IndianJ.PureAppl. Math.,43(4): 371-390,August2012 (cid:176)c IndianNationalScienceAcademy SYMPLECTICMODULESOVEROVERRINGSOFPOLYNOMIALRINGS AlpeshM.Dhorajia DepartmentofMathematics,IITMumbai,Mumbai400076,India e-mail: [email protected] (Received13January2011;afterfinalrevision9June2012; accepted20June2012) Let B be a commutative Noetherian ring of dimension d and let S be a set of all monic polynomials in B[X]. Let A be a subring of S−1B[X] which contains B[X]. Let P be a symplectic A-module of rank 2n ≥ d, n > 0. ThenweprovethatESp(A2 ⊥P,(cid:104),(cid:105))actstransitivelyonUm(A2⊕P). Keywords: Projectivemodule;unimodularelement;cancellationproblem. 1. INTRODUCTION LetAbeacommutativeNoetherianring. AsymplecticA-moduleisapair(P,(cid:104),(cid:105)), where P is a finitely generated projective A-module and (cid:104),(cid:105) : P ×P → A is a non-degeneratealternatingbilinearform. Let A be a ring of dimension d and P be a symplectic A-module of rank 2n with2n ≥ d. ThenSwan[11]hasprovedthatESp(A2 ⊥ P,(cid:104),(cid:105))actstransitively on Um(A2 ⊕ P). Further, the above result of Swan is extended to polynomial 372 ALPESHM.DHORAJIA rings by Bhatwadekar and Laurent polynomial rings by Keshari in [2] and [6] re- spectively. In this paper we prove the following result see (3.9). This generalizes a result ofBhatwadekar([2],Theorem4.8). Theorem A — Let B be a ring of dimension d and let S be a multiplicative closed subset of B[X] containing monic polynomials. Let A be a ring such that B[X] ⊆ A ⊆ S−1B[X]. LetP beasymplecticA-moduleofrank2nwith2n ≥ d, n > 0. ThenESp(A2 ⊥ P,(cid:104),(cid:105))actstransitivelyonUm(A2⊕P). Weprovethefollowingresult(3.13),whichgeneralizesaresultofKeshari([6], TheoremA.7). TheoremB—LetB bearingofdimensiondandA = B[X ,...,X ,Y, 1], 1 m g whereg ∈ B[Y]ismonic. LetP beasymplecticA-moduleofrank2n ≥ d. Then ESp(A2 ⊥ P,(cid:104),(cid:105))actstransitivelyonUm(A2⊕P). Thefollowingresult(4.3),generalizesaresultofKeshari([6],TheoremA.8). TheoremC—LetB bearingofdimension2andA = B[X ,...,X ,Y, 1], 1 n g whereg isamonicpolynomialinB[Y]. LetP beaprojectiveA-moduleofrank2 withtrivialdeterminant. IfA2 iscancellative,thenP iscancellative. 2. PRELIMINARIES All rings considered in this paper are assumed to be commutative Noetherian and allmodulesarefinitelygenerated. Let A be a ring and let P be a projective A-module. Recall that p ∈ P is called a unimodular element if there exists a φ ∈ P∗ = Hom (P,A), such that A φ(p) = 1. ThesetofallunimodularelementsofP isdenotedbyUm(P). Arow (a ,...,a ) ∈ An is called a unimodular row if there exists (b ,...,b ) ∈ An 1 n 1 n such that a b +...+a b = 1. The set of all unimodular rows of length n is 1 1 n n denotedbyUm (A). n SYMPLECTICMODULESOVEROVERRINGS 373 Let n be a positive integer. Let GL (A) be the set of all n × n invertible n matricesoverA. SL (A) := {M ∈ GL (A)|det(M) = 1}. LetI beanidealin n n A, we define SL (A,I) to be kernel of the natural map SL (A) → SL (A/I). n n n WhenI = (a),wewriteSL (A,a)forSL (A,I). n n Werecallsomepreliminaryfactsaboutsymplecticmodules. Fornotationsand terminologywefollow[2]. Formoredetail,see([2],Section4). Let A be a ring and let P be a finitely generated projective A-module. A bilinear form (cid:104),(cid:105) : P ×P → A is called alternating if (cid:104)p,p(cid:105) = 0 ∀p ∈ P. An alternating bilinear form (cid:104),(cid:105) induces a homomorphism α : P → P∗ (defined as α(p)(q) = (cid:104)p,q(cid:105)) such that α+α∗ = 0. An alternating form (cid:104),(cid:105) on P is called non-degenerateiftheinducedhomomorphismfromP toP∗ isanisomorphism. A symplectic A-module is a pair (P,(cid:104),(cid:105)), where P is a finitely generated projectiveA-moduleand(cid:104),(cid:105) : P ×P → Aisanon-degeneratealternatingbilinear form. If (P,(cid:104),(cid:105)) is a symplectic A-module then the rank of P is even and P has trivialdeterminant. If (P,(cid:104),(cid:105)) and (Q,(cid:104),(cid:105)) are two symplectic modules, then the non-degenerate alternating bilinear forms on P and Q will give rise (in a canonical manner) to a non-degenerate alternating bilinear form onP ⊕Q and we denote the symplectic module thus obtained by (P ⊥ Q,(cid:104),(cid:105)). The standard alternating form on A2 (in thenaturalbasis{e ,e })isgivenby(0 1). 1 2 1 0 Twosymplecticmodules(P,(cid:104),(cid:105))and(Q,(cid:104),(cid:105))areisomorphicifthereexistsan isomorphismτ : P → Qsuchthat (cid:104)p ,p (cid:105) = (cid:104)τ(p ),τ(p )(cid:105),∀p ,p ∈ P. 1 2 1 2 1 2 Anisometryofthesymplecticmodule(P,(cid:104),(cid:105))isanautomorphismof(P,(cid:104),(cid:105)). We denote by Sp(P,(cid:104),(cid:105)) the group of isometries of (P,(cid:104),(cid:105)). It is easy to see that SL (A) ⊆ Sp(A2,(cid:104),(cid:105)). 2 Let(P,(cid:104),(cid:105))beasymplecticA-moduleandletu,v ∈ P besuchthat(cid:104)u,v(cid:105) = 0. 374 ALPESHM.DHORAJIA Leta ∈ Aandletτ : P → P beamapdefinedby (a,u,v) τ (p) = p+(cid:104)p,v(cid:105)u+(cid:104)p,u(cid:105)v+a(cid:104)p,u(cid:105)u. (a,u,v) Thenitiseasytoseethatτ ∈ Sp(P,(cid:104),(cid:105)). Anisometryτ iscalleda (a,u,v) (a,u,v) symplectic transvectionifeitheruorvisunimodular. WedenotebyESp(P,(cid:104),(cid:105)) the subgroup of Sp(P,(cid:104),(cid:105)), generated by symplectic transvections. ESp(P,(cid:104),(cid:105)) isanormalsubgroupofSp(P,(cid:104),(cid:105)). Let (P,(cid:104),(cid:105)) be a symplectic A-module. Let c,d ∈ A, q ∈ P. If u = (0,1,0) and v = (0,c,q) ∈ A2 ⊕P, then τ is a symplectic transvection of (A2 ⊥ (−c,u,v) P,(cid:104),(cid:105))suchthat τ ((a,b,p)) = (a,b+ca+(cid:104)p,q(cid:105),p+aq). (−c,u,v) Similarly,ifu = (1,0,0)andv = (−d,0,−q),then τ ((a,b,p)) = (a+bd+(cid:104)q,p(cid:105),b,p+bq). (d,u,v) E(A2 ⊥ P,(cid:104),(cid:105))denotesthesubgroupofSp(A2 ⊥ P,(cid:104),(cid:105))generatedbyΘ and (c,q) σ forc,d ∈ Aandq ∈ P,whereΘ ,σ aredefinedasfollows: (d,q) (c,q) (d,q) Θ (a,b,p) = (a,b+ca+(cid:104)p,q(cid:105),p+aq) (c,q) σ (a,b,p) = (a+bd+(cid:104)q,p(cid:105),b,p+bq) (d,q) for(a,b,p) ∈ A2⊕P. Let B be a ring and let A = B[X]. Let F be a free A-module with a basis (cid:80) {e ,...,e }. Let p(X) = r γ (X)e ∈ F, where γ (X) ∈ A for 1 ≤ i ≤ r. 1 r i=1 i i (cid:80) i Then,forb ∈ B,wedenotebyp(bX)theelement r γ (bX)e ofF. i=1 i i WestatethefollowingresultwhichisduetoBhatwadekar([2],Theorem4.8). Theorem 2 — Let R be a ring of dimension d. Let A be a polynomial ring in r (≥ 0)variablesoverR. Let(P,(cid:104),(cid:105))beasymplecticA-moduleofrank2n > 0. If2n ≥ dthenESp(A2 ⊥ P,(cid:104),(cid:105))actstransitivelyonUm(A2⊕P). SYMPLECTICMODULESOVEROVERRINGS 375 Remark 2.2 : We have observed that in the above theorem we can replace ESp(A2 ⊥ P,(cid:104),(cid:105)) by E(A2 ⊥ P,(cid:104),(cid:105)). Let I be an ideal in A, then clearly the naturalmapE(A2 ⊥ P,(cid:104),(cid:105)) → E((A/I)2 ⊥ P/IP,(cid:104),(cid:105))issurjective. The following result is due to Keshari ([6], Theorem A.7), which extends the aboveresultofBhatwadekartoLaurentpolynomialring. Theorem 3 — Let B be a ring of dimension d and A = B[Y ,...,Y ,X±1, 1 r(cid:48) 1 ...,X±1]. Let(P,(cid:104),(cid:105))beasymplecticA-moduleofrank2n ≥ d,thenESp(A2 ⊥ r P,(cid:104),(cid:105))actstransitivelyonUm(A2⊕P). 3. MAIN THEOREM WebeginthissectionbyprovingthefollowingresultofBhatwadekarandRoy([3], Lemma4.1). Lemma 3.1 — Let B ⊂ C be rings of dimension d and x ∈ B such that B = C . Then x x (i)B/(1+xb) = C/(1+xb)forallb ∈ B. (ii)IfI isanidealofC suchthatht(I) ≥ dandI+xC = C,thenthereexists anelementb ∈ B suchthat1+xb ∈ I. PROOF: (i)SinceBx = Cx,bygoingmodulotheideal(1+xb)Bxwithb ∈ B, theprooffollows. (ii) Since ht(I) = d, without loss of generality we may assume that I is a maximal ideal of height d. By hypothesis, localizing C at x(1 + xB), we have B = C . SincedimB < dimB,wehavedimC < x(1+xB) x(1+xB) x(1+xB) x(1+xB) d. SinceI ismaximalidealofheightd,wegetIC = C . Therefore x(1+xB) x(1+xB) I contains an element of the form xm(1 + xa)n for some a ∈ B and for some positiveintegersmandn. SinceI+xC = C andI isaprimeideal,I containsan elementoftheform1+xbforsomeb ∈ B. Thiscompletestheproofof(ii). ThefollowingresultisaconsequenceofatheoremofEisenbud-Evansasstated 376 ALPESHM.DHORAJIA in([9],p.1420). (cid:50) Lemma 3.2 — Let A be a ring and let P be a projective A-module of rank r. Let(α,a) ∈ (P∗⊕A). Thenthereexistsanelementβ ∈ P∗ suchthatht(I ) ≥ r, a whereI = (α+aβ)(P). Inparticular,iftheideal(α(P),a)hasheight≥ r,then ht(I) ≥ r. Further,if(α(P),a)isanidealofheight≥ r andI isaproperidealof R,thenht(I) = r. ThefollowinglemmaisduetoSuslin([10],Lemma2.1). Lemma 3.3 — Let B be a ring and let A = B[X, F1,..., Fr], where F ∈ g g i B[X] for 1 ≤ i ≤ r and g ∈ B[X] is monic. Suppose f ,f ∈ B[X] and 1 2 c ∈ (f ,f )B[X] ∩ B. Then for any ideal I of A and g,h ∈ A ∩ B[X] with 1 2 h−g ∈ cI,thereexists∆ ∈ SL (A,I)suchthat[f (g),f (g)]∆ = [f (h),f (h)]. 2 1 2 1 2 Wenowprovethefollowingextensionlemma,whichforpolynomialring(i.e. A = B[X])isprovedin[7]. Ourprooffollowsusingthesameargumentasinthe proof([7],Lemma1.1,Chap.3). Lemma 3.4 — Let B be a ring and let A = B[X, F1,..., Fr], where F ∈ g g i B[X] for 1 ≤ i ≤ r and g ∈ B[X] is monic. If I is an ideal of A containing 1+gH for some monic polynomial H ∈ B[X] and J is an ideal of B such that I +JA = A,thenB∩I +J = B. PROOF: LetR = A/I ⊇ B/(B∩I)andletJ¯betheimageofJ inB/(B∩I). Byhypothesis,wehaveJR = R. SinceI containsapolynomial1+gH,itiseasy to seethatR isintegraloverB/(B ∩I). Therefore the“Going-Up” Theorem for integral extensions ([8], p.34) implies that J = B/(B ∩ I), therefore B ∩ I + J = B. (cid:50) Definition3.5—LetAbearingandsbeanon-zerodivisorinA. Let(P,(cid:104),(cid:105)) beasymplecticA-moduleofrank2n. Aset{e ,...,e ,f ,...,f } ⊂ P iscalled 1 n 1 n ans-symplecticbasisofP ifthefollowingholds: (i)(cid:104)e ,e (cid:105) = 0 = (cid:104)f ,f (cid:105)for1 ≤ i,j ≤ n. i j i j SYMPLECTICMODULESOVEROVERRINGS 377 (ii)(cid:104)e ,f (cid:105) = sfor1 ≤ i ≤ nand(cid:104)e ,f (cid:105) = 0foreveryi (cid:54)= j. i i i j Remark 3.6 : Let P be a symplectic A-module of rank 2n. If {e ,...,e ,f ,...,f } ⊆ P is s-symplectic basis of P then the module F := 1 n 1 n (cid:80) (cid:80) Ae + Af isafreeA-submoduleofP andsP ⊆ F. Fortheproofsee([2], i j Lemma4.2). Lemma3.7—LetB beareducedringofdimensiondandletg ∈ B[X]bea monicpolynomial. Assumethateither (i)A = B[X, f1,..., fn],wheref ∈ B[X]fori = 1,...,nor g g i (ii)A = B[X ,...,X ,X, 1]. 1 m g Let (P,(cid:104),(cid:105)) be a symplectic A-module of rank 2r ≥ d, r > 0. Then P has an s-symplectic basis {e ,...,e ,f ,...,f } such that sP ⊆ F, where F := 1 n 1 n (cid:80) (cid:80) Ae + Af isafreeA-submoduleofP ofrank2r. i j PROOF : Let S be the set of all non-zerodivisors in B. Since rank of P is constant, S−1A is a PID if A is as in (i) else S−1A = k[X ,...,X ,X, 1] for 1 m g some field k. Using [5], in both the cases S−1P is a free S−1A-module of rank 2r. Let p˜, q˜ ∈ S−1P such that (cid:104)p˜,q˜(cid:105) = 1, where (cid:104),(cid:105) is a induced form on 1 1 1 1 S−1P. WriteS−1P = p˜S−1A⊕q˜S−1A⊕Q,whereQisaS−1A-submoduleof 1 1 S−1P ofrank2r−2. ApplythesameargumenttoQ,byinductively,threreexists p˜,...,p˜ and q˜,...,q˜ such that (cid:104)p˜,q˜(cid:105) = 1 and (cid:104)p˜,q˜(cid:105) = 0 for i (cid:54)= j. Also, 2 r 2 r i i i j wehave(cid:104)p˜,q˜(cid:105) = 0and(cid:104)p˜,q˜(cid:105) = 0for2 ≤ i ≤ r. 1 i i 1 Chooset ∈ S suchthatp˜ = ei,q˜ = fi,wheree ,f ∈ P for1 ≤ i ≤ r. Let i t i t i i s = t2. Claim: {e ,...,e ,f ,...,f }isans-symplecticbasisofP. 1 r 1 r ProofofClaim : Weshowthat(i)(cid:104)e ,e (cid:105) = 0 = (cid:104)f ,f (cid:105)for1 ≤ i,j ≤ nand i j i j (ii)(cid:104)e ,f (cid:105) = sand(cid:104)e ,f (cid:105) = 0foreveryi (cid:54)= j. i i i j Foranyi,j for1 ≤ i,j ≤ r,wehave(cid:104)e ,e (cid:105) = (cid:104)tp˜,tp˜(cid:105). Sinces(cid:104)p˜,p˜(cid:105) = 0 i j i j i j in S−1A, we have (cid:104)e ,e (cid:105) = 0. Similarly, we can show that (cid:104)f ,f (cid:105) = 0 for i j i j 378 ALPESHM.DHORAJIA 1 ≤ j ≤ r and(cid:104)e ,f (cid:105) = 0foreveryi (cid:54)= j. i j Foranyi,1 ≤ i ≤ r,wehave e f (cid:104)e ,f (cid:105) = (cid:104)t i,t i(cid:105) = t2(cid:104)p˜,p˜(cid:105) = s(cid:104)p˜,p˜(cid:105) = s. i i i j i j t t Note that the above expression is computed in S−1A. This proves the claim. Nowby(3.6),theprooffollows. (cid:50) Now we prove the following result which is inspired by and the proof closely follows,Bhatwadekar’sresult([2],Proposition4.7). Proposition 3.8 — Let B be a ring and let s ∈ B be a non-zerodivisor. Let A = B[X, F1,...,Fr], where F ∈ B[X] and g ∈ B[X] is monic and let g g i (P,(cid:104),(cid:105)) be a symplectic A-module of rank 2n. Let {e ,...,e ,f ,...,f } ⊆ P 1 n 1 n be an s-symplectic basis of P. Let (α(X),β(X),p(X)) ∈ Um(A2 ⊕P), where (cid:80) (cid:80) α(X),β(X) ∈ B[X], p(X) ∈ n B[X]e + n B[X]f with α(X) ≡ 1 i=1 i j=1 j modulo (sXg) and β(X) = 1+gH with H ∈ B[X] is monic. Let b,b(cid:48) ∈ B be suchthatb−b(cid:48) ∈ sB. ThenthereexistsΨ ∈ SL (A,sX)ESp(A2 ⊥ P,(cid:104),(cid:105))such 2 thatΨ(α(bX),β(bX),p(bX)) = (α(b(cid:48)X),β(b(cid:48)X),p(b(cid:48)x)). PROOF : Since ESp(A2 ⊥ P,(cid:104),(cid:105)) is a normal subgroup ofSp(A2 ⊥ P,(cid:104),(cid:105)), G = SL (A,sX)ESp(A2 ⊥ P,(cid:104),(cid:105))isagroup. LetJ bethesetofelementsc ∈ B 2 havingfollowingproperty, b−b(cid:48) ∈ csB ⇒ ∃Φ ∈ G suchthatΦ(α(bX),β(bX), p(bX)) = (α(b(cid:48)X),β(b(cid:48)X),p(b(cid:48)x)). ClearlyJ isnonempty. SinceGisagroup, J isanidealofB. WeprovethatJ = B. Let t ∈ B ∩(α(X)2,β(X)2)A and let b,b(cid:48) ∈ B be such that b−b(cid:48) ∈ tsB. (cid:80) (cid:80) Sincep(X) ∈ F = B[X]e + B[X]f ,p(bX) = p(b(cid:48)X)−tsq(X)forsome i j q(X) ∈ F. Claim: B∩(α(X)2,β(X)2)A = B∩(α(X)2,β(X)2)B[X]. ProofofClaim: ItisenoughtoproveB∩(α(X)2,β(X)2)A ⊂ B∩(α(X)2, β(X)2)B[X]. Lett ∈ B∩(α(X)2,β(X)2)Athent = aα(X)2+bβ(X)2,where SYMPLECTICMODULESOVEROVERRINGS 379 a,b ∈ Aandβ(X)2 = 1+gK. MultiplyingbygK toexpressionoft,wegetthe following gKt = agKα(X)2+bgKβ(X)2. Addingbothsides−tandsimplifying,weget −t = −t(1+gK)+agKα(X)2+bgKβ(X)2. Sinceβ(X)2 = 1+gK,weget t = −agKα(X)2+(t−bgK)β(X)2. Applyingthisargumentfurtherifneeded,weseethattbelongstotheidealof B[X]generatedbyα(X)2 andβ(X)2. Thisprovestheclaim. Nowsincet ∈ (α(X)2,β(X)2)∩B,talsobelongstotheidealofB[X]gen- eratedbyα(bX)2 andβ(bX)2. By([2],Lemma4.3),thereexistsψ ∈ ESp(A2 ⊥ P,(cid:104),(cid:105)) such that ψ(α(bX),β(bX),p(bX)) = (α(bX),β(bX),p(b(cid:48)X)). Since bX − b(cid:48)X ∈ tsXB[X], by (3.3), the element (α(bX),β(bX),p(b(cid:48)X)) can be transformedto(α(b(cid:48)X),β(b(cid:48)X),p(b(cid:48)X)),byanelementoftheSL (A,sX),hence 2 t ∈ J. Sinceβ(X) = 1+gH withH ∈ B[X]monic,B/(B∩(α(X)2,β(X)2)) (cid:44)→ A/(α(X)2,β(X)2)) is an integral extension. Since (α(X)2,β(X)2)+sA = A, by(3.4),wehaveB∩(α(X)2,β(X)2)+sB = B. Thereforetheaboveargument showsthatJ +sB = B. Let m be a maximal ideal of B. If s ∈ m then m + J = B. Now as- sume that s ∈/ m. To complete the proof, it is enough to show that m + J = B. Since α(X) ≡ 1 modulo (sXg) and (α(X),β(X),p(X)) ∈ Um(A2 ⊕ P), we have (α(X),β(X),sXp(X)) ∈ Um(A2 ⊕ P). Let “−” denote reduc- tion modulo the ideal (mA,β(X)). Note that (α(X),sXp(X)) ∈ Um(A¯ ⊕ P¯). Then it is easy to see that g ≡ 1 modulo (mA,β(X)), where g is of 1 1 the form α(X) + (cid:104)p(cid:48),sXp(X)(cid:105) for some p(cid:48) ∈ P. This shows that the ide- 1 1 als (α(X) + (cid:104)p(cid:48),sXp(X)(cid:105),β(X)) and mA are comaximal. Further α(X) + 1 380 ALPESHM.DHORAJIA (cid:104)p(cid:48),sXp(X)(cid:105) + dβ(X) ∈ B[X] for some suitable d ∈ A. Clearly the ideals 1 (α(X)+(cid:104)p(cid:48),sXp(X)(cid:105)+dβ(X),β(X))and(α(X)+(cid:104)p(cid:48),sXp(X)(cid:105),β(X))are 1 1 equal. Therefore we can assume that g = α(X) + (cid:104)p(cid:48),sXp(X)(cid:105) ∈ B[X] for 1 some p(cid:48) ∈ P with (cid:104)p(cid:48),sXp(X)(cid:105) ∈ B[X]. Also we can take q(X) = sXp(cid:48) ∈ (cid:80) (cid:80) B[X]e + B[X]f . i j Letp (X) = p(X)+β(X)q(X)andη(X) = α(X)+(cid:104)q(X),p(X)(cid:105). Clearly 1 (cid:80) (cid:80) η(X) ∈ B[X] and p (X) ∈ B[X]e + B[X]f . Then η(X) ≡ 1 modulo 1 i j (sX)andmA+(η(X),β(X)) = A. Moreover,forb ∈ B σ (α(bX),β(bX),p(bX)) = (α(bX)+(cid:104)q(bX),p(bX)(cid:105),β(X), (0,q(bX)) p(bX)+β(bX)q(bX)) = (η(bX),β(bX),p (bX)). 1 LetJ = B∩(η(X)2,β(X)2). SincemA+(η(X)2,β(X)2) = Aandβ(X)2 1 ismonic,asbeforewegetm+(η(X)2,β(X)2)∩B = B. Thereforem+J = B. 1 Let t ∈ J . As before we see that b,b(cid:48) ∈ B such that b−b(cid:48) ∈ st B then there 1 1 1 existsΦ ∈ Gsuch thatΦ(η(bX),β(bX),p (bX)) = (η(b(cid:48)X),β(b(cid:48)X),p (b(cid:48)X)). 1 1 Therefore σ −1◦Φ◦σ (α(bX),β(bX),p(bX)) = (α(b(cid:48)X),β(b(cid:48)X),p(b(cid:48)X)). (0,q(b(cid:48)X)) (0,q(bX)) Hence J ⊂ J and thus m+J = B. Therefore J = B. This completes the 1 proof. (cid:164) Let B be a commutative Noetherian ring of dimension d. Let A be a ring such that B[X] ⊆ A ⊆ S−1B[X], where S denotes the multiplicatively closed set of monic polynomials in B[X]. Let P be any finitely generated projective A- module then P is regarded as a finitely generated projective D-module, where D is a subring of A generated by B[X] and some finite number of elements of A. Moreover,wemayassumethatD ⊆ B[X, 1]forsomeg ∈ S. Thereforetoprove g Theorem A, we may assume that (P,(cid:104),(cid:105)) is a symplectic A = B[X, f1,..., fl]- g g module.
Description: