ebook img

Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures PDF

210 Pages·2020·6.749 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures

S y m m e t r y in C la s s ic a l a n d F u z z y A lg e b r a ic H y p e r c o m p o s it io n a Symmetry in Classical l S t r u c t u re and Fuzzy Algebraic s • Ir in a C Hypercompositional r is t e a Structures Edited by Irina Cristea Printed Edition of the Special Issue Published in Symmetry www.mdpi.com/journal/symmetry Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures SpecialIssueEditor IrinaCristea MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin SpecialIssueEditor IrinaCristea CenterforInformation TechnologiesandApplied Mathematics,Universityof NovaGorica Slovenia EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournalSymmetry (ISSN 2073-8994) (available at: https://www.mdpi.com/journal/symmetry/specialissues/Fuzzy AlgebraicHypercompositionalStructures). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03928-708-6(Pbk) ISBN978-3-03928-709-3(PDF) (cid:2)c 2020bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheSpecialIssueEditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Prefaceto“SymmetryinClassicalandFuzzyAlgebraicHypercompositionalStructures” . . . ix DariushHeidariandIrinaCristea BreakableSemihypergroups Reprintedfrom:Symmetry2019,11,100,doi:10.3390/sym11010100 . . . . . . . . . . . . . . . . . 1 MarioDeSalvo,DarioFasino,DomenicoFreniandGiovanniLoFaro OnHypergroupswithaβ-ClassofFiniteHeight Reprintedfrom:Symmetry2020,12,168,doi:10.3390/sym12010168 . . . . . . . . . . . . . . . . . 11 Sˇteˇpa´nKrˇehl´ıkandJanaVyroubalova´ The Symmetry of Lower and Upper Approximations, Determined by a Cyclic Hypergroup, ApplicableinControlTheory Reprintedfrom:Symmetry2020,12,54,doi:10.3390/sym12010054 . . . . . . . . . . . . . . . . . . 25 VahidVahedi,MortezaJafarpourandIrinaCristea HyperhomographiesonKrasnerHyperfields Reprintedfrom:Symmetry2019,11,1442,doi:10.3390/sym11121442 . . . . . . . . . . . . . . . . . 41 MadelineAlTahan,SˇarkaHosˇkova-MayerovaandBijanDavvaz SomeResultson(Generalized)FuzzyMulti-Hv-IdealsofHv-Rings Reprintedfrom:Symmetry2019,11,1376,doi:10.3390/sym11111376 . . . . . . . . . . . . . . . . . 61 SˇarkaHosˇkova-MayerovaandBabatundeO.Onasanya ResultsonFunctionsonDedekindMultisets Reprintedfrom:Symmetry2019,11,1125,doi:10.3390/sym11091125 . . . . . . . . . . . . . . . . . 75 HashemBordbar,G.MuhiuddinandAbdulazizM.Alanazi PrimenessofRelativeAnnihilatorsinBCK-Algebra Reprintedfrom:Symmetry2020,12,286,doi:10.3390/sym12020286 . . . . . . . . . . . . . . . . . 85 XiaoLongXin,RajabAliBorzooei,MahmoodBakhshiandYoungBaeJun IntuitionisticFuzzySoftHyperBCKAlgebras Reprintedfrom:Symmetry2019,11,399,doi:10.3390/sym11030399 . . . . . . . . . . . . . . . . . 97 JanChvalinaandBedrˇichSmetana SeriesofSemihypergroupsofTime-VaryingArtificialNeuronsandRelatedHyperstructures Reprintedfrom:Symmetry2019,11,927,doi:10.3390/sym11070927 . . . . . . . . . . . . . . . . . 109 MichalNova´k,Sˇtepa´nKrˇehl´ıkandKyriakosOvaliadis ElementsofHyperstructureTheoryinUWSNDesignandDataAggregation Reprintedfrom:Symmetry2019,11,734,doi:10.3390/sym11060734 . . . . . . . . . . . . . . . . . 121 AnamLuqman,MuhammadAkramandAliN.A.Koam Anm-PolarFuzzyHypergraphModelofGranularComputing Reprintedfrom:Symmetry2019,11,483,doi:10.3390/sym11040483 . . . . . . . . . . . . . . . . . 137 MuhammadAkram,AmnaHabibandAliN.A.Koam ANovelDescriptiononEdge-Regularq-RungPictureFuzzyGraphswithApplication Reprintedfrom:Symmetry2019,11,489,doi:10.3390/sym11040489 . . . . . . . . . . . . . . . . . 159 v About the Special Issue Editor Irina Cristea received her Ph.D. degree in mathematics in 2007 from University Ovidius of Constanta,Romania. AfteraperiodofpostdoctoratestudiesatUniversityofUdine,Italy,in2012, shebecameAssistantProfessorattheUniversityofNovaGorica,Slovenia,whereshecurrentlyhold thepositionofAssociateProfessorandactingheadoftheCenterforInformationTechnologiesand AppliedMathematics. Her main research direction is theory of algebraic hypercompositional structures and their connectionswithfuzzysetstheory. Inthisarea,shehaspublishedmorethan60reasearcharticles injournalsindexedbyScopus/WebofScience. Sheisalsoaco-authorofthemonograph“Fuzzy AlgebraicHyperstructures:AnIntroduction”publishedin2015bySpringer. Prof. IrinaCristeaisdeeplyinvolvedintheeditorialactivities,beingmemberoftheEditorial Boardoffiveinternationaljournals(amongthemMathematics,publishedbyMDPI)andactingas areviewerfornumerousjournals. In2019,shewasawardedbyPublonsthe“Top1%Reviewersin Mathematics”. vii Preface to “Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures” Symmetryplaysafundamentalroleinourdailylivesandinthestudyofthestructureofdifferent objectsinphysics,chemistry,biology,mathematics,architecture,arts,sociology,linguistics,etc. For example, the structureof moleculesis wellexplained bytheir symmetry properties, described by symmetryelementsandsymmetryoperations. Asymmetryoperationisachange,atransformation afterwhichcertainobjectsremaininvariant,suchasrotations,reflections,inversions,orpermutation operations.Untilnow,themostefficientmethodtobetterdescribesymmetrywasusingmathematical toolsofferedbygrouptheory. Naturally generalizing the concept of a group, by considering the result of the interaction between two elements of a non-empty set to be a set of elements (and not only one element, as for groups), Frederic Marty, in 1934, at only 23 years old, defined the concept of a hypergroup. The law characterizing such a structure is called multi-valued operation, hyperoperation, or hypercomposition,andthetheoryofthealgebraicstructuresendowedwithatleastonemulti-valued operation is known as hyperstructure theory or hypercompositional algebra. Marty’s motivation tointroducehypergroupswasthatthequotientofagroupmoduloanysubgroup(notnecessarily normal)isahypergroup. ThemainaimofthisSpecialIssuewastopresentrecentadvancesinhypercompositionalalgebra, thecrispandfuzzyalgebra,wheresymmetryplaysacrucialrole.Studiesarerelated(butnotlimited) to equivalence relations, orderings, permutations, symmetrical groups, graphs and hypergraphs, lattices,fuzzysets,representations,etc.Someapplicationsofalgebraichypercompositionalstructures in engineering, information technologies, computer science, where symmetry, or the lack of symmetry,isclearlyspecifiedandlaidout,arealsounderlined. IrinaCristea SpecialIssueEditor ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.