ebook img

Symmetries and Groups in Signal Processing: An Introduction PDF

163 Pages·2010·2.148 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Symmetries and Groups in Signal Processing: An Introduction

SIGNALSANDCOMMUNICATIONTECHNOLOGY Forothertitlespublishedinthisseries,goto http://www.springer.com/series/4748 Virendra P. Sinha Symmetries and Groups in Signal Processing An Introduction 123 Prof.VirendraP.Sinha DhirubhaiAmbaniInstitute ofInformationandComm.Tech. NearIndrodaCircle 382007Gandhinagar,Gujarat,India vp [email protected] ISBN978-90-481-9433-9 e-ISBN978-90-481-9434-6 DOI10.1007/978-90-481-9434-6 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2010931379 (cid:2)c SpringerScience+BusinessMediaB.V.2010 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,without writtenpermissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthe purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserof thework. Coverdesign: SPiPublisherServices Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To my grandsons Rohan, Ishaan, and Shloak, for a whiff of algebra Preface Thefieldofsignalprocessing,asitstandstoday,aboundsinvariedgeneralizations ofsystemtheoreticconceptsthatcanbesaidtorestonthenotionofsymmetry,and ongrouptheoreticmethodsofexploitingsymmetries. Awiderangeofsuchgeneralizationsanddevelopmentsrelycentrallyonatran- sitionfrom the classical Fourier theory to the modern theory of non-commutative harmonic analysis, with its roots in the representation theory of groups. In the frameworkthatemergesthroughthistransition,allthebasicnotions—transforms, convolutions,spectra,andsoon,carryoverinaformthatallowsawidevarietyof interpretations,subsumingtheoldonesandadmittingnewones. Thisbookisanintroductorytreatmentofaselectionoftopicsthattogetherserve toprovideinmyviewabackgroundforaproperunderstandingofthetheoreticalde- velopmentswithinthisframework.Addressedprimarilytobeginninggraduatestu- dentsinelectricalandcommunicationengineering,itismeanttoserveasabridge between what they know from their undergraduate years, and what lies ahead for them in their graduate studies, be it in the area of signal processing, or in related areassuchasimageprocessingandimageunderstanding,codingtheory,faultdiag- nostics,andthetheoryofalgorithmsandcomputation. I assume that the reader is familiar with the theory of linear time–invariant continuous–timeanddiscrete–timesystemsasitis generallytaughtina basicun- dergraduatecourseonsignalsandsystems.Therearenomathematicalprerequisites beyondwhattheywouldhavelearntintheirundergraduateyears.Familiaritywith rudimentsoflinearalgebrawouldbehelpful,buteventhatisnotnecessary;what- everofitisneededinthebook,theycanpickupontheirownastheygoalong. Apointaboutpedagogy.Inteachingmathematicalconceptstoengineeringstu- dents, a plan of action that is commonly followed is to separate what is regarded asmathematicspersefromitsapplications,andtointroducethetwoseparatelyin alternation.Thusonefirstintroducesthemtodifferentialequations,linearormod- ern algebra, or discrete mathematics, on abstract lines as they would appear in a mathematics text, and then one turns to their applications in solving engineering problems. This plan works well, perhaps just about, when the students are fresh to their engineeringstudies.Butatastagewhentheyhavealreadyhadtheirfirstexposure to basic engineering principles, it has an inhibiting influence, both on their pace of learning and on their motivation for it. Faced with a new abstract concept at vii viii Preface thisstage,theyinstinctivelybegintolookforapatterninwhichthenewwillfitin smoothly,andthroughanalogiesandmetaphors,withwhattheyalreadyintuitively knowoftheirmainsubjects.Theylookforthesortofexperiencethat,forinstance, they had at the time they learnt their elements of Euclidean geometry, when they saw how the theorem on triangle inequality, logically derived from the axioms, agreedwithwhattheyknewallalongabouttrianglesastheydrewthemonpaper. It is the same experience whichthey had whilelearning elementsof graph theory concurrently with network analysis. More generally, they look for a backdrop of intuitionagainstwhichtheywouldliketheabstractionstobesetandtounfold. Study of new mathematical structures becomes, as result, an easier and more pleasant task for such students if the abstractions are presented seamlessly with theirconcreteengineeringinterpretations.Ihavetriedtokeepthispointinmindin mypresentationinthisbook. The contents of the book are organized as follows. Chapter 1 is devoted to an overviewofbasicsignalprocessingconceptsinanalgebraicsetting.Verybroadly, it is an invitation to the reader to revisit these concepts in a manner that places in viewtheir algebraic and structural foundations.The specific questionthat I ex- amine is the following: How should system theoretic concepts be formulated or characterized so that they are, in the first instance, independent of details such as whetherthesignalsofinteresttousarediscrete,discretefinite,one–dimensional,or multi–dimensional.Implicitinthisquestionisafinerquestionaboutrepresentation of signals that I discuss first, focussing attention on the distinction between what signals are physically, and the models by which they are represented. Next I dis- cuss those aspects of linearity,translation–invariance,causality,convolutions,and transforms,thataregermanetotheirgeneralizations,inthecontextofdiscretesig- nals.Chapter2presentsinanutshellthosebasicalgebraicconceptsthatarerelied uponinagrouptheoreticinterpretationoftheconceptofsymmetry.InChapter3, thepointsmadeinChapter1aboutthechoiceofmathematicalmodelsistakenup again.Chapter4isaboutsymmetryanditsalgebraicformalization.Representation theoryoffinitegroupsisintroducedinChapter5.Chapter6givesafinallookatthe roleofgrouprepresentationtheoryinsignalprocessing. Acknowledgements Thisbookhasgrownoutofnoteswrittenforatransitioncourseofferedtobeginning graduate students in the Department of Electrical Engineering of IIT Kanpur, and alsoforasimilarcourseatDA-IICTGandhinagar.Creatingthesecourseshasbeen a very fruitfullearning experiencefor me,and I have benefitted enormouslyfrom discussionsandinteractionswiththeparticipatingstudentsatboththeplaces.Ican notthank themenough for their activeinvolvement.My specialthanks are due to RatnikGandhiandPratikShah,bothcurrentlyworkingfortheirdoctoraldegreesat DA-IICT,fortheirregularinteractionsandfeedback.Ratnikhasbeenmyknow-all Preface ix manforthesubtletiesoflatex,andhasactedasasoundingboardformeatvarious stagesofwriting. Writinghasitslows,whenoneisheldbackbyboutsofperfectionism.Constant nudging ‘to get on with the job’ is in such times a pragmatic antidote. My deep appreciation for that to Dr. A.P. Kudchadker, former Director of DA-IICT, and to Dr.S.C.Sahasrabudhe,thepresentDirector. Amongstcolleagues,andformerstudents,therearemanywhohavedirectlyand criticallyinfluencedmythoughtprocessesthathavepromptedthistext.Igratefully acknowledge receiving constructive inputs from Drs. S.D. Agashe, S. Chatterji, S.K. Mullick, P. Ramakrishna Rao, K.R. Sarma, M.U. Siddiqi, V.R. Sule, and K.S.Venkatesh. FromthetimeIfirstputforthmybookproposaltoSpringerinNovember2008, ithasbeenapleasureinteractingwithEditorMarkdeJongh.Mythanksgotohim, andtoMrs.CindyZitter,hisSeniorAssistant,forbenignlyputtingupwithdelays inmyself-imposeddeadlines,andforallthemeticuloussupport. Finally,tomywife,Meera,anddaughters,ShubhraandShalini,Iamimmeasur- ablygratefulforbeingatonewithmeinnegotiatingtherhythmsofacademiclife. Gandhinagar VirendraP.Sinha April,2010 Contents Preface vii 1 SignalsandSignalSpaces:AStructuralViewpoint 1 1.1 WhatIsaSignal? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 SpacesandStructures . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 SignalSpacesandSystems . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Linearity,Shift–InvarianceandCausality. . . . . . . . . . . . . . . 12 1.4.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 Shift–Invariance . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.4 Characterization . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 ConvolutionalAlgebraandtheZ–Transform . . . . . . . . . . . . . 20 1.6 Shifts,TransformsandSpectra . . . . . . . . . . . . . . . . . . . . 24 1.6.1 Shift–InvarianceonFiniteIndexSets . . . . . . . . . . . . 26 1.6.2 TransformsandSpectra . . . . . . . . . . . . . . . . . . . 31 2 AlgebraicPreliminaries 43 2.1 What’sinaDefinition? . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 SetTheoreticNotation . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3 RelationsandOperations . . . . . . . . . . . . . . . . . . . . . . . 47 2.3.1 EquivalenceRelationsandPartitions . . . . . . . . . . . . . 47 2.3.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4 Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4.1 GroupsWithinGroups . . . . . . . . . . . . . . . . . . . . 51 2.4.2 GroupMorphisms . . . . . . . . . . . . . . . . . . . . . . 52 2.4.3 GroupsandGeometry . . . . . . . . . . . . . . . . . . . . 53 2.5 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.5.1 MatricesofVectorsandLinearTransformations. . . . . . . 54 2.5.2 DirectSumsofSubspaces . . . . . . . . . . . . . . . . . . 57 2.6 Posets,Lattices,andBooleanAlgebras . . . . . . . . . . . . . . . . 61 2.6.1 FromPosetstoLattices . . . . . . . . . . . . . . . . . . . . 61 2.6.2 ComplementedandDistributiveLattices . . . . . . . . . . . 63 2.6.3 LatticeofSubspacesofaVectorSpace . . . . . . . . . . . 64 2.7 ClosingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 xi xii Contents 3 Measurement,Modeling,andMetaphors 69 3.1 ArchimedesandtheTortoise . . . . . . . . . . . . . . . . . . . . . 69 3.2 TheRepresentationalApproach . . . . . . . . . . . . . . . . . . . 70 3.2.1 MeasuringLengths . . . . . . . . . . . . . . . . . . . . . . 70 3.2.2 FromMeasurementtoModeling . . . . . . . . . . . . . . . 72 3.2.3 TimeandSpace . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.4 ModelsinGeneral . . . . . . . . . . . . . . . . . . . . . . 76 3.3 Metaphors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 Symmetries,AutomorphismsandGroups 81 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 SymmetriesandAutomorphisms . . . . . . . . . . . . . . . . . . . 83 4.3 GroupsofAutomorphisms . . . . . . . . . . . . . . . . . . . . . . 90 4.4 SymmetriesofLinearTransformations . . . . . . . . . . . . . . . . 93 4.4.1 SymmetriesandSymmetryOperations . . . . . . . . . . . 93 4.4.2 TranslationOperators. . . . . . . . . . . . . . . . . . . . . 94 4.5 SymmetryBasedDecompositions . . . . . . . . . . . . . . . . . . 96 4.5.1 Block–DiagonalizabilityandInvariantSubspaces . . . . . . 97 4.5.2 TransformationGroupsandTheirInvariantSubspaces . . . 98 4.5.3 TransformationswithSymmetries . . . . . . . . . . . . . . 100 5 RepresentationsofFiniteGroups 105 5.1 TheNotionofRepresentation. . . . . . . . . . . . . . . . . . . . . 105 5.2 MatrixRepresentationsofGroups . . . . . . . . . . . . . . . . . . 105 5.3 AutomorphismsofaVectorSpace . . . . . . . . . . . . . . . . . . 108 5.4 GroupRepresentationsinGL(V) . . . . . . . . . . . . . . . . . . . 108 5.5 ReducibleandIrreducibleRepresentations . . . . . . . . . . . . . . 112 5.6 ReducibilityofRepresentations. . . . . . . . . . . . . . . . . . . . 115 5.7 Schur’sLemmaandtheOrthogonalityTheorem . . . . . . . . . . . 119 5.8 CharactersandTheirProperties. . . . . . . . . . . . . . . . . . . . 122 5.9 ConstructingIrreducibleRepresentations. . . . . . . . . . . . . . . 126 5.10 CompleteReductionofRepresentations . . . . . . . . . . . . . . . 130 5.11 FurtheronReduction . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 SignalProcessingandRepresentationTheory 143 6.1 SignalsasFunctionsonGroups. . . . . . . . . . . . . . . . . . . . 144 6.2 SymmetriesofLinearEquations . . . . . . . . . . . . . . . . . . . 145 6.3 FastDiscreteSignalTransforms . . . . . . . . . . . . . . . . . . . 147 A Parentheses,TheirProperPairing,andAssociativity 151 A.1 ProperPairingofParentheses . . . . . . . . . . . . . . . . . . . . . 151 A.2 ParenthesesandtheAssociativeLaw . . . . . . . . . . . . . . . . . 153 Index 157 Chapter 1 Signals and Signal Spaces: A Structural Viewpoint 1.1 What Is a Signal? The notionof a signal, like that of weight or temperature, is a two-sided one. We commonly think and speak of signals as functions of some sort, with numerical valuesbothfortheirdomainandfortheirrange.Yet,signalstobeginwithhavetodo withwhatweperceiveofobjectsandeventsaroundusthroughoursenses.Wecould thus,tobemoreexplicit,saythatthetermsignalcarrieswithinittwoconnotations, one empirical and one formal. The former refers to the physical world in which statements about its objects and events are true or false in the sense that they are empiricallyobserved to be so. The latter, on the other hand, refers to abstractions that are members of a formally defined mathematical world in which statements about a class of its members are true or false in the sense that they do or do not logicallyfollowfromtheinitialdefinitionsandaxiomsgoverningthatclass. Tomakethepointclearer,considerthefamiliarnotionofheavinessofanobject forinstance.Howheavyanobjectis,wedescribebymeansofitsweightgivenasa number.Thefeelingofheavinessis,however,somethingempirical,andisassessed qualitatively.Itisamatterofempiricalverificationthatoneveryoccasionthatwe check,wefindtwoobjectsputtogethertobeheavierthaneitherofthemindividu- ally,andthereforeweinductivelyinferthistobeauniversalruleaboutallobjects. Aboutnumbers,ontheotherhand,itisamatterofdeductiveinferencefromthe axiomsofarithmeticthatthesumofanytwopositivenumbersisgreaterthaneither of the two. It makes sense to quantify the perception of heaviness by assigning numbers to objects as their weights because we have at our disposal a practical procedure,basedonadevicesuchasapanbalance,forassigningnumberstoobjects inaveryspecialway.Theresultingassignmentissuchthatthereisamatchbetween what we find to be empirically true about objects regarding their heaviness, and whatislogicallytrueabouttheirnumericalweightsonaccountoftheirarithmetic properties. V.P.Sinha,SymmetriesandGroupsinSignalProcessing,SignalsandCommunicationTechnology, 1 DOI10.1007/978-90-481-9434-6 1,(cid:2)c SpringerScience+BusinessMediaB.V.2010

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.