Symmetric Diophantine approximation over function fields Weidong Zhuang Symmetric Diophantine approximation over function fields Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 3 december 2015 klokke 10:00 uur door Weidong ZHUANG geboren te Jiangsu, China in 1983 Samenstelling van de promotiecommissie: Promotor: Prof. dr. P. Stevenhagen Copromotor: Dr. J.-H. Evertse Overige leden: Prof. dr. F. Beukers (Universiteit Utrecht) Prof. dr. Y. Bugeaud (Universit´e Strasbourg) Prof. dr. K. Gyo˝ry (University of Debrecen) Dr. R. de Jong Prof. dr. B. de Smit (secretaris) Prof. dr. A.W. van der Vaart (voorzitter) Mw. prof. dr. J. T.-Y. Wang (Academia Sinica Taiwan) This work was funded by the NWO vrije competitie EW 2011 project ”Symmetric Diophantine Approximation” and was carried out at Universiteit Leiden. To Yana and Zhida Contents Introduction 1 1 Preliminaries 11 1.1 Discriminants and resultants . . . . . . . . . . . . . . . . . . 11 1.2 Valuations on function fields . . . . . . . . . . . . . . . . . . 13 1.3 Polynomials and heights . . . . . . . . . . . . . . . . . . . . 17 1.4 Galois theory of valuations . . . . . . . . . . . . . . . . . . . 18 1.5 Twisted heights . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Height estimates for solutions of S-unit equations 25 2.1 Height estimates . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 S-unit equations and heights . . . . . . . . . . . . . . . . . . 29 3 Geometry of numbers over function fields 47 3.1 Successive minima . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 A generalization . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Reduction theory for binary forms over k(t) 57 4.1 Discriminant and genus . . . . . . . . . . . . . . . . . . . . . 58 4.2 Preparations on polynomials . . . . . . . . . . . . . . . . . . 61 4.3 Reduced binary forms and successive minima . . . . . . . . . 65 i ii Contents 5 Height estimates in terms of the discriminant 75 5.1 Consequences of the Riemann-Hurwitz formula . . . . . . . . 75 5.2 A few lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3 Completion of the Proof of the Main Theorem . . . . . . . . 101 6 Finiteness for the number of equivalence classes 105 6.1 GL(2,K)-equivalence classes . . . . . . . . . . . . . . . . . . 105 6.2 GL(2,O )-equivalence classes . . . . . . . . . . . . . . . . . 112 S 7 Lower bounds for resultants 115 7.1 Monic binary forms . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Results for binary cubic forms . . . . . . . . . . . . . . . . . 120 7.3 Binary forms of arbitrary degree . . . . . . . . . . . . . . . . 126 7.4 A result on Thue-Mahler equations . . . . . . . . . . . . . . 131 7.5 Lower bounds for resultants in terms of heights . . . . . . . 134 8 Distances between algebraic functions 139 8.1 Root separation of polynomials . . . . . . . . . . . . . . . . 139 8.2 Two lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.3 A symmetric improvement of the Liouville-type inequality . 149 Bibliography 155 Abstract 159 Samenvatting 161 Acknowledgements 167 Curriculum Vitae 169 Index 171 Introduction Roth’stheoremgivesanoptimalsolutiontotheproblemhowwellagivenal- gebraicnumbercanbeapproximatedbyotheralgebraicnumbers. Anatural question is to ask how well two varying algebraic numbers can approximate each other. There is only one non-trivial result, proved by Evertse, but this is far from optimal. Its proof is based on a weak version of the abc- conjecture, which is a consequence of a generalization of Roth’s Theorem, hence it is non-effective. Let k be an algebraically closed field of characteristic 0. Over algebraic function fields of transcendence degree 1 over k there is a proved analogue of the abc-conjecture, i.e., the Mason-Stothers Theorem. This suggests that it should be possible to develop much stronger symmetric Diophantine approximation results over function fields. My research focuses mainly on this interesting problem. To tackle this problem, one considers two cases: either the two algebraic functionsthatapproximateeachotherareconjugateoverthefieldofrational functions k(t) or not. The first case is strongly connected to the following problem: over the Z integers, two binary forms (i.e., homogeneous polynomials) F,G ∈ [X,Y] are called equivalent if G(X,Y) = F(aX +bY,cX +dY) for some matrix (cid:0)a b(cid:1) ∈ GL(2,Z). Twoequivalentbinaryformshavethesamediscriminant. c d A binary form F is called reduced if its height H(F) (maximum of the absolutevaluesofitscoefficients)isminimalamongtheheightsofthebinary 1 2 Introduction forms in its equivalence class. (cid:62) Conjecture. The height H(F) of a reduced binary form F of degree n 4 and non-zero discriminant D has an upper bound of the form c1(n)|D|c2(n), where c (n), c (n) are numbers depending only on n. 1 2 An analogous estimate for n = 2 and n = 3 follows from work of La- grange, Gauss and Hermite. However, the general case is still open. There is only the following much weaker effective result from [11]: Z Theorem (Evertse, Gyo˝ry). Let F(X,Y) ∈ [X,Y] be a reduced binary (cid:62) form of degree n 2 and discriminant D(F) (cid:54)= 0. Then H(F) (cid:54) exp((c n)c2n4|D|8n3), 1 where c ,c are effectively computable, absolute constants. 1 2 More generally, we may consider the ring of integers of an algebraic Z number field and even the ring of S-integers instead of . A weak version of Evertse [9] implies the following: Z Theorem (Evertse). Let F ∈ [X,Y] be a reduced binary form of degree Q n > 1 with splitting field L over and non-zero discriminant. Then H(F) (cid:54) Cineff(n,L)|D(F)|n2−11. The constant here depends on n,L and is ineffective in the sense that it is not effectively computable from the method of proof. We call this result a ’semi-effective’ upper bound since it is effective in terms of D(F), but ineffective in terms of n and L. We proved an analogue of the above conjecture over k[t]. Our main tools areananalogueofthegeometryofnumbersoverfunctionfields(seeThunder [24]) and Mason’s theorem which is an analogue of the abc-conjecture over function fields.
Description: