ebook img

Sutured Manifolds and Polynomial Invariants from Higher Rank Bundles PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sutured Manifolds and Polynomial Invariants from Higher Rank Bundles

SuturedManifoldsandPolynomialInvariantsfromHigherRankBundles ALIAKBAR DAEMI, YI XIE 7 1 0 Abstract 2 n ForeachintegernumberN ě2,MariñoandMooredefinedageneralizedDonaldsoninvariant a bythemethodsofquantumfieldtheory,andmadepredictionsaboutthevaluesoftheseinvariants. J Subsequently,KronheimergavearigorousdefinitionofgeneralizedDonaldsoninvariantsusingthe 3 moduli space of anti-self-dual connections on hermitian vector bundles of rank N. In this paper, MariñoandMoore’spredictionsareconfirmedforsimplyconnectedellipticsurfaceswithoutmultiple ] T fibers,andcertainsurfacesofgeneraltypeinthecasethatN “3. Theprimarymotivationistostudy G 3-manifoldinstantonFloerhomologieswhicharedefinedbyhigherrankbundles. Inparticular,the . computationofthegeneralizedDonaldsoninvariantsareexploitedtodefineaFloerhomologytheory h forsutured3-manifolds. t a m [ 1 v 1 7 5 0 0 . 1 0 7 1 : v i X r a 1 Contents 1 Introduction 4 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 StatementofResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 OutlineofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 HigherRankBundlesandPolynomialInvariants 9 2.1 UpNq-polynomialInvariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 CylindricalEndsandModuliSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Non-vanishingTheoremforAlgebraicSurfaces . . . . . . . . . . . . . . . . . . . . . . 18 2.4 NegativeEmbeddedSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 BlowupFormulafor4-manifoldswithSimpleType . . . . . . . . . . . . . . . . . . . . 20 3 FloerHomologiesforClosed3-manifolds 22 3.1 AdmissiblePairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 FloerHomologyofS1ˆΣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Fukaya-FloerHomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 AnSUp3q–instantonFloerHomologyforΣp2,3,23q . . . . . . . . . . . . . . . . . . . 35 4 ComputingPolynomialInvariants 39 4.1 StructureoftheInvariantsofEpnq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 InvariantsofEp2q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 InvariantsofEp3q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 InvariantsofEpnq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Gluing4-manifoldsalongSurfacesofSelf-intersectionZero . . . . . . . . . . . . . . . 53 5 SuturedFloerHomology 66 5.1 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 ExcisionandSuturedManifoldsInvariants . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 InstantonKnotHomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2 6 GluingTheory 73 6.1 ModuliSpacesonManifoldswithLongNeck . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 GluingTheoryforNegativeEmbeddedSpheres . . . . . . . . . . . . . . . . . . . . . . 79 6.3 GluingTheoryforFukaya-FloerHomology . . . . . . . . . . . . . . . . . . . . . . . . 84 7 QuestionsandConjectures 91 7.1 StructureofPolynomialInvariantsand4-manifoldswithSimpletype . . . . . . . . . . . 91 7.2 TheAlgebraVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 g,d A InvariantsofFlatConnectionsonΣp2,3,23q 93 3 1 Introduction Sutured manifolds were introduced by Gabai [35] to study foliations and the Thurston norm of 3- manifolds [81]. A sutured manifold is a pair of a 3-manifold M and an oriented 1-manifold α Ă M whichdecomposestheboundaryofM inanappropriateway. In[35],Gabaialsodefinesanoperation on sutured manifolds, which is called surface decomposition. Surface decompositions can be used to simplifysuturedmanifolds. Foliationsofsuturedmanifoldsarealsowell-behavedwithrespecttosurface decompositions. Asaresult,Gabaiwasabletoconstructtautfoliationsforcertainfamiliesof3-manifolds inaninductiveway. Floer homological invariants serve as another set of tools for studying topology and geometry of 3-dimensionalmanifolds. Suchinvariantswereinitiallyconstructedforclosedandoriented3-manifolds: UpNq-instantonFloerhomology[28,29,60],HeegaardFloerhomology[74],monopoleFloerhomology [57], and embedded contact homology [45, 46]. Later, Juhász defined sutured Floer homology, a generalizationofHeegaardFloerhomologytobalancedsutured3-manifolds[47]1. Subsequently,sutured versionofUp2q-instantonFloerhomology[58],monopoleFloerhomology[58],andembeddedcontact homology were constructed [12, 11, 61]. In particular, Kronheimer and Mrowka used sutured Up2q- instantonhomologyasthemainingredienttoestablishthatKhovanovhomologydetectstheunknot[59]. ThisinvariantwasalsousedtoreprovePropertyPforknots[58],anditliesinthecoreofaprogramin thehopeoffindingacomputer-freeproofofthefamousfourcolortheorem[55]. Theprimarymotivation forthisarticleistoextendUpNq-instantonFloerhomologytosuturedmanifoldsforhighervaluesofN. 1.1 Motivation FixanintegernumberN ě 2,andletK beaknotinS3. Letalsoµdenoteanelementoftheknotgroup, π pS3zKq,representedbyameridianofK: 1 Question1.1. Doesthereexistarepresentationϕ : π pS3zKq Ñ SUpNqwithnon-abelianimagesuch 1 that: » fi 1 0 ... 0 — ffi — 0 ζ ... 0 ffi ϕpµq “ c—– ... ... ... ... ffifl (1.2) 0 0 ... ζN´1 whereζ “ e2πi{N,andc “ eπi{N or1dependingonwhetherN isevenorodd? SupposetheanswertotheabovequestionforaknotK ispositive. Obviously,K cannotbetheunknot. Anon-abelianrepresentationϕsatisfying(1.2)determinesanon-trivialrepresentationofπ pΣ pKqq 1 N withΣ pKqbeingtheN-foldcyclicbranchedcoverofS3,branchedalongK. ThisverifiestheCovering N Conjecture,whichassertsthatΣ pKq,foranon-trivialknotK,isnothomeomorphictoS3 [49,Problem N 3.38]. ModuloanapplicationofthePoincaréConjecture,theCoveringConjecturealsoimpliestheSmith Conjecture,statingthatanon-trivialknotisnotthefixedpointsetofahomeomorphismf : S3 Ñ S3 of 1Forthedefinitionofbalancedsutured3-manifolds,seeDefinition5.16. 4 orderN [49,Problem3.38]. TheCoveringConjectureandtheSmithConjectureareboththeoremsnow, provedbygeometrizationtechniques[1]. Kronheimer and Mrowka’s sutured Up2q-instanton homology group, SHI2, can be employed to ˚ answer Question 1.1 affirmatively for N “ 2 and any non-trivial knot K [58]2. Associated to any knot K, there is a sutured manifold pMpKq,αpKqq where MpKq is the knot complement and αpKq is the union of two oppositely oriented meridional curves. Kronheimer and Mrowka proved that if the dimension of SHI2pMpKq,αpKqq is greater than 1, then there is a non-abelian representation of ˚ the knot group of K that satisfies (1.2). Similar to foliations, SHI2 also behaves well with respect to ˚ surfacedecomposition,andonecaninductivelyconstructnon-trivialelementsofSHI2pMpKq,αpKqq ˚ aftersimplifyingpMpKq,αpKqqbyaseriesofsutureddecomposition. Inparticular,thedimensionof SHI2pMpKq,αpKqq is at least two for a non-trivial knot K. It is also known that if K is a knot with ˚ non-trivialAlexanderpolynomial,thentheanswertoQuestion1.1ispositiveforinfinitelymanyvalues ofN [30,7]. InthelightofthesuccessofSHI2 inaddressingQuestion1.1,itisnaturaltolookforthe ˚ generalizationofSHI2 forhighervaluesofN. ˚ TheessentialdeviceinthedefinitionofsuturedFloerhomologygroupSHI2 isanexcisiontheorem ˚ for Up2q-instanton Floer homology [29, 9, 58]. The proof of the excision theorem is in turn based on Muñoz’scharacterizationofthestructureofaUp2q-instantonFloerhomologygroupassociatedtothe 3-manifoldS1ˆΣwhereΣisaRiemannsurface[73]. Muñoz’sworkborrowssomeresultsaboutthe cohomologyringofthemodulispaceofrank2stablebundles[84,48,77,5],whicharenotavailablefor highervaluesoftherank. In the present paper, we establish an excision theorem for N “ 3 using the relationship between instanton Floer homology and generalizations of Donaldson invariants from [56]. Roughly speaking, thereisap3`1q-dimensionaltopologicalquantumfieldtheorywhichassociatesUpNq-instantonFloer homologyto3-manifolds,anditsvaluesforclosed4-manifoldsisgivenbyUpNqanaloguesofDonald- son’spolynomialinvariants. ThisrelationshipbetweenUp2q-instantonFloerhomologyandpolynomial invariantshavebeenextensivelyusedtocomputetheinvariantsof4-manifolds. Inthispaper,wefirstlyuse theTQFTstructuretocomputetheUp3q-polynomialinvariantsofsomefamiliesofsmooth4-manifolds. Next, we work in the other direction, and use our knowledge of Up3q-polynomial invariants to obtain abetterunderstandingofcertainUp3q-Floerhomologies. Thisallowsustoprovetheexcisiontheorem anddefineaFloerhomologygroupSHI3 forsuturedmanifoldsinthecasethatN “ 3. Computations ˚ ofgeneralizedpolynomialinvariantsinthephysicsliterature[66]suggestthatourapproachcanbealso exploitedforhighervaluesofN. 1.2 StatementofResults In his groundbreaking work [18], Donaldson defined polynomial invariants for a smooth manifold X usingthemodulispaceofAnti-Self-DualconnectionsonX. Inhiswork,X issimplyconnected,b`pXqis anintegernumbergreaterthan1,andtheASDconnectionsareassumedtobedefinedonanSUp2q-bundle E overX. Althoughtheassumptiononb`pXqisessential,thedefinitionofpolynomialinvariantswas 2TheoriginalnotationforsuturedUp2q-instantonhomologyisSHI . Hereweusethesuperscript2toindicatethatthis ˚ invariantisthesuturedversionofUp2q-instantonhomology. 5 subsequentlygeneralizedtothecasethatX isnotsimplyconnected[54]andE isaUpNq-bundle[56,13]. PolynomialinvariantshavebeenextensivelystudiedinthecasethatN “ 2. However,thereisnotmuch knownabouttheseinvariantsforhighervaluesofN. Forasmoothandconnected4-manifoldX,supposethealgebraApXqisdefinedas: ApXq :“ Sym˚pH pXq‘H pXqqbΛ˚pH pXqq. 0 2 1 whereH pXqiscomputedwithcoefficientsinC. FormthetensorproductalgebraApXqbpN´1q,andfor i α P H pXqand2 ď r ď N,letα bethecorrespondingelementinthepr´1qst factorofApXqbpN´1q. i prq In the case that α is the generator of H pXq, this element of ApXqbpN´1q is denoted by a . We also 0 r defineagradingonApXqbpN´1qsuchthatthedegreeofα isequalto2r´i. AHermitianvectorbundle prq E ofrankN onX isdeterminedbyitsfirstandsecondChernclasses. Supposec pEqisrepresentedby 1 anembeddedsurfacew inX andc pEqrXs “ k. ThentheUpNq-polynomialinvariantsassociatedtothe 2 bundleE isalinearmap: DN : ApXqbpN´1q Ñ C. X,w,k Forz P ApXqbpN´1q,thecomplexnumberDN pzqisnon-zeroonlyif: X,w,k χpXq`σpXq degpzq “ 4Nk´2pN ´1qw¨w´pN2´1q (1.3) 2 Therefore,wewillnotloseanyinformation,ifwecombinetheseinvariantsas: ÿ DN :“ DN . X,w X,w,k k AsubstantialpartofthepresentpaperisdevotedtocomputingUp3q-polynomialinvariantsofsome familiesofofalgebraicsurfaces. Ourfirstresultinthisdirectionisthefollowing: Theorem 1. Suppose X is a K3 surface. Then for any embedded oriented surface w in X and any elementz P ApXqb2: D3 pa3zq “ 27D3 pzq D3 pa zq “ 0. (1.4) X,w 2 X,w X,w 3 Moreover,ifΓandΛaretwoelementsofH pXq,then: 2 D3X,wpp1` a32 ` a922q¨eΓp2q`Λp3qq “ eQp2Γq´QpΛq (1.5) Inordertoclarifythestatementoftheabovetheorem,thefollowingremarksareinorder. Theleft handsideof(1.5)isdefinedas: D3 pp1` a2 ` a22q¨eΓp2q`Λp3qq :“ ÿ8 ÿ8 D3X,wpp1` a32 ` a922qΓip2qΛjp3qq X,w 3 9 i!j! i“0j“0 Theorem 1 asserts that the above series for a K3 surface is convergent, and the resulting number is equaltoeQpΓq{2´QpΛq. HereQdenotestheintersectionformofX. Thatistosay,QpΓqisthealgebraic 6 intersectionnumberofΓwithitself. Ingeneral,theintersectionnumberoftwohomologyclassesΓandΓ1 isdenotedbyΓ¨Γ1. Since(1.5)holdsforallchoicesofΓandΛ,Formula(1.3)allowsustocomputethe followingpolynomialinvariantsforallchoicesofnon-negativeintegernumbersi,j,theintegernumber k P t0,1,2u,andhomologyclassesΓandΛ: D3 pakΓi Λj q X,w 2 p2q p3q These invariants determines D3 pzq for all z P ApXqb2, because the K3 surface satisfies (1.4) and X,w b pXq “ 0. 1 Our computation of the invariants of K3 surfaces motivates the following definition: a smooth 4- manifoldX withb`pXq ě 2andb1pXq “ 0hasw-simpletypewithrespecttoanembeddedsurfacew, if: D3 pa3zq “ 27D3 pzq D3 pa zq “ 0 (1.6) X,w 2 X,w X,w 3 forallz P ApXqb2. The4-manifoldX hassimpletypeifithasw-simpletypewithrespecttoanywinX. AsinthecaseoftheK3surfaces,ifX hassimpletypeandtheseries: Dp peΓp2q`Λp3qq :“ D3 pp1` a2 ` a22q¨eΓp2q`Λp3qq X,w X,w 3 9 isconvergentforallchoicesofwandΓ,Λ P H pXq,thentheseseriesdetermineallpolynomialinvariants 2 ofX. WecanextendourcalculationfortheK3surfacestoalargerfamilyofcomplexsurfaces. Suppose Wpm,nqistheblowupofCP1ˆCP1 atthe4mnsingularpointsofthefollowing(complex)curve: B :“ tp ,¨¨¨ ,p uˆCP1YCP1ˆtq ,¨¨¨ ,q u. 1 2m 1 2n r LetB bethepropertransformofB,anddefineXpm,nqtobethebrancheddoublecoverofWpm,nq, r branched along the smooth curve B. The horizontal and vertical fibrations of Wpm,nq by projective lineslifttotwofibrationsofXpm,nqwhosegenericfibersaredenotedbyf andf . TheRiemann m´1 n´1 surface f , for i P tm´1,n´1u, has genus i. The complex surface Xp2,2q is a K3 surface. More i generally,Xpm,2qisanellipticsurfacewithoutmultiplefibers,whichisusuallydenotedbyEpmq[41]. Theorem 2. The elliptic surface Epnq has simple type. Moreover, there are rational numbers (cid:126) and 1 (cid:126) independentofnsuchthatforanyembeddedsurfacesw inEpnqandΓ,Λ P H pEpnqq, theseries 2 2 p D peΓp2q`Λp3qqisequalto: Epnq,w eQp2Γq´QpΛqr(cid:126)1coshp?3f ¨Γq´2(cid:126)2cosp´2πw¨f `?3f ¨Λqsn´2. 3 wheref “ f representsanellipticfiberofEpnq. Furthermore,(cid:126) `(cid:126) “ ˘1foranappropriatechoice 1 1 2 ofthesign. ThesetofsurfacesXpm,nq,assmooth4-manifolds,areclosedwithrespecttotakingfibersums3. For example, we can take the fiber sum of Xpm,n q and Xpm,n q along the fiber f , and the 1 2 m´1 3Seesection3.3forareviewofthedefinitionoffibersum 7 resulting4-manifoldisdiffeomorphictoXpm,n `n q. GiventwoembeddedsurfacesΣ Ă Xpm,n q 1 2 1 1 and Σ Ă Xpm,n q which intersect a fiber in the same number of points, we can form a surface 2 2 Σ #Σ Ă Xpm,n `n q. Suppose Hpm,n ,n q Ă H pXpm,n `n qq is the space of homology 1 2 1 2 1 2 2 1 2 classesgeneratedbyhomologyclassesofthesurfacesoftheformΣ#Σ1. Thefollowingtheoremabout Xpm,4q is a consequence of Theorem 4.89 about the polynomial invariants of fiber sums. In fact, Theorem4.89canbeusedtoobtainsimilarresultsaboutothersurfacesinthefamilyXpm,nq. Theorem 3. For m ě 3, let w Ă Xpm,4q be an embedded surface which has the form w #w 1 2 for w Ă Xpm,2q and w ¨ f ‰ 0 mod 3. Let K denote the canonical class of Xpm,4q. Then i m´1 there are rational numbers (cid:126) and (cid:126) , independent of m, such that for Γ,Λ P Hpm,2,2q the series 3 4 p D peΓp2q`Λp3qqisconvergentandisequalto: Xpm,4q,w eQp2Γq´QpΛqr12(cid:126)21(cid:126)m3 ´2coshp?3K ¨Γq`2(cid:126)22(cid:126)4m´2cosp´23πw¨K `?3K ¨Λqs where(cid:126) ,(cid:126) aretheconstantsofTheorem2. 1 2 We do not attempt to find the undetermined constants (cid:126) , (cid:126) , (cid:126) and (cid:126) here and leave this task for 1 2 3 4 elsewhere[14]. WealsobelievethatXpm,4qhassimpletype,andtheabovetheoremholdsforanychoice ofw Ă Xpm,4qandhomologyclassesΓandΛ. Butthecurrentversionofthetheoremissufficientfor our3-dimensionalapplications. ThealgebraicsurfacesinTheorems1,2and3arerepresentativesofsurfaceswithdifferentpossible finiteKodairadimensions. K3surfaces,ellipticsurfaceEpnqwithn ě 2andXpm,4qform ě 3have Kodairadimensions0,1and2,respectively. Theorem1showsthattheUp3q-polynomialinvariantsof thesesurfacesassociatedtohomologyclassesΓandΛaredeterminedbytheself-intersectionofthese homology classes. On the other hand, for the Up3q-polynomial invariants of Epnq and Xpm,4q we also need the pairing of Γ and Λ with the fundamental class. Recall that the the first Chern class of the fundamental classes of Epnq and Xpm,4q are represented by pn´2qf and pm´2qf `2f , 3 m´1 respectively. InSection3,weintroducevariousFloerhomologygroupsassociatedtothe3-manifoldS1ˆΣ,and explainhowthesevectorspacesadmitringstructure. Wealsocharacterizethevectorspacestructureon theseFloerhomologygroups. Theorems2and3allowustoobtainfurtherinformationaboutthering structureoftheserings. WeusethisinformationtoobtainanexcisiontheoremforUp3q-instantonFloer homology. With the aid of this excision theorem, we construct the promised sutured Floer homology SHI3 byfollowingKronheimerandMrowka’sapproachin[58]. ThissuturedFloerhomologygrouphas ˚ thefollowingproperty: Theorem4. ForaknotK,supposethedimensionofSHI3pMpKq,αpKqqisgreaterthan1. Thenthere ˚ isanon-abelianrepresentationofπ pS3zKqintoSUp3qthatsatisfiestheholonomycondition(1.2). 1 WeconjecturethatdimpSHI3pMpKq,αpKqq ą 1foranynon-trivialknotK. ThisaddressesQuestion ˚ 1.1forN “ 3. Wehopetocomebacktothisconjectureelsewhere. 8 1.3 OutlineofContents Section 2 gives a review of the moduli spaces of anti-self-dual connections on 4-manifolds (possibly with boundary) and UpNq-polynomial invariants. This section also contains a non-vanishing theorem forUpNq-polynomialinvariantsofalgebraicsurfaces. ThesecondhalfofSection2discusseshowthe Up3q-polynomialinvariantsbehaveinthepresenceofnegativeembeddedspheres. Inparticular,werecall theresultsofCuller’sthesis[13]abouttheblowupformulaforUp3q-polynomialinvariantsanddiscuss howthisformulacanbesimplifiedforsmooth4-manifoldswithsimpletype. Section3dealswithvarious Floerhomologygroups,whichappearinthispaper. AftergivinganexpositionofUpNq-instantonFloer homology,westudyvariousFloerhomologiesofΣˆS1 whereΣisanorientedsurface. Wealsodiscuss ageneralizationofUpNq-instantonFloerhomology,whichisknownasFukaya-Floerhomologyinthe casethatN “ 2. TheFloerhomologygroupsofSection3areourmaintoolsincomputingUp3q-polynomialinvariants ofellipticsurfacesinSection4. TheproofofTheorem4.89aboutUp3q-polynomialinvariantsoffibered sumsisalsogiveninSection4. InSection5,weproveourexcisiontheoremanddefinethesuturedFloer homologygroupSHI3. Tomaketheexpositionofthepapermorecomprehensible,weomittheproofsof ˚ someoftheresultsinSections2and3. Theseresultsareprovedbygluingtheoryofthemodulispaces ofanti-self-dualconnectionsinSection6. Section7concernsvariousquestionsandconjectureswhich naturallyarisefromourworkonthispaper. Allmanifoldsinthispaper,aresmoothandoriented. GivensuchamanifoldX,wewillwriteH pXq i andHipXqforthehomologyandcohomologygroupsofX withcomplexcoefficients. Ifweneedtowork with another coefficient ring R, then we use the notations H pX,Rq and HipX,Rq. Our main results i forthispaperconcernUp3q-polynomialinvariantsandUp3q-instantonFloerhomologies. However,we believethatourmethodfortheconstructionofSHI3 shouldworkforarbitraryN. Therefore,wetryto ˚ stateourresultsforgeneralN,whenitispossible. Acknowledgements. WethankLucasCuller,SimonDonaldson,PeterKronheimer,ClaudeLeBrun andTomaszMrowkaforhelpfulconversations. WealsothankVictorMikhaylovforverifyingthatour definitionofthesimpletypeconditionmatchesthepredictionsfromthephysicsliterature. Wearevery gratefultotheSimonsCenterforGeometryandPhysicsforprovidingastimulatingenvironmentwhile wewereworkingonthisproject. 2 Higher Rank Bundles and Polynomial Invariants 2.1 UpNq-polynomialInvariants Inthissection,wereviewthedefinitionofUpNq-polynomialinvariantsof4-manifoldsbasedon[56,13]. ForN “ 2,thereisasubstantialliteratureonthesubject(see,forexample,[18,21,54]). Forhighervalues ofN, theseinvariantswerefirstlydefinedin[66]bythemethodsofquantumfieldtheory. Arigorous definitionofpolynomialinvariantsforhigherrankbundlesaregivenin[56]. Aswementionedearlier,the polynomialinvariantsofa4-manifoldX arehomomorphismsdefinedonthealgebraApXqbpN´1q. In 9 [56],thepolynomialinvariantsaredefinedonlyonthesub-algebra: ApXqb1b¨¨¨b1 Kronheimer’sdefinitionwassubsequentlygeneralizedtothealgebraApXqbpN´1q in[13]. Theconstruc- tionofFukaya-Floerhomologyinsubsection6.3isbasedonCuller’smodificationofUpNq-polynomial invariants in [13]. Therefore, we attempt to give enough background on his treatment to motivate the constructionofUpNq-Fukaya-Floerhomology. SupposeX isasmooth,closed,orientedandconnected4-manifold,wisanorientedembeddedsurface inX,andkisanintegernumber. ThenthereisaUpNq-bundleP,uniqueuptoisomorphism,overX such thatc pPq “ P.D.rwsandc pPqrXs “ k. AnexplicitconstructionofthisUpNq-bundlecanbegiven 1 2 as follows. Suppose Dpwq is a regular neighborhood of w in X whose boundary is denoted by Spwq. Then we can consider a Hermitian line bundle on Dpwq which is trivialized on SpWq and its relative first Chern class is given by the Thom class of the disc bundle Dpwq. By extending the trivialization to the complement of Dpwq, we obtain a Hermitian line bundle L where c pL q “ P.D.rws. The w 1 w directsumofL andthetrivialbundleCN´1 definesaUpNq-bundleP onX withc pE qrXs “ 0and w 0 2 0 c pE q “ c pL q. Next, fix a UpNq-bundle on the 4-dimensional ball D4 which is trivialized on the 1 0 1 w boundaryanditsrelativesecondChernclassisgivenbykP.D.rpts. RemovingaballfromXzDpwqand gluingtheaboveballgivesrisetothesame4-manifold. Wecanalsousethetrivializationstogluethe UpNq-bundle on D4 to P and produce a UpNq-bundle P with c pPq “ P.D.rws and c pPqrXs “ k. 0 1 2 ThedeterminantbundleofP isequaltoL . w A2-cyclew inaclosed4-manifoldisaunionofembeddedclosedsurfacesinX. Wecanapplythe aboveconstructionofthepreviousparagraphtoobtainaHermitianlinebundleL foreachconnected wi componentw ofw. ThenwecanreplaceL inthepreviousparagraphwiththetensorproductoftheline i w bundlesL andproduceaUpNq-bundleP withc pPq “ P.D.rwsandc pPqrXs “ k. Thetopological wi 1 2 energyofP isdefinedtobe: N ´1 κ :“ k´ w¨w 2N ThusthebundleP isdeterminedbythepairpκ,wq. Aclosed2-cyclew inX iscoprimetoN,ifthereis anembeddedorientedsurfaceΣ Ă X suchthattheintersectionnumberw¨ΣiscoprimetoN. Suppose P is a UpNq-bundle on a closed 4-manifold determined by a pair pκ,wq. Fix an integer numberl ě 3andanarbitrarysmoothconnectionB onL . LetA pX,wqbethespaceofL2connections 0 w κ l onP whoseinducedconnectionsondetpPq “ L isequaltoB . IfsupPqisthebundleassociatedto w 0 theconjugationactionofUpNqontheLiealgebrasupNqofSUpNq,thenA pX,wqisanaffinespace κ modeledontheBanachspaceL2pX,supPqbΛ1q. WewillalsowriteG pX,wqforthespaceofL2 l κ l`1 automorphisms of P whose fiber-wise determinant is equal to 1. Then G pX,wq forms a Banach Lie κ group with Lie algebra L2 pX,supPqq. This Lie group acts on A pX,wq, and the quotient space is l`1 κ denoted by B pX,wq. We will write rAs for an element of B pX,wq, represented by a connection A. κ κ ThecenteroftheLiegroupUpNqinducesafinitesubgroupofG pX,wq. Ifthissubgroupisthestabilizer κ ofaconnectionA,thenAisanirreducibleconnection. Otherwise,theconnectionAiscalledreducible. ThespaceofirreducibleconnectionsonP aredenotedbyA˚pX,wq,andwewillwriteB˚pX,wqforthe κ κ quotientspace. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.