ebook img

Symmetry in Graphs PDF

527 Pages·2022·4.307 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Symmetry in Graphs

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 198 EditorialBoard J. BERTOIN, B. BOLLOBA´S, W. FULTON, B. KRA, I. MOERDIJK, C. RAEGER, P. SARNAK, B. SIMON, B. TOTARO SYMMETRYINGRAPHS Thisisthefirstfull-lengthbookonthemajorthemeofsymmetryingraphs.Forming part of algebraic graph theory, this fast-growing field is concerned with the study of highlysymmetricgraphs,particularlyvertex-transitivegraphs,andothercombinatorial structures, primarily by group-theoretic techniques. In practice, the street goes both ways and these investigations shed new light on permutation groups and related algebraicstructures. Thebookassumesafirstcourseingraphtheoryandgrouptheorybutnospecialized knowledge of the theory of permutation groups or vertex-transitive graphs. It begins withthebasicmaterialbeforeintroducingthefield’smajorproblemsandmostactive research themes in order to motivate the detailed discussion of individual topics that follows. Featuring many examples and with over 450 exercises, it is an essential introductiontothefieldforgraduatestudentsandavaluableadditiontoanyalgebraic graphtheorist’sbookshelf. TedDobson isProfessorattheUniversityofPrimorska,Slovenia. AleksanderMalnicˇ isProfessorattheUniversityofLjubljana,Slovenia. DraganMarusˇicˇ isProfessorattheUniversityofPrimorska,Slovenia,andthefounder oftheSlovenianschoolinAlgebraicGraphTheory. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard J.Bertoin,B.Bolloba´s,W.Fulton,B.Kra,I.Moerdijk,C.Praeger,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslisting,visitwww.cambridge.org/mathematics. AlreadyPublished 158D.HuybrechtsLecturesonK3Surfaces 159H.Matsumoto&S.TaniguchiStochasticAnalysis 160A.Borodin&G.OlshanskiRepresentationsoftheInfiniteSymmetricGroup 161P.WebbFiniteGroupRepresentationsforthePureMathematician 162C.J.Bishop&Y.PeresFractalsinProbabilityandAnalysis 163A.BovierGaussianProcessesonTrees 164P.SchneiderGaloisRepresentationsand(ϕ,(cid:3))-Modules 165P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology(2ndEdition) 166D.Li&H.QueffelecIntroductiontoBanachSpaces,I 167D.Li&H.QueffelecIntroductiontoBanachSpaces,II 168J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodMappingsandPeriodDomains(2ndEdition) 169J.M.LandsbergGeometryandComplexityTheory 170J.S.MilneAlgebraicGroups 171J.Gough&J.KupschQuantumFieldsandProcesses 172T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteHarmonicAnalysis 173P.GarrettModernAnalysisofAutomorphicFormsbyExample,I 174P.GarrettModernAnalysisofAutomorphicFormsbyExample,II 175G.NavarroCharacterTheoryandtheMcKayConjecture 176P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinSeriesand AutomorphicRepresentations 177E.PetersonFormalGeometryandBordismOperators 178A.OgusLecturesonLogarithmicAlgebraicGeometry 179N.NikolskiHardySpaces 180D.-C.CisinskiHigherCategoriesandHomotopicalAlgebra 181A.Agrachev,D.Barilari&U.BoscainAComprehensiveIntroductiontoSub-RiemannianGeometry 182N.NikolskiToeplitzMatricesandOperators 183A.YekutieliDerivedCategories 184C.DemeterFourierRestriction,DecouplingandApplications 185D.Barnes&C.RoitzheimFoundationsofStableHomotopyTheory 186V.Vasyunin&A.VolbergTheBellmanFunctionTechniqueinHarmonicAnalysis 187M.Geck&G.MalleTheCharacterTheoryofFiniteGroupsofLieType 188B.RichterCategoryTheoryforHomotopyTheory 189R.Willett&G.YuHigherIndexTheory 190A.BobrowskiGeneratorsofMarkovChains 191D.Cao,S.Peng&S.YanSingularlyPerturbedMethodsforNonlinearEllipticProblems 192E.KowalskiAnIntroductiontoProbabilisticNumberTheory 193V.GorinLecturesonRandomLozengeTilings 194E.Riehl&D.VerityElementsof∞-CategoryTheory 195H.KrauseHomologicalTheoryofRepresentations 196F.Durand&D.PerrinDimensionGroupsandDynamicalSystems 197A.ShefferPolynomialMethodsandIncidenceTheory Symmetry in Graphs TED DOBSON UniversityofPrimorska,Slovenia ALEKSANDER MALNICˇ UniversityofLjubljana,Slovenia DRAGAN MARUSˇICˇ UniversityofPrimorska,Slovenia UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108429061 DOI:10.1017/9781108553995 ©TedDobson,AleksanderMalnicˇ,andDraganMarusˇicˇ2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-42906-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix 1 IntroductionandConstructions 1 1.1 BasicDefinitions 4 1.2 CayleyDigraphs 11 1.3 DoubleCosetDigraphs 19 1.4 OrbitalDigraphs 26 1.5 MetacirculantDigraphs 31 1.6 Exercises 38 2 ThePetersenGraph,Blocks,andActionsofA 45 5 2.1 TheAutomorphismGroupofthePetersenGraph 46 2.2 BlocksandImprimitiveGroups 48 2.3 MoreWaysofFindingBlocks 54 2.4 PrimitiveandQuasiprimitiveGroups 59 2.5 ActionsofA 66 5 2.6 OrbitalDigraphsofA 74 5 2.7 Exercises 82 3 SomeMotivatingProblems 87 3.1 Cubics-Arc-transitiveGraphs 88 3.2 Arc-,Edge-,andHalf-arc-transitiveGraphs 92 3.3 IntroductiontotheHamiltonicityProblem 102 3.4 Vertex-transitiveGraphsThatAreNotHamiltonian 103 3.5 Connected Cayley Graphs of Abelian Groups Are Hamiltonian 110 3.6 BlockQuotientDigraphs 112 3.7 TheSpiralPathArgumentandFruchtNotation 119 3.8 SemiregularElements 123 3.9 Exercises 128 v vi Contents 4 GraphswithImprimitiveAutomorphismGroup 132 4.1 PermutationIsomorphismandEquivalentRepresentations 133 4.2 WreathProductsofDigraphsandGroups 141 4.3 TheEmbeddingTheorem 149 4.4 GroupsofPrimeDegreeandDigraphsofPrimeOrder 152 4.5 TheAutomorphismGroupoftheHeawoodGraph 158 4.6 Exercises 163 5 TheEndoftheBeginning 167 5.1 TheAutomorphismGroupofWreathProductGraphs 168 5.2 2-ClosedPermutationGroups 173 5.3 GeneralizedWreathProducts 179 5.4 PrimitiveGroupsandtheO’Nan–ScottTheorem 188 5.5 Covers 197 5.6 Exercises 208 6 OtherClassesofGraphs 214 6.1 TheCoxeterGraph 214 6.2 KneserGraphsandOddGraphs 223 6.3 TheJohnsonGraphs 225 6.4 LeviGraphs 237 6.5 TheGeneralizedPetersenGraphs 248 6.6 FermatGraphs 262 6.7 Exercises 268 7 TheCayleyIsomorphismProblem 272 7.1 GraphIsomorphimsinQuasipolynomialTime 273 7.2 IntroductionandBasicDefinitions 274 7.3 BasicTools 277 7.4 Non-CI-groupsWithRespecttoGraphs 283 7.5 GroupsofOrderaProductofTwoPrimes 286 7.6 Pa´lfy’sTheorem 296 7.7 IsomorphismsofCirculantDigraphs 303 7.8 Exercises 317 8 AutomorphismGroupsofVertex-TransitiveGraphs 322 8.1 NormalCayleyDigraphs 322 8.2 TheTransfer 328 8.3 MoreToolsandAutomorphismGroupsofCirculants ofOrder p2 333 8.4 AutomorphismGroupsofCayleyDigraphsofZ2 341 p 8.5 AutomorphismGroupsofCirculantDigraphs 346 8.6 Exercises 353 Contents vii 9 ClassifyingVertex-TransitiveGraphs 357 9.1 DigraphsofPrimePowerOrder 357 9.2 GraphsofOrderaProductofTwoDistinctPrimes 365 9.3 CirculantDigraphsofOrdernwithgcd(n,ϕ(n))=1 372 9.4 Exercises 376 10 SymmetricGraphs 378 10.1 The17FamiliesofCubicSymmetricGraphs 379 10.2 CubicSymmetricGraphsofSmallGirth 381 10.3 RigidCells 385 10.4 ValencyPreservingQuotienting 391 10.5 SymmetricGraphsofLargerValencies 395 10.6 Exercises 399 11 Hamiltonicity 401 11.1 HistoricPerspectives 401 11.2 TheLiftingCycleTechnique 406 11.3 Vertex-TransitiveGraphsofParticularOrders 415 11.4 SpecificApproachesforCayleyGraphs 421 11.5 EmbeddingsonSurfaces 425 11.6 AFinalObservation 435 11.7 Exercises 435 12 Semiregularity 437 12.1 HistoricPerspectives 437 12.2 Ordersof(Di)graphs 443 12.3 ValencyofGraphs 444 12.4 TypesofGroupActions 448 12.5 FurtherDirections 449 12.6 Exercises 450 13 GraphswithOtherTypesofSymmetry: Half-arc-transitiveGraphsandSemisymmetricGraphs 451 13.1 HistoricPerspectives 451 13.2 Half-arc-transitiveGraphs:AGeometricApproach 453 13.3 QuarticHalf-arc-transitiveGraphs 458 13.4 SemisymmetricGraphs 462 13.5 Exercises 465 viii Contents 14 FareYouWell 468 14.1 AlgebraicGraphTheory:TowardsCFSG-FreeArguments 468 14.2 Even/OddAutomorphismsProblem 472 References 474 IndexofGraphs 497 IndexofSymbols 500 SelectAuthorIndex 503 IndexofTerms 506 Preface Symmetry and its absence, asymmetry, is one of the core concepts in the arts, science, or daily life, for that matter. In everyday language, symmetry – from the Greek “συµµ(cid:15)τρια = symmetria,” agreement in due proportion, arrangement–usuallyreferstoasenseofbeauty,ofproportionalharmony,and ofbalance.Intryingtopresenttheconceptofsymmetryinasgeneralasetting aspossible,onecanthinkofitasameasureoftheinnerstructuralstabilityof theobjectinquestionwhenconfrontedwithpossibleexternalintrusions.When thelatterexceedtheacceptablerobustnessthresholdandthusbreaktheinnate symmetry,atransformationoftheobjectoccurs.Givenanewlifeofenriched complexity, the object finds itself in an environmental absence of symmetry andstartsaslowbutsteadyascenttoabalancedstateofabrand-newstability. Inmathematics,thenotionofsymmetry,althoughpresentinmanydifferent areas,ismostlystudiedbymeansofgroupsandisthereforearguablyaninher- entlyalgebraicconcept–namely,thesetofalltransformations/symmetriesof a given mathematical object that preserves its inner structure forms a group. Knowing the full set of symmetries of an object is important because it providesthemostcompletedescriptionofitsstructure. Historically,manyofthemostfruitfultechniquesforstudyinggroupshave been developed within the framework of permutation groups and, more gen- erally, group actions, preferably on sets enjoying additional inner structure. Among these, transitive actions are perhaps the most natural ones for they represent the building blocks for actions in general. This interplay is nicely recapturedinthecombinatorialsettingofrelationalstructures,mostnotablyin graphs,asthesimplestmanifestationofsuchstructures.Beingoneofthecore conceptsessentialbothtounderstandingnaturalphenomenaandthedynamics of social systems and to providing a theoretical framework for efficient mass communication,relationalstructures(andgraphsinparticular)withhighlevels ofsymmetryaresoughtfortheiroptimalbehaviorandhighperformance. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.