ebook img

Switching Processes in Queueing Models PDF

343 Pages·2008·1.932 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Switching Processes in Queueing Models

Switching Processes in Queueing Models Vladimir V. Anisimov Series Editor Nikolaos Limnios First published in Great Britain and the United States in 2008 by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 6 Fitzroy Square 111 River Street London W1T 5DX Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd, 2008 The rights of Vladimir V. Anisimov to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Cataloging-in-Publication Data Anisimov, V. V. (Vladimir Vladislavovich) Switching processes in queueing models / Vladimir V. Anisimov. p. cm. Includes bibliographical references and index. ISBN 978-1-84821-045-5 1. Telecommunication--Switching systems--Mathematical models. 2. Telecommunication-- Traffic--Mathematical models. 3. Queuing theory. I. Title. TK5102.985.A55 2008 519.8'2--dc22 2008008995 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-045-5 Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter1.SwitchingStochasticModels . . . . . . . . . . . . . . . . . . . . . 19 1.1.Randomprocesseswithdiscretecomponent . . . . . . . . . . . . . . . . 19 1.1.1.Markovandsemi-Markovprocesses . . . . . . . . . . . . . . . . . 21 1.1.2.ProcesseswithindependentincrementsandMarkovswitching . . 21 1.1.3.Processeswithindependentincrementsandsemi-Markovswitching 23 1.2.Switchingprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.2.1.Definitionofswitchingprocesses. . . . . . . . . . . . . . . . . . . 24 1.2.2.Recurrentprocessesofsemi-Markovtype(simplecase) . . . . . . 26 1.2.3.RPSMwithMarkovswitching . . . . . . . . . . . . . . . . . . . . 26 1.2.4.GeneralcaseofRPSM . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.2.5.ProcesseswithMarkovorsemi-Markovswitching . . . . . . . . . 27 1.3.Switchingstochasticmodels. . . . . . . . . . . . . . . . . . . . . . . . . 28 1.3.1.Sumsofrandomvariables . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.2.Randommovements . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.3.Dynamicsystemsinarandomenvironment . . . . . . . . . . . . . 30 1.3.4.Stochasticdifferentialequationsinarandomenvironment . . . . 30 1.3.5.Branchingprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.3.6.State-dependentflows . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.7.Two-levelMarkovsystemswithfeedback . . . . . . . . . . . . . . 32 1.4.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter2.SwitchingQueueingModels . . . . . . . . . . . . . . . . . . . . . 37 2.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.Queueingsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.1.Markovqueueingmodels . . . . . . . . . . . . . . . . . . . . . . . 38 5 6 SwitchingProcessesinQueueingModels 2.2.1.1.Astate-dependentsystemM /M /1/∞. . . . . . . . . . . 39 Q Q 2.2.1.2.QueueingsystemM /M /1/m. . . . . . . . . . . . . 40 M,Q M,Q 2.2.1.3.SystemM /M /1/∞ . . . . . . . . . . . . . . . . . . 41 Q,B Q,B 2.2.2.Non-Markovsystems . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.2.1.Semi-MarkovsystemSM/M /1 . . . . . . . . . . . . . 42 SM,Q 2.2.2.2.SystemM /M /1/∞. . . . . . . . . . . . . . . . . 43 SM,Q SM,Q 2.2.2.3.SystemM /M /1/V . . . . . . . . . . . . . . . . . 44 SM,Q SM,Q 2.2.3.Modelswithdependentarrivalflows . . . . . . . . . . . . . . . . . 45 2.2.4.Pollingsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.5.Retrialqueueingsystems . . . . . . . . . . . . . . . . . . . . . . . 47 2.3.Queueingnetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3.1.Markovstate-dependentnetworks . . . . . . . . . . . . . . . . . . 49 2.3.1.1.Markovnetwork(M /M /m/∞)r . . . . . . . . . . . . . 49 Q Q 2.3.1.2.Markovnetworks(M /M /m/∞)r withbatches . . . 50 Q,B Q,B 2.3.2.Non-Markovnetworks . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.2.1.State-dependentsemi-Markovnetworks . . . . . . . . . . . . 50 2.3.2.2.Semi-Markovnetworkswithrandombatches . . . . . . . . . 52 2.3.2.3.Networkswithstate-dependentinput . . . . . . . . . . . . . 53 2.4.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Chapter3.ProcessesofSumsofWeakly-dependentVariables . . . . . . . . 57 3.1. Limit theorems for processes of sums of conditionally independent randomvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.LimittheoremsforsumswithMarkovswitching . . . . . . . . . . . . . 65 3.2.1.Flowsofrareevents . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.1.1.Discretetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.1.2.Continuoustime . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.Quasi-ergodicMarkovprocesses . . . . . . . . . . . . . . . . . . . . . . 70 3.4.Limittheoremsfornon-homogenousMarkovprocesses . . . . . . . . . 73 3.4.1.ConvergencetoGaussianprocesses . . . . . . . . . . . . . . . . . 74 3.4.2.Convergencetoprocesseswithindependentincrements . . . . . . 78 3.5.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter4.AveragingPrincipleandDiffusionApproximationforSwitch- ingProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.Averagingprincipleforswitchingrecurrentsequences . . . . . . . . . . 84 4.3.AveragingprincipleanddiffusionapproximationforRPSMs . . . . . . 88 4.4. Averaging principle and diffusion approximation for recurrent pro- cessesofsemi-Markovtype(Markovcase) . . . . . . . . . . . . . . . . 95 4.4.1.AveragingprincipleanddiffusionapproximationforSMP . . . . 105 4.5.AveragingprincipleforRPSMwithfeedback . . . . . . . . . . . . . . . 106 4.6.Averagingprincipleanddiffusionapproximationforswitchingprocesses 108 Contents 7 4.6.1. Averaging principle and diffusion approximation for processes withsemi-Markovswitching . . . . . . . . . . . . . . . . . . . . . 112 4.7.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Chapter5.AveragingandDiffusionApproximationinOverloadedSwitch- ingQueueingSystemsandNetworks . . . . . . . . . . . . . . . . . . . . . . . 117 5.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2.Markovqueueingmodels . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.1.SystemM /M /1/∞ . . . . . . . . . . . . . . . . . . . . . 121 Q,B Q,B 5.2.2.SystemM /M /1/∞ . . . . . . . . . . . . . . . . . . . . . . . . 124 Q Q 5.2.3.Analysisofthewaitingtime . . . . . . . . . . . . . . . . . . . . . 129 5.2.4.Anoutputprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.2.5.Time-dependentsystemM /M /1/∞ . . . . . . . . . . . . . 132 Q,t Q,t 5.2.6.Asystemwithimpatientcalls . . . . . . . . . . . . . . . . . . . . . 134 5.3.Non-Markovqueueingmodels . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.1.SystemGI/M /1/∞ . . . . . . . . . . . . . . . . . . . . . . . . . 135 Q 5.3.2.Semi-MarkovsystemSM/M /1/∞ . . . . . . . . . . . . . . 136 SM,Q 5.3.3.SystemM /M /1/∞ . . . . . . . . . . . . . . . . . . . . 138 SM,Q SM,Q 5.3.4.SystemSM /M /1/∞ . . . . . . . . . . . . . . . . . . . . . 139 Q SM,Q 5.3.5.SystemG /M /1/∞ . . . . . . . . . . . . . . . . . . . . . . . . 142 Q Q 5.3.6.Asystemwithunreliableservers . . . . . . . . . . . . . . . . . . . 143 5.3.7.Pollingsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.4.Retrialqueueingsystems . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4.1.RetrialsystemM /G/1/w.r . . . . . . . . . . . . . . . . . . . . . 147 Q 5.4.2.SystemM¯/G¯/1/w.r . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.3.RetrialsystemM/M/m/w.r . . . . . . . . . . . . . . . . . . . . . 154 5.5.Queueingnetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.5.1.State-dependentMarkovnetwork(M /M /1/∞)r . . . . . . . 159 Q Q 5.5.2.Markovstate-dependentnetworkswithbatches . . . . . . . . . . . 161 5.6.Non-Markovqueueingnetworks . . . . . . . . . . . . . . . . . . . . . . 164 5.6.1.Anetwork(M /M /1/∞)r withsemi-Markovswitching 164 SM,Q SM,Q 5.6.2.State-dependentnetworkwithrecurrentinput . . . . . . . . . . . . 169 5.7.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Chapter6.SystemsinLowTrafficConditions . . . . . . . . . . . . . . . . . 175 6.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.2.Analysisofthefirstexittimefromthesubsetofstates . . . . . . . . . . 176 6.2.1.DefinitionofS-set . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.2.2.Anasymptoticbehaviorofthefirstexittime . . . . . . . . . . . . 177 6.2.3.Statespaceformingamonotonestructure . . . . . . . . . . . . . . 180 6.2.4. Exit time as the time of first jump of the process of sums with Markovswitching . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6.3.Markovqueueingsystemswithfastservice . . . . . . . . . . . . . . . . 183 8 SwitchingProcessesinQueueingModels 6.3.1.M/M/s/msystems . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.3.1.1.SystemM /M/l/minaMarkovenvironment . . . . . . . 185 M 6.3.2.Semi-Markovqueueingsystemswithfastservice . . . . . . . . . 188 6.4.Single-serverretrialqueueingmodel . . . . . . . . . . . . . . . . . . . . 190 6.4.1.Case1: fastservice. . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.4.1.1.State-dependentcase. . . . . . . . . . . . . . . . . . . . . . . 194 6.4.2.Case2: fastserviceandlargeretrialrate. . . . . . . . . . . . . . . 195 6.4.3.State-dependentmodelinaMarkovenvironment . . . . . . . . . . 197 6.5.Multiserverretrialqueueingmodels . . . . . . . . . . . . . . . . . . . . 201 6.6.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Chapter7.FlowsofRareEventsinLowandHeavyTrafficConditions . . 207 7.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.2.Flowsofrareeventsinsystemswithmixing. . . . . . . . . . . . . . . . 208 7.3.Asymptoticallyconnectedsets(V -S-sets) . . . . . . . . . . . . . . . . 211 n 7.3.1.Homogenouscase . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3.2.Non-homogenouscase . . . . . . . . . . . . . . . . . . . . . . . . . 214 7.4.Heavytrafficconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.5.Flowsofrareeventsinqueueingmodels . . . . . . . . . . . . . . . . . . 216 7.5.1.Lighttrafficanalysisinmodelswithfinitecapacity. . . . . . . . . 216 7.5.2.Heavytrafficanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 218 7.6.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Chapter8.AsymptoticAggregationofStateSpace . . . . . . . . . . . . . . 221 8.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 8.2.AggregationoffiniteMarkovprocesses(stationarybehavior) . . . . . . 223 8.2.1.Discretetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.2.2.Hierarchicasymptoticaggregation . . . . . . . . . . . . . . . . . . 225 8.2.3.Continuoustime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 8.3.Convergenceofswitchingprocesses . . . . . . . . . . . . . . . . . . . . 228 8.4.AggregationofstatesinMarkovmodels . . . . . . . . . . . . . . . . . . 231 8.4.1.Convergence oftheaggregated processtoaMarkovprocess(fi- nitestatespace) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 8.4.2.Convergenceoftheaggregatedprocesswithageneralstatespace 236 8.4.3.Accumulatingprocessesinaggregationscheme . . . . . . . . . . 237 8.4.4.MPaggregationincontinuoustime. . . . . . . . . . . . . . . . . . 238 8.5. Asymptotic behavior of the first exit time from the subset of states (non-homogenousintimecase) . . . . . . . . . . . . . . . . . . . . . . . 240 8.6.Aggregationofstatesofnon-homogenousMarkovprocesses . . . . . . 243 8.7. Averaging principle for RPSM in the asymptotically aggregated Markovenvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 8.7.1.SwitchingMPwithafinitestatespace . . . . . . . . . . . . . . . . 247 8.7.2.SwitchingMPwithageneralstatespace . . . . . . . . . . . . . . 250 Contents 9 8.7.3.Averagingprincipleforaccumulatingprocessesintheasymptot- icallyaggregatedsemi-Markovenvironment . . . . . . . . . . . . 251 8.8. Diffusion approximation for RPSM in the asymptotically aggregated Markovenvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 8.9.AggregationofstatesinMarkovqueueingmodels . . . . . . . . . . . . 255 8.9.1.SystemM /M /r/∞withunreliableserversinheavytraffic . . 255 Q Q 8.9.2.SystemM /M /1/∞inheavytraffic . . . . . . . . . . . . 256 M,Q M,Q 8.10.Aggregationofstatesinsemi-Markovqueueingmodels . . . . . . . . 258 8.10.1.SystemSM/M /1/∞ . . . . . . . . . . . . . . . . . . . . . 258 SM,Q 8.10.2.SystemM /M /1/∞ . . . . . . . . . . . . . . . . . . . 259 SM,Q SM,Q 8.11.Analysisofflowsoflostcalls . . . . . . . . . . . . . . . . . . . . . . . 260 8.12.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Chapter9.AggregationinMarkovModelswithFastMarkovSwitching . 267 9.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 9.2.MarkovmodelswithfastMarkovswitching . . . . . . . . . . . . . . . . 269 9.2.1.MarkovprocesseswithMarkovswitching . . . . . . . . . . . . . . 269 9.2.2.MarkovqueueingsystemswithMarkovtypeswitching . . . . . . 271 9.2.3.AveraginginthefastMarkovtypeenvironment. . . . . . . . . . . 272 9.2.4.Approximationofastationarydistribution . . . . . . . . . . . . . 274 9.3.Proofsoftheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 9.3.1.ProofofTheorem9.1 . . . . . . . . . . . . . . . . . . . . . . . . . 275 9.3.2.ProofofTheorem9.2 . . . . . . . . . . . . . . . . . . . . . . . . . 277 9.3.3.ProofofTheorem9.3 . . . . . . . . . . . . . . . . . . . . . . . . . 279 9.4.QueueingsystemswithfastMarkovtypeswitching . . . . . . . . . . . 279 9.4.1.SystemM /M /1/N . . . . . . . . . . . . . . . . . . . . . 279 M,Q M,Q 9.4.1.1.Averagingofstatesoftheenvironment . . . . . . . . . . . . 279 9.4.1.2.Theapproximationofastationarydistribution . . . . . . . . 280 9.4.2.BatchsystemBM /BM /1/N . . . . . . . . . . . . . . . . 281 M,Q M,Q 9.4.3.SystemM/M/s/mwithunreliableservers . . . . . . . . . . . . . 282 9.4.4.PrioritymodelM /M /m/s,N . . . . . . . . . . . . . . . . . . 283 Q Q 9.5.Non-homogenousintimequeueingmodels . . . . . . . . . . . . . . . . 285 9.5.1.SystemM /M /s/mwithfastswitching–averagingof M,Q,t M,Q,t states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 9.5.2.SystemM /M /s/mwithfastswitching–aggregationof M,Q M,Q states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 9.6.Numericalexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 9.7.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Chapter 10. Aggregation in Markov Models with Fast Semi-Markov Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 10.1.Markovprocesseswithfastsemi-Markovswitches . . . . . . . . . . . 292 10.1.1.Averagingofasemi-Markovenvironment . . . . . . . . . . . . . 292 10 SwitchingProcessesinQueueingModels 10.1.2.Asymptoticaggregationofasemi-Markovenvironment . . . . . 300 10.1.3.Approximationofastationarydistribution . . . . . . . . . . . . . 305 10.2. Averaging and aggregation in Markov queueing systems with semi- Markovswitching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 10.2.1.Averagingofstatesoftheenvironment . . . . . . . . . . . . . . . 309 10.2.2.Asymptoticaggregationofstatesoftheenvironment . . . . . . . 310 10.2.3.Theapproximationofastationarydistribution. . . . . . . . . . . 311 10.3.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Chapter11.OtherApplicationsofSwitchingProcesses . . . . . . . . . . . . 315 11.1.Self-organizationinmulticomponentinteractingMarkovsystems . . . 315 11.2.Averagingprincipleanddiffusionapproximationfordynamicsystems withstochasticperturbations . . . . . . . . . . . . . . . . . . . . . . . . 319 11.2.1.Recurrentperturbations . . . . . . . . . . . . . . . . . . . . . . . 319 11.2.2.Semi-Markovperturbations . . . . . . . . . . . . . . . . . . . . . 321 11.3.Randommovements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 11.3.1.Ergodiccase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 11.3.2.Caseoftheasymptoticaggregationofstatespace . . . . . . . . . 325 11.4.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 Chapter12.SimulationExamples . . . . . . . . . . . . . . . . . . . . . . . . 329 12.1.Simulationofrecurrentsequences. . . . . . . . . . . . . . . . . . . . . 329 12.2.Simulationofrecurrentpointprocesses. . . . . . . . . . . . . . . . . . 331 12.3.SimulationofRPSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 12.4.Simulationofstate-dependentqueueingmodels . . . . . . . . . . . . . 334 12.5.SimulationoftheexittimefromasubsetofstatesofaMarkovchain . 337 12.6.AggregationofstatesinMarkovmodels . . . . . . . . . . . . . . . . . 340 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 To my wife, Zoya 11

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.