ebook img

Symmetries and Semi-invariants in the Analysis of Nonlinear Systems PDF

351 Pages·2011·2.294 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Symmetries and Semi-invariants in the Analysis of Nonlinear Systems

Symmetries and Semi-invariants in the Analysis of Nonlinear Systems Laura Menini (cid:2) Antonio Tornambè Symmetries and Semi-invariants in the Analysis of Nonlinear Systems Prof.LauraMenini Prof.AntonioTornambè Dipto.InformaticaSistemieProduzione Dipto.InformaticaSistemieProduzione UniversitàdiRoma-TorVergata UniversitàdiRoma-TorVergata ViadelPolitecnico1 ViadelPolitecnico1 00133Rome 00133Rome Italy Italy [email protected] [email protected] ISBN978-0-85729-611-5 e-ISBN978-0-85729-612-2 DOI10.1007/978-0-85729-612-2 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2011928506 MathematicsSubjectClassification: 93C15,93C55,34C14,34C20,93D30,93B18,93B27 ©Springer-VerlagLondonLimited2011 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Coverdesign:VTeXUAB,Lithuania Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The goal of this book is to present several concepts useful for the analysis of dy- namicalsystems,andtoillustrate,inthelasttwochapters,howtheycanbeactually appliedtoimprovethestateoftheartfortwoclassicaltopicsinnonlinearsystems theory:thelinearizationofanonlinearsystembystateimmersionandthestudyof stabilityofequilibriumpoints. The main reasoning that led us to writing this book is that some concepts that are already well developed in the literature become more important if presented together.Threeofsuchconceptsarehomogeneity,symmetries(andorbitalsymme- triesforcontinuous-timesystems)andLiealgebras,which,inouropinion,canbe better understood if symmetries are seen as a generalization of homogeneity, and Lie algebras (seen as generators of Lie groups) as a generalization of symmetries. Anotherverywellknownconceptisthatoffirstintegral,thatisparticularlyhelpful for researchers working on Hamiltonian systems, or on stability of switched sys- tems. In our opinion, similar attention should be paid to the generalization of first integralsrepresentedbysemi-invariants,which,inturn,haveaspecialrelation,that willbeexploredinthebook,withorbitalsymmetries. Nonlinear systems theory was traditionally developed for continuous-time sys- tems, i.e., systems of ordinary differential equations. Only most recently, with the growthofthe“digitalworld”,theattentionofmanyresearchersisconcentratedon discrete-timesystems, i.e., systems of difference equations.For linear systems the similaritybetweencontinuous-timeanddiscrete-timesystemsisnowadayswellun- derstood and, with some important exceptions, the study of both kinds of systems canbeactuallyperformedinparallel,obtainingverysimilarresults.Sincethisisnot sotruefornonlinearsystems,inthisbookwehavemadeaspecialefforttoextend someoftheconceptsthatarestandardandwellknownforcontinuous-timesystems to discrete-time ones; in some cases, we report some results, already existing for discrete-timesystems,butnotsowellknowninthecontrolliterature,thatturnout tobetheanalogousofwellknownresultsincontinuous-time. Wehavetriedtobeself-containedasmuchaspossible,andsometimeswehave reportednotonlythestatements,butalsotheproofsofsomeverystandardresults, for two reasons: first because we would like the book to reach a wider audience, v vi Preface secondly because such derivations are often very similar to those that are needed todevelopthelessstandardtopics.Mostofthematerialinthefirstsixchaptersof thebookisnotnew,but,togetherwithsomenewresults,wesometimesproposean alternativederivation of some known result that we considermore useful to better understandthetopicoritsrelationshipwithotherresultspresentedearlier. Finally,wewouldliketoapologizefortheinevitableerrorsandomissions,espe- ciallyingivingcreditfortheresultspresentedinthebook. Rome,Italy LauraMenini AntonioTornambè Contents 1 NotationandBackground . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 AnalyticandMeromorphicFunctions . . . . . . . . . . . . . . . . 2 1.3 DifferentialandDifferenceEquations . . . . . . . . . . . . . . . . 4 1.4 DifferentialForms . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 TheCauchy–KovalevskayaTheorem . . . . . . . . . . . . . . . . 19 1.6 TheFrobeniusTheorem . . . . . . . . . . . . . . . . . . . . . . . 20 1.7 Semi-simple,NormalandNilpotentSquareMatrices . . . . . . . . 25 2 AnalysisofLinearSystems . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 TheLinearCentralizerandLinearNormalizerofaSquareMatrix . 29 2.2 DarbouxPolynomialsandFirstIntegrals . . . . . . . . . . . . . . 45 3 AnalysisofContinuous-TimeNonlinearSystems . . . . . . . . . . . 55 3.1 Semi-invariantsandDarbouxPolynomialsofContinuous-Time NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Symmetries and Orbital Symmetries of Continuous-Time NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Continuous-TimeHomogeneousNonlinearSystems . . . . . . . . 70 3.4 Characteristic Solutions of Continuous-Time Homogeneous NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5 ReductionofContinuous-TimeNonlinearSystems . . . . . . . . . 82 3.6 Continuous-TimeNonlinearPlanarSystems . . . . . . . . . . . . 84 3.7 ParameterizationofContinuous-TimeNonlinearPlanarSystems HavingaGivenOrbitalSymmetry . . . . . . . . . . . . . . . . . 90 3.8 TheInverseJacobiLastMultiplier . . . . . . . . . . . . . . . . . 94 3.9 MatrixIntegratingFactors . . . . . . . . . . . . . . . . . . . . . . 98 3.10 LaxPairsforContinuous-TimeNonlinearSystems . . . . . . . . . 100 3.11 A “Computational” Result for the Darboux Polynomials ofContinuous-TimeNonlinearSystems . . . . . . . . . . . . . . . 107 3.12 ThePoincaré–DulacNormalFormofContinuous-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 vii viii Contents 3.13 HomogeneityandResonanceofContinuous-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.14 TheBelitskiiNormalFormofContinuous-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.15 NonlinearTransformationsofLinearSystems . . . . . . . . . . . 135 3.16 InvariantDistributionsandDualSemi-Invariants . . . . . . . . . . 137 3.17 DecompositionofContinuous-TimeNonlinearSystems . . . . . . 140 3.18 SymmetriesofAlgebraicEquations . . . . . . . . . . . . . . . . . 143 3.19 SymmetriesandDimensionalAnalysis . . . . . . . . . . . . . . . 144 3.20 SymmetriesofScalarOrdinaryDifferentialEquations . . . . . . . 146 4 AnalysisofDiscrete-TimeNonlinearSystems . . . . . . . . . . . . . 153 4.1 Semi-invariants and Darboux Polynomials of Discrete-Time NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.2 A “Computational” Result for the Darboux Polynomials ofDiscrete-TimeNonlinearSystems . . . . . . . . . . . . . . . . 154 4.3 SymmetriesofDiscrete-TimeNonlinearSystems . . . . . . . . . . 158 4.4 SymmetriesofScalarDiscrete-TimeNonlinearSystems . . . . . . 161 4.5 ReductionofDiscrete-TimeNonlinearSystems . . . . . . . . . . 165 4.6 APropertyofDiscrete-TimeNonlinearPlanarSystems . . . . . . 166 4.7 LaxPairsforDiscrete-TimeNonlinearSystems . . . . . . . . . . 168 4.8 ThePoincaré–DulacNormalFormforDiscrete-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.9 LinearizationofDiscrete-TimeNonlinearSystems . . . . . . . . . 178 4.10 HomogeneityandResonanceofDiscrete-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.11 TheBelitskiiNormalFormofDiscrete-TimeNonlinearSystems . 182 4.12 DecompositionofDiscrete-TimeNonlinearSystems . . . . . . . . 184 5 AnalysisofHamiltonianSystems . . . . . . . . . . . . . . . . . . . . 187 5.1 Euler–LagrangeEquations . . . . . . . . . . . . . . . . . . . . . . 187 5.2 HamiltonianSystems . . . . . . . . . . . . . . . . . . . . . . . . 189 5.3 NormalFormsofHamiltonianSystems . . . . . . . . . . . . . . . 202 5.4 HamiltonianPlanarSystems . . . . . . . . . . . . . . . . . . . . . 207 5.5 SystemsHavinganInverseJacobiLastMultiplierEqualto1 . . . 214 6 LieAlgebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 6.1 AbstractLieAlgebras . . . . . . . . . . . . . . . . . . . . . . . . 221 6.2 LieAlgebrasofMatrices . . . . . . . . . . . . . . . . . . . . . . 224 6.3 LieAlgebrasofVectorFunctions . . . . . . . . . . . . . . . . . . 226 6.4 RepresentationofLieAlgebrasbyVectorFunctions . . . . . . . . 229 6.5 NonlinearSuperposition . . . . . . . . . . . . . . . . . . . . . . . 231 6.6 NonlinearSuperpositionFormulasforSolvableLieAlgebras . . . 242 6.6.1 Two-DimensionalLieAlgebras . . . . . . . . . . . . . . . 244 6.7 DarbouxPolynomialsofaLieAlgebra . . . . . . . . . . . . . . . 247 6.8 TheJointPoincaré–DulacNormalForm . . . . . . . . . . . . . . 252 6.9 TheExponentialNotation . . . . . . . . . . . . . . . . . . . . . . 254 Contents ix 6.10 TheWei–NormanEquations . . . . . . . . . . . . . . . . . . . . . 262 6.11 CommutationRules . . . . . . . . . . . . . . . . . . . . . . . . . 267 7 LinearizationbyStateImmersion . . . . . . . . . . . . . . . . . . . . 275 7.1 SufficientConditionsfortheExistenceofaLinearizingState Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 7.1.1 Linearization of Continuous-Time Systems by State Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . 276 7.1.2 LinearizationofDiscrete-TimeSystemsbyState Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . 280 7.2 ComputationoftheFlowbyStateImmersion . . . . . . . . . . . . 281 7.3 Computation of a Linearizing Diffeomorphism by Using Semi-invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 7.4 LinearizationofHamiltonianPlanarSystems . . . . . . . . . . . . 285 7.5 LinearizationofHigherOrderHamiltonianSystems . . . . . . . . 290 8 StabilityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 8.2 ScalarNonlinearSystems . . . . . . . . . . . . . . . . . . . . . . 297 8.3 Semi-invariantsandCenterManifoldforPlanarSystems . . . . . . 300 8.4 StabilityofContinuous-TimeCriticalPlanarSystems . . . . . . . 303 8.4.1 LinearPartwithImaginaryEigenvalues. . . . . . . . . . . 304 8.4.2 A Simple Proof of a Bendixson Result for Planar Continuous-TimeSystems . . . . . . . . . . . . . . . . . . 304 8.4.3 StabilityAnalysisfor Planar Systemsin the Belitskii NormalForm . . . . . . . . . . . . . . . . . . . . . . . . 309 8.5 Construction of Lyapunov Functions Through Darboux PolynomialsforLinearSystems . . . . . . . . . . . . . . . . . . . 316 8.6 Construction of Lyapunov Functions Through Darboux PolynomialsforNonlinearSystems . . . . . . . . . . . . . . . . . 319 8.7 ExamplesofConstructionofLyapunovFunctions . . . . . . . . . 324 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.