3.2 Matrix Formalism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 6.3.3 FODO Lattice " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 6.4 Betatron Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 6.4.1 Betatron Phase and TUne. . . . . . . . . . . . . . . . . . . . . . . .. 87 6.4.2 Beam Envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 88 6.5 Phase Ellipse .......................................... 88 6.6 Beam Emittance ....................................... 89 6.6.1 Variation of the Phase Ellipse. . . . . . . . . . . . . . . . . . . . .. 90 6.6.2 Transformation of Phase Ellipse. . . . . . . . . . . . . . . . . . .. 91 6.7 Dispersion Function .................................... 92 6.8 Periodic Lattice Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93 6.8.1 Periodic Betatron Function in a FODO Lattice. . . . . .. 93 6.8.2 Periodic Dispersion or 1J-Function .................. 95 6.8.3 Beam Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 96 7. Radiation Effects '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99 7.1 Synchrotron Oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99 7.1.1 Longitudinal Phase Space Motion .................. 103 7.2 Damping .............................................. 104 7.3 Quantum Effects ....................................... 105 7.4 Equilibrium Beam Parameters ........................... 106 7.4.1 Equilibrium Energy Spread ........................ 106 7.4.2 Bunch Length .................................... 107 7.4.3 Horizontal Beam Emittance ....................... 108 7.4.4 Vertical Beam Emittance .......................... 109 Contents XI 7.5 Transverse Beam Parameters ............................. 110 7.5.1 Beam Sizes ...................................... 111 7.5.2 Beam Divergence ................................. 112 7.6 Beam Emittance and Wiggler Magnets .................... 112 7.6.1 Damping Wigglers ................................ 115 7.6.2 Variation of the Damping Distribution .............. 117 7.6.3 Can we Eliminate the Beam Energy Spread? ......... 119 7.7 Photon Source Parameters ............................... 121 Exercises ................................................... 122 8. Storage Ring Design as a Synchrotron Light Source ...... 125 8.1 Storage Ring Lattices ................................... 126 8.1.1 FODO Lattice ................................... 126 8.2 Optimization of a Storage Ring Lattice .................... 127 8.2.1 Minimum Beam Emittance ........................ 128 8.2.2 The Double Bend Achromat (dba) Lattice ........... 131 8.2.3 The Triple Bend Achromat (tba) Lattice ............ 134 8.2.4 Limiting Effects .................................. 134 9. Theory of Synchrotron Radiation ......................... 137 9.1 Radiation Field ........................................ 137 9.2 Total Radiation Power and Energy Loss ................... 144 9.2.1 Transition Radiation .............................. 144 9.2.2 Synchrotron Radiation Power ...................... 147 9.3 Radiation Lobes ........................................ 150 9.4 Synchrotron Radiation Spectrum ......................... 155 9.5 Radiation Field in the Frequency Domain ................. 155 9.5.1 Spectral Distribution in Space and Polarization ...... 160 9.5.2 Spectral and Spatial Photon Flux .................. 163 9.5.3 Harmonic Representation .......................... 165 9.6 Spatial Radiation Power Distribution ..................... 165 9.6.1 Asymptotic Solutions ............................. 167 9.7 Angle-Integrated Spectrum .............................. 168 9.7.1 Statistical Radiation Parameters ................... 174 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176 10. Insertion Device Radiation ............................... 177 10.1 Periodic Magnetic Field ................................. 178 10.1.1 Periodic Field Configuration ....................... 179 10.1.2 Particle Dynamics in a Periodic Field Magnet ........ 182 10.1.3 Focusing in a Wiggler Magnet ..................... 183 10.1.4 Hard Edge Wiggler Model ......................... 186

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.