Symmetries and Semi-invariants in the Analysis of Nonlinear Systems Laura Menini (cid:2) Antonio Tornambè Symmetries and Semi-invariants in the Analysis of Nonlinear Systems Prof.LauraMenini Prof.AntonioTornambè Dipto.InformaticaSistemieProduzione Dipto.InformaticaSistemieProduzione UniversitàdiRoma-TorVergata UniversitàdiRoma-TorVergata ViadelPolitecnico1 ViadelPolitecnico1 00133Rome 00133Rome Italy Italy [email protected] [email protected] ISBN978-0-85729-611-5 e-ISBN978-0-85729-612-2 DOI10.1007/978-0-85729-612-2 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2011928506 MathematicsSubjectClassification: 93C15,93C55,34C14,34C20,93D30,93B18,93B27 ©Springer-VerlagLondonLimited2011 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Coverdesign:VTeXUAB,Lithuania Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The goal of this book is to present several concepts useful for the analysis of dy- namicalsystems,andtoillustrate,inthelasttwochapters,howtheycanbeactually appliedtoimprovethestateoftheartfortwoclassicaltopicsinnonlinearsystems theory:thelinearizationofanonlinearsystembystateimmersionandthestudyof stabilityofequilibriumpoints. The main reasoning that led us to writing this book is that some concepts that are already well developed in the literature become more important if presented together.Threeofsuchconceptsarehomogeneity,symmetries(andorbitalsymme- triesforcontinuous-timesystems)andLiealgebras,which,inouropinion,canbe better understood if symmetries are seen as a generalization of homogeneity, and Lie algebras (seen as generators of Lie groups) as a generalization of symmetries. Anotherverywellknownconceptisthatoffirstintegral,thatisparticularlyhelpful for researchers working on Hamiltonian systems, or on stability of switched sys- tems. In our opinion, similar attention should be paid to the generalization of first integralsrepresentedbysemi-invariants,which,inturn,haveaspecialrelation,that willbeexploredinthebook,withorbitalsymmetries. Nonlinear systems theory was traditionally developed for continuous-time sys- tems, i.e., systems of ordinary differential equations. Only most recently, with the growthofthe“digitalworld”,theattentionofmanyresearchersisconcentratedon discrete-timesystems, i.e., systems of difference equations.For linear systems the similaritybetweencontinuous-timeanddiscrete-timesystemsisnowadayswellun- derstood and, with some important exceptions, the study of both kinds of systems canbeactuallyperformedinparallel,obtainingverysimilarresults.Sincethisisnot sotruefornonlinearsystems,inthisbookwehavemadeaspecialefforttoextend someoftheconceptsthatarestandardandwellknownforcontinuous-timesystems to discrete-time ones; in some cases, we report some results, already existing for discrete-timesystems,butnotsowellknowninthecontrolliterature,thatturnout tobetheanalogousofwellknownresultsincontinuous-time. Wehavetriedtobeself-containedasmuchaspossible,andsometimeswehave reportednotonlythestatements,butalsotheproofsofsomeverystandardresults, for two reasons: first because we would like the book to reach a wider audience, v vi Preface secondly because such derivations are often very similar to those that are needed todevelopthelessstandardtopics.Mostofthematerialinthefirstsixchaptersof thebookisnotnew,but,togetherwithsomenewresults,wesometimesproposean alternativederivation of some known result that we considermore useful to better understandthetopicoritsrelationshipwithotherresultspresentedearlier. Finally,wewouldliketoapologizefortheinevitableerrorsandomissions,espe- ciallyingivingcreditfortheresultspresentedinthebook. Rome,Italy LauraMenini AntonioTornambè Contents 1 NotationandBackground . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 AnalyticandMeromorphicFunctions . . . . . . . . . . . . . . . . 2 1.3 DifferentialandDifferenceEquations . . . . . . . . . . . . . . . . 4 1.4 DifferentialForms . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 TheCauchy–KovalevskayaTheorem . . . . . . . . . . . . . . . . 19 1.6 TheFrobeniusTheorem . . . . . . . . . . . . . . . . . . . . . . . 20 1.7 Semi-simple,NormalandNilpotentSquareMatrices . . . . . . . . 25 2 AnalysisofLinearSystems . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 TheLinearCentralizerandLinearNormalizerofaSquareMatrix . 29 2.2 DarbouxPolynomialsandFirstIntegrals . . . . . . . . . . . . . . 45 3 AnalysisofContinuous-TimeNonlinearSystems . . . . . . . . . . . 55 3.1 Semi-invariantsandDarbouxPolynomialsofContinuous-Time NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Symmetries and Orbital Symmetries of Continuous-Time NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Continuous-TimeHomogeneousNonlinearSystems . . . . . . . . 70 3.4 Characteristic Solutions of Continuous-Time Homogeneous NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5 ReductionofContinuous-TimeNonlinearSystems . . . . . . . . . 82 3.6 Continuous-TimeNonlinearPlanarSystems . . . . . . . . . . . . 84 3.7 ParameterizationofContinuous-TimeNonlinearPlanarSystems HavingaGivenOrbitalSymmetry . . . . . . . . . . . . . . . . . 90 3.8 TheInverseJacobiLastMultiplier . . . . . . . . . . . . . . . . . 94 3.9 MatrixIntegratingFactors . . . . . . . . . . . . . . . . . . . . . . 98 3.10 LaxPairsforContinuous-TimeNonlinearSystems . . . . . . . . . 100 3.11 A “Computational” Result for the Darboux Polynomials ofContinuous-TimeNonlinearSystems . . . . . . . . . . . . . . . 107 3.12 ThePoincaré–DulacNormalFormofContinuous-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 vii viii Contents 3.13 HomogeneityandResonanceofContinuous-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.14 TheBelitskiiNormalFormofContinuous-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.15 NonlinearTransformationsofLinearSystems . . . . . . . . . . . 135 3.16 InvariantDistributionsandDualSemi-Invariants . . . . . . . . . . 137 3.17 DecompositionofContinuous-TimeNonlinearSystems . . . . . . 140 3.18 SymmetriesofAlgebraicEquations . . . . . . . . . . . . . . . . . 143 3.19 SymmetriesandDimensionalAnalysis . . . . . . . . . . . . . . . 144 3.20 SymmetriesofScalarOrdinaryDifferentialEquations . . . . . . . 146 4 AnalysisofDiscrete-TimeNonlinearSystems . . . . . . . . . . . . . 153 4.1 Semi-invariants and Darboux Polynomials of Discrete-Time NonlinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.2 A “Computational” Result for the Darboux Polynomials ofDiscrete-TimeNonlinearSystems . . . . . . . . . . . . . . . . 154 4.3 SymmetriesofDiscrete-TimeNonlinearSystems . . . . . . . . . . 158 4.4 SymmetriesofScalarDiscrete-TimeNonlinearSystems . . . . . . 161 4.5 ReductionofDiscrete-TimeNonlinearSystems . . . . . . . . . . 165 4.6 APropertyofDiscrete-TimeNonlinearPlanarSystems . . . . . . 166 4.7 LaxPairsforDiscrete-TimeNonlinearSystems . . . . . . . . . . 168 4.8 ThePoincaré–DulacNormalFormforDiscrete-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.9 LinearizationofDiscrete-TimeNonlinearSystems . . . . . . . . . 178 4.10 HomogeneityandResonanceofDiscrete-TimeNonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.11 TheBelitskiiNormalFormofDiscrete-TimeNonlinearSystems . 182 4.12 DecompositionofDiscrete-TimeNonlinearSystems . . . . . . . . 184 5 AnalysisofHamiltonianSystems . . . . . . . . . . . . . . . . . . . . 187 5.1 Euler–LagrangeEquations . . . . . . . . . . . . . . . . . . . . . . 187 5.2 HamiltonianSystems . . . . . . . . . . . . . . . . . . . . . . . . 189 5.3 NormalFormsofHamiltonianSystems . . . . . . . . . . . . . . . 202 5.4 HamiltonianPlanarSystems . . . . . . . . . . . . . . . . . . . . . 207 5.5 SystemsHavinganInverseJacobiLastMultiplierEqualto1 . . . 214 6 LieAlgebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 6.1 AbstractLieAlgebras . . . . . . . . . . . . . . . . . . . . . . . . 221 6.2 LieAlgebrasofMatrices . . . . . . . . . . . . . . . . . . . . . . 224 6.3 LieAlgebrasofVectorFunctions . . . . . . . . . . . . . . . . . . 226 6.4 RepresentationofLieAlgebrasbyVectorFunctions . . . . . . . . 229 6.5 NonlinearSuperposition . . . . . . . . . . . . . . . . . . . . . . . 231 6.6 NonlinearSuperpositionFormulasforSolvableLieAlgebras . . . 242 6.6.1 Two-DimensionalLieAlgebras . . . . . . . . . . . . . . . 244 6.7 DarbouxPolynomialsofaLieAlgebra . . . . . . . . . . . . . . . 247 6.8 TheJointPoincaré–DulacNormalForm . . . . . . . . . . . . . . 252 6.9 TheExponentialNotation . . . . . . . . . . . . . . . . . . . . . . 254 Contents ix 6.10 TheWei–NormanEquations . . . . . . . . . . . . . . . . . . . . . 262 6.11 CommutationRules . . . . . . . . . . . . . . . . . . . . . . . . . 267 7 LinearizationbyStateImmersion . . . . . . . . . . . . . . . . . . . . 275 7.1 SufficientConditionsfortheExistenceofaLinearizingState Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 7.1.1 Linearization of Continuous-Time Systems by State Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . 276 7.1.2 LinearizationofDiscrete-TimeSystemsbyState Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . 280 7.2 ComputationoftheFlowbyStateImmersion . . . . . . . . . . . . 281 7.3 Computation of a Linearizing Diffeomorphism by Using Semi-invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 7.4 LinearizationofHamiltonianPlanarSystems . . . . . . . . . . . . 285 7.5 LinearizationofHigherOrderHamiltonianSystems . . . . . . . . 290 8 StabilityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 8.2 ScalarNonlinearSystems . . . . . . . . . . . . . . . . . . . . . . 297 8.3 Semi-invariantsandCenterManifoldforPlanarSystems . . . . . . 300 8.4 StabilityofContinuous-TimeCriticalPlanarSystems . . . . . . . 303 8.4.1 LinearPartwithImaginaryEigenvalues. . . . . . . . . . . 304 8.4.2 A Simple Proof of a Bendixson Result for Planar Continuous-TimeSystems . . . . . . . . . . . . . . . . . . 304 8.4.3 StabilityAnalysisfor Planar Systemsin the Belitskii NormalForm . . . . . . . . . . . . . . . . . . . . . . . . 309 8.5 Construction of Lyapunov Functions Through Darboux PolynomialsforLinearSystems . . . . . . . . . . . . . . . . . . . 316 8.6 Construction of Lyapunov Functions Through Darboux PolynomialsforNonlinearSystems . . . . . . . . . . . . . . . . . 319 8.7 ExamplesofConstructionofLyapunovFunctions . . . . . . . . . 324 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335