Otto Wittner Poul E. Heegaard Bjarne E. Helvik Swarm Based Distributed Search in the AMIGOS Environment AVANTEL Technical Report DEPARTMENTOFTELEMATICS,NTNU ISSN1503-4097 NTNU NorwegianUniversityof DepartmentofTelematics ScienceandTechnology AVANTELTECHNICALREPORT 1/2002 ISSN-no: 1503-4097 TITLE DATE Swarm Based Distributed Search in the AMIGOS 2002-12-09 Environment - NO.OFPAGES/APPENDICES 23(excl.titleandpreface) AUTHOR(S) Otto Wittner,PoulE.HeegaardandBjarneEHelvik ABSTRACT Futureusercontrolleddevelopment oftelecommunicationservicescombinedwithpowerfulterminal equipment resultsinmanyheterogeneousservicesrunninginapeer-to-peerexecutionenvironment.In suchasystemlocatingadesiredserviceischallenging.Inthispaperaswarmbasedoptimization algorithmispresentedcapableoffindingpathsofresourcesinacomplexnetworkenvironment.The algorithmisfullydistributedandmaybeimplementedusingsimpleant-likemobileagents.Onthe contraryto existinglocalizationmechanismsforpeer-to-peersystemsthealgorithmconsidersall accessedresourcesbetween(andincluding)theclient sideandserversidewhenaresourcepathis evaluated.Scalabilityisachievedbyenablingagentsto cooperateduringsearchwhentheyhave overlappingsearchprofiles.Resultsfromsimulationsarepromising.Theexpectedcooperative behaviorisshownto bepresent,i.e.aset ofnearoptimalresourcepathsconformingto aset of different but overlappingsearchprofilesmaybefoundwithout performancedegradation. KEYWORDS SwarmIntelligence DistributedSearch MulticriteriaCombinatorialOptimization Peer-to-Peer Amigos Preface Thistechnicalreport describesresultsfromresearchactivitieswithintheAVANTELproject. Thefirst authorofthisreport,Otto Wittner,wasengagedasresearcherfortheproject foraperiodof8months, ref.contract titled“Sverm-intelligensforoptimalkonfigurasjonavdistribuerteteletjenester”signed byItem,NTNU2001-01-07andTelenor2001-01-09.Adescriptionofthemajorresultsfromthe engagement followsthispreface.Thedescriptionispresentedintheformat ofapapersuitablefor publishinginaconferenceorajournal.OthercontributionsintheAVANTELproject madebythefirst authorareasfollows: • Development ofexampleuserscenariosforAMIGOS(seeAMIGOSdocument repository) • Development ofexampleprofiledescriptionsinXML.Profilesuggestionsforusers,services andterminalsweredeveloped(seeAMIGOSdocument repository). • Participationinmisc.meetinganddiscussionswherebasicconceptsandprincipleofthe AMIGOSserviceweretreated. Themajorresults,i.e.thepaperfollowingthispreface,isintendedto besubmittedto asuitable conferencebeforeendofJanuary2003. Swarm Based Distributed Search in the AMIGOS Environment OttoWittner,PoulE.HeegaardandBjarneE.Helvik December9,2002 Abstract Futureusercontrolleddevelopmentoftelecommunicationservicescombinedwithpowerfulterminal equipmentresultsinmanyheterogenousservicesrunninginapeer-to-peerexecutionenvironment. Lo- catingadesiredserviceinsuchanenvironmentischallenging.Inthispaperaswarmbasedoptimization algorithmispresentedcapableoffindingpathsofresourcesinacomplexnetworkenvironment.Thealgo- rithmisfullydistributedandmaybeimplementedusingsimpleant-likemobileagents.Onthecontraryto existinglocalizationmechanismsforpeer-to-peersystemsthealgorithmconsidersallaccessedresources between(andincluding)theclientsideandserversidewhenaresourcepathisevaluated. Scalability isachievedbyenablingagentstocooperateduringsearchwhentheyhaveoverlappingsearchprofiles. Resultsfromsimulationsarepromising.Theexpectedcooperativebehaviorisshowntobepresent,i.e.a setofnearoptimalresourcepathsconformingtoasetofdifferentbutoverlappingsearchprofilesmaybe foundwithoutperformancedegradation. Keywords Telecommunications,distributedoptimization,resourcepaths,ant-likeagents,peer-to-peer. 1 Introduction Asthenumberofusercategoriesandterminalequipmenttypesareincreasingsteadily,telecommunication operatorshaverecognizedapotentialforarangeofnewtelecommunicationservices.1Oneservicecategory, whichhasquicklygainpopularity,ispeer-to-peersystemswhereusersdevelopandprovideservicestoother userswithlittleornocentralizedmanagement. Usercontrolleddevelopmentofservicesquicklyproduce a large rangeof services where both the number of services and service categoriesare highly dynamic. Userswith powerfulterminalstaketheroleas serviceproviders,whileotherusersmay choseto initiate their services on dedicated servers in the network. The combinationof a dynamicset of services and a peer-to-peerenvironmentforserviceexecutionmakeslocatingarelevantservicechallenging. Manydirectorysystemsforpeer-to-peerenvironmentshavebeendevelopedduringthelastdecade[3]. Commonforthesesystemsarelimitedfunctionalityforspecifyingqualityofservice(QoS)parametersin servicelookuprequests.Inmostcasesonlysomeidentityoftheservicerequestedcanbespecifiedandvery few(orno)parametersindicatingminimumrequirementstoresourcesneededtoaccesstheservice. The resultisoftenanoveralluninterestingserviceoffer. Forinstancewhenrequestingamultimediastream, access to a high quality versionof the stream may beofferedbut dueto lack of network bandwidththe streambecomesuninteresting. Severalbio-inspiredalgorithmhaveshownpromisingresultswhenappliedtotelecommunicationrelated problems. A class of bio-inspired algorithms known as swarm intelligence systems [4] are potentially robust and may scaled well due the their use of distributed autonomous components. In this paper we presentaswarmintelligencebasedalgorithmwhichenablesimplementationofimprovedQoScontrolled servicelookupandaccess. Relatedworkonbio-inspiredmethodsforservicecomponentmanagementcan befoundin [5,6,7, 8,9]. Our algorithmexpectsa servicelookuprequestto containa profilewhichin additionto indicateconstraintsandpreferencesfor theservicetypebeingrequested,indicateconstraints andpreferencesforotherresourcesnecessarytoaccesstheservice. Thealgorithmseekstofindapathof resourcesfromaclientterminaltoaserviceprovidingserversuchthatallresourcesinthepathconforms (aswellaspossible)withtheconstraintsandpreferencesoftherequestprofilespecifiedbytheuser. 1Toenablerapidrealizationofnewheterogenousservices,Telenor,EricssonandNTNUhavechosentomovefromthetraditional callcentricapproachestoamoreservicecentricapproachaswellasinvolvingusersanduserinnovationintheservicedevelopment process[1].Peer-to-peerisadoptedasapotentialenvironmentfordistributedserviceexecution. Theoverallinitiativehasresultedin theAVANTELproject[2].ThispaperpresentsresultsformresearchsponsoredbytheAVANTELproject. 1 Ouralgorithmisbasedontheconceptofswarmintelligencewhichinheritsbehavioraspectsfromsocial insectsandanimals. Swarmintelligencehassuccessfullybeappliedtoarangeofoptimizationproblems [10],sometypicalinthedomainoftelecommunications[11,12,13,14]. Swarmintelligencesystemsuse a high number of simple autonomousagents to search for problem solutions. Groups of (or all) agents cooperateby sharing experiencesgained duringsearch. Informationis shared by asynchronousindirect communication,i.e.messages(pheromones)leftinshareddatabasesinthesearchenvironment. Ouralgorithmisbasedonworkpreviouslypublishedin[15,16,17]. Scalabilityintermsofnumber of parallel tasks handledby agentshas so far only been addressed to a limited extent. In this paper we introducesmechanismstomanagelargescaleuseofouralgorithm.Ontheassumptionthatservicerequest profilesinmanycaseswillbeoverlapping,i.e. containsimilarconstraintsandpreferences,weletagents shareinformationabouttheoverlappingpartsoftheprofiles. Assumingalimitedtotalnumberofpossible constraints and preferencesthe new sharing strategy reduces the total amount of storage space required forpheromonestoamanageablelevel,andincreasesthesearchefficiency. Tofindadesirablerankingof solutionscostfunctionswithimplicitconstraintsaredevelopedwhichoutputaqualitymeasureofhowwell apathofresourcesconformwithaprofilerequest. Thereminderofthispaperhasfivesection. Section2presentsbackgroundinformationandintroduces thesearchdomainwithrelatedterminologyandformalisms.Section3introducesthebehaviorfoundations for the agents, describes the cost functions which evaluates criteria during the search process, presents reformulationsandadditionsrequiredtorealizeextendedpheromonesharingbetweenagents,anddescribes thenewagentalgorithm.Section4describesourexperimentalsetupconsistingoffivesimulationscenarios, andreportsanddiscusssimulationresults.FinallySection6summarizeandindicatefuturework. 2 Resource Paths and Profiles Inthispaperweviewallcomponentsinanetworkenvironmentasresourceswithindividualprofiles,i.e. servicecomponents(createdbyusersoroperators)aswellaslinksandnetworknodesfornetworktransport areviewasresourceswitharelatedprofile.Anorderedsequenceofresourcesaredenotedaresourcepath. 2.1 Motivation The motivation for adopting a resource view is the heterogeneity of the expected network environment whereoneoftheAVANTELproject’srootservices,AMIGOS[1],isrunning. 2.1.1 AMIGOS AdvancedMultimediaInGroupOrganizedServices(AMIGOS)providesthebasicfunctionalityrequired for users to manage and visit a Meeting Place (MP). A meeting place is a user (or operator)composed andconfiguredtelecommunicationserviceprovidingaconnectionpointbetweenaspecificsetofusers. A meetingplacemayalsoactasarepositoryformultimediaobjectstobesharedbetweentheusersvisitingthe meetingplace. TechnicallyameetingplaceisasoftwareprocessrunningonsomeserverintheAMIGOS networkenvironment. 2.1.2 TheAMIGOSEnvironment Figure 1 illustrates the expected heterogeneity of the environment where the AMIGOS service will be running. Softwareprocesses provideMP service resourceswhich again providingaccess to multimedia objects. Amixofterminalscontrolledbydifferentusersandamixofserversownbydifferentoperators provide processing power. And finally a range of transmission technologies provide transmission links interconnectingterminalsandservers. BothterminalsandserversshowninFigure1aretypicallyconnected(bydifferenttransmissiontech- nologies)toseveralotherterminalsand/orservers,i.e. networknodesintheAMIGOSenvironmentoften haveaconnectiondegreegreaterthanone.Adegreegreaterthanoneenablesanodetoactasarouterora relayinadditiontoitsothercapabilities. Allterminals,usersandservicesintheAMIGOSenvironmentareexpectedtohaveindividualprofiles whichdescribetheircapabilitiesandlimitationsintheformofQoSparameters. Figure 1 does not illustrate the expected scale of the AMIGOS environment. The following rough estimationsindicateamorerealisticscaleconsideringpotentialusersinNorwayonly: 2 n o siti AY MP o L P R A MPEG lib GSM P UMTS POTS ISDN PS LAN P G S I Bluetooth LAN MIGOS MMMPPP Chat ADSL Bluetooth A Internet WLAN LAN Router MP MP Maps MP3 share Figure1:AexamplenetworkenvironmentwhereAMIGOSisexpectedtorun. (cid:0) Totalnumberofusers: (cid:1)(cid:3)(cid:2)(cid:5)(cid:4)(cid:7)(cid:6)(cid:9)(cid:8)(cid:11)(cid:10) (i.e.inthesameorderasthenumberofGSMsubscribers) (cid:0) Numberofsignificantlydifferentterminal/server/routertypes:(cid:1)(cid:3)(cid:12)(cid:13)(cid:4)(cid:14)(cid:6)(cid:15)(cid:8)(cid:11)(cid:16) (cid:0) Numberofnetworktransportservices:(cid:1)(cid:18)(cid:17)(cid:19)(cid:4)(cid:14)(cid:6)(cid:15)(cid:8)(cid:11)(cid:20) In the following sub-sections we establish formal terms for describing componentsin the AMIGOS environment. 2.2 ResourcePaths WeviewtheAMIGOSenvironmentasacompositionoftelecommunicationresources. Aresourceisde- noted (cid:21) . In a real instance of the environment,resources we consider will be only those which can be accessed,configuredandcontrolled(seeSection5fordetailsonimplementationissues). Whenusersareactiveinthenetworkenvironmenttheywillaccessasetofresources. Wedenotesuch anorderedsetofresourcesaresourcepath (cid:22)(cid:24)(cid:23)(cid:14)(cid:25) (cid:21)(cid:27)(cid:26)(cid:29)(cid:28)(cid:30)(cid:21)(cid:13)(cid:31)(cid:15)(cid:28)! ! ! "(cid:28)#(cid:21)%$%&(’ (cid:20) (cid:28)#(cid:21))$(cid:27)&(cid:11)’*(cid:31)(cid:15)+ (cid:1)(cid:3), where isthenumberofresourcesinthepath. Wehavechosentodividetheindividualresourcesfoundinapathintothreecategories:Client,Transport andPeripheralresources. Aclientresources, thefirst resource(cid:21))(cid:26).-0/21 in apath, enablesa userto access otherresourcesin the environmentby providinga suitable interface.Typicalclient resourcesare terminalsrunningclient applications(e.g.abrowser)./ 1 isthesetofallclientresources. Atransportresource, anintermediateresource(cid:21)(cid:13)3)-4/ (cid:12) where5 (cid:23) (cid:6)76!6869(cid:1) ,2:<; ,providesatransportser- viceofsomequality.Typicaltransportresourcesareinternalandexternaltransmissionlinks(clouds (cid:12) inFigure1)andnetworknodesactingasroutersorswitches. / isthesetofalltransportresources. Aperipheralresource thelastresource(cid:21)(cid:13)$%&=’*(cid:31)>-4/@? inapath,providessomevalueaddedservice.Users willnormallydesiretoaccessaspecifictypeofperipheralresource.Typicalperipheralresourcesare AMIGOSmeetingplaces,multimedialibraries,processingpower,multimediasensors,positioning sensorsetc. />? isthesetofallperipheralresources. 3 In our view access to minimum two resource will be required for any user activity, at least one client resourceandoneperipheralresource.Thus (cid:0)(cid:2)(cid:1)(cid:4)(cid:3)(cid:6)(cid:5)(cid:8)(cid:7)(cid:10)(cid:9)(cid:12)(cid:11)(cid:14)(cid:13)(cid:16)(cid:15)(cid:17)(cid:9)(cid:19)(cid:18)(cid:21)(cid:20)(cid:23)(cid:22)(cid:25)(cid:24)(cid:26)(cid:20)(cid:28)(cid:27)(cid:30)(cid:29) where(cid:20)(cid:31)(cid:22)! #"!$ and(cid:20)(cid:28)(cid:27)% #"’& Ingeneralaresourcepathwillonlycontainasingleclientandasingleperipheralresource,butmaycontain asequenceoftransportresources.Thus(cid:15) (cid:17)( where ()(cid:9)*(cid:18)(cid:25)(cid:18)+(cid:20)(cid:23)(cid:22),(cid:24)-(cid:20).(cid:27)/(cid:24)10(cid:21)0+02(cid:24)(cid:26)(cid:20).3(cid:23)46527,(cid:24)(cid:26)(cid:20)(cid:31)3(cid:23)4658(cid:27)+(cid:29):9.(cid:20)(cid:23)(cid:22)! (cid:6)"!$(cid:21)(cid:24);(cid:20)(cid:28)(cid:27)=<<<3(cid:31)465>7? #"%@A(cid:24);(cid:20)(cid:31)3(cid:23)4B52(cid:27)% (cid:6)"C&D(cid:29) isthesetofallresourcepaths.(cid:5) (cid:7)E (cid:18)/(cid:11) (cid:24)DFD(cid:24);GH(cid:24)1I1I(cid:21)I(cid:29) isthetotalnumberofresourcesinapath. Acommonlimitationoftoday’slookupservicesforpeer-to-peersystemsisthatthecompleteresource pathrequiredtoaccessaperipheralresourceisnottakenintoaccountduringsearch. Informaltermsthis meansignoringthe sub-path (cid:18) (cid:20)(cid:31)(cid:22)6(cid:24)(cid:26)(cid:20)(cid:28)(cid:27)+(cid:24)1010108(cid:24)-(cid:20)(cid:31)3(cid:23)4(cid:25)5 7 (cid:29) or parts of it. Our algorithmin this paper takes into accountthecompletepathofresources,i.e. (cid:18) (cid:20).(cid:22),(cid:24)-(cid:20)(cid:28)(cid:27)(cid:30)(cid:24)+0(cid:21)0102(cid:24)(cid:26)(cid:20)(cid:31)3(cid:31)4B5 7 (cid:24)(cid:26)(cid:20).3(cid:23)4652(cid:27)(cid:30)(cid:29) . 2.3 ProfilesandQoSObjectives IntheAMIGOSenvironment,users, terminalsandservicesareexpectedtohaveindividualprofilescon- MON(cid:25)P tainingQoSparameters. Whenauser J initiatesarequestsK foraservice,auserrequestprofile L J;Q is generated. Foraresource(cid:20)(cid:28)R intheenvironmentwedenote MHL P(cid:20)(cid:31)R Q theprofileoftheresource. Thusthere aretoclassesofprofiles: S ProfilesoftheuserrequestclasscontainQoSparametersspecifyingconstraintsandpreferencesin therequest,i.e.QoSobjectives. S Profiles of the resource class contain QoS parameters specifying limitations and capabilities of a resource(cid:20) R . 2.3.1 UserRequestProfile Ingeneral,auserrequestprofilemayincludealargesetofQoSparameters. Tomaintainscalability,we have defined a finite and ordered set T of QoS objectives from which a specific request profile may be constructed.EachelementU+V inT ,whereW (cid:9)YX (cid:24)+IZIZI(cid:4)(cid:24)+[T [,isaspecificQoSrequirement,e.g. S U1\ (cid:24) I(cid:21)I1I (cid:24) UO] maybearangeofmaximumendtoenddelaysof(cid:18)(cid:30)^ \ (cid:24) I(cid:21)I+I (cid:24) ^ ] (cid:29) seconds, S U N (cid:24)1I1I1I(cid:21)(cid:24) U1_ maybearangeofminimumbandwidthof(cid:18)(cid:30)‘ N (cid:24)+I(cid:21)I1I(cid:21)(cid:24) ‘ _ (cid:29) bits/s, S U1a (cid:24)1I1I(cid:21)I1(cid:24) U(cid:21)b maybespecifictypesofresources(cid:18)(cid:30)c a (cid:24)(cid:21)I1I1I1(cid:24) c b (cid:29) ,e.g.typesofperipheralequipment. AuserrequestprofilemaynowbeexpressedasMLN PJ;Q (cid:9)d(cid:18)(cid:30)e (cid:27)/(cid:24) I(cid:21)I1I (cid:24) egfhif(cid:29) .Inthisinvestigation,abinaryuser requestprofileisused,i.e., e (cid:9)kj Xl9 whenrequirementW shouldbemet V m 9 otherwise howeverin general(Section 3.3)arbitrary values e V(cid:8)n m may be used to balancetheimportanceof the variousrequirements. InthecaseswherewehavearangeofQoSparametersofthesamekindtochoosefrom,e.g.thedelays andbandwidthsabove,onlyonevalueintherangeshouldbeset. 2.3.2 ResourceProfile When used, a resource (cid:20) R may introduce QoS impairments with respect to the QoS requirements of a userrequestK(cid:30)\ . Theseimpairmentsmayforinstancebeexcessivedelays,limitedbandwidth,processing or storage capacity, or lack of required peripheralequipment, services or information. Impairments are denotedtheloss o V P(cid:20) R Q introducedbyresource(cid:20) R withrespecttoaQoSparameterW intheuserrequest profile.Hence,theresourceprofileMHL P(cid:20) R Q associatedwithresource^ isrepresentedasalossvector M;P(cid:20) R P(cid:20) R (cid:9)d(cid:18) (cid:27) P(cid:20) R (cid:24) 7 P(cid:20) R (cid:24) I(cid:21)I+I (cid:24) fhifP(cid:20) R (cid:29) L QqproL Q o Q o Q o Q 4
Description: