ebook img

SUSY Searches at ATLAS PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SUSY Searches at ATLAS

SUSY Searches at ATLAS PauldeJong1,a,onbehalfoftheATLASCollaboration Nikhef,P.O.Box41882,NL-1009DBAmsterdam 2 Abstract. RecentresultsofsearchesforsupersymmetrybytheATLAScollaborationinupto2fb 1of √s=7 − 1 TeV ppcollisionsattheLHCarereported. 0 2 n 1 Introduction MSUGRA/CMSSM: tanβ = 10, A = 0, µ>0 Lint = 1.34 fb-1 a 0 J eV]550 ATLAS obs. CLs 95% C.L. limit 22 Dhausedtiosctohveehryigphocteennttirael-ofof-rmneawssheenaevrgyypoarfti7clTeesVb,etyhoenLdHthCe [Gm1/2500 MMuullttiijjeettss pplluuss EEmTmTiissss CCoommbbiinneedd 2eexx0pp1..1 Cl ≥im2L,si3t 9,±451 %j σe tCs .pLl.u lsim Eimtiss ] Tpaervtaictruolnarlfimoritpsaretvicelneswwitihthlictotlleoulurmchinarogseit,ys.uTchhiasshsoqludasrkins 450 q (~1400) CLELsP 9 25 %∼χ ± C.L. limit T p-ex atsoenndthsigetlievuxiitncyeolsalelisnnotsleuuxpmiesirtnssoyfsmoitrmyepeleetrcryftro(orSwmUeaSankYce)por[o1fd]th.ueHctLoioHwnCevoiefnrc,2hd0au1re1-, 345000 q ~(1000) ~g (1000) DTCh0De F~go, ~ rg~qe,,~qt i1t,ca tanalβlny=β e=3x,5 cµ, lµu<d<0e,0 d2, .21 ffbb-1-1 e ginosandneutralinos,the supersymmetricpartnersofthe h electroweak gauge bosons and the Higgs boson. In this 300 1 [ dpoercsuymmemnte,tarynwumithbeurpotfor2esfubl−ts1ooffALTHLCApSpsdeaartachaets√fosr=su7- 250q~ (600) ~g (800) v TeVaresummarized.Sincenoneoftheanalyseshaveob- 200 ~g (600) 8 servedanyexcessabovetheStandardModelexpectation, 4 limits on SUSY parameters or masses of SUSY particles 150 5 are set. Itis, however,importantto considercarefullythe 500 1000 1500 2000 2500 3000 3500 4 assumptionsmadein eachofthe limits,andthe truecon- m [GeV] . 0 1 straintsthattheyimposeonsupersymmetry. 0 Fig. 1. Exclusion contours in the MSUGRA/CMSSM m -m 0 1/2 2 planefor A = 0,tanβ = 10andµ > 0,arisingfromtheanal- 0 1 ysiswith 2, 3or 4jetsplusmissingmomentum,andthe : 2 Searches with jets and missing multijetsp≥lusm≥issing≥momentumanalysis. v momentum i X r AssumingconservationofR-parity,thelightestsupersym- inasemi-data-drivenway,usingcontrolregionsincombi- a metricparticle(LSP)isstableandweaklyinteracting,and nationwithatransferfactorobtainedfromsimulation. will typically escape detection. If the primary produced The results are interpreted in the MSUGRA/CMSSM particles are squarks or gluinos (and assuming a negligi- model,andinparticularaslimitsintheplanespannedby blelifetimeoftheseparticles),thiswillleadtofinalstates the common scalar mass parameter at the GUT scale m0 with energeticjetsandsignificantmissingtransversemo- andthecommongauginomassparameterattheGUTscale mentum. m1/2, for values of the commontrilinear couplingparam- ATLAScarriesoutanalyseswithaleptonveto[2],re- eter A0 = 0, Higgs mixingparameter µ > 0, and ratio of quiring one isolated lepton [3], or requiring two or more the vacuumexpectationvaluesof the two Higgsdoublets leptons [4]. In addition, a dedicated search is performed tanβ=10.Figure1showstheresultsfortheanalyseswith foreventswithhighjetmultiplicity[5].Datasamplescor- 2, 3 or 4 jets plus missing momentum, and the ≥ ≥ ≥ responding to luminosities between 1.0 and 1.3 fb 1 are multijets plus missing momentum analysis. For a choice − used. Events are triggered either on the presence of a jet of parametersleadingto equalsquarkandgluinomasses, plus large missing momentum, or on the presence of at squarkandgluinomassesbelowapproximately1TeVare leastonehigh-p lepton.Backgroundstothesearchesarise excluded. The 1-lepton and 2-lepton results are less con- T fromStandardModelprocessessuchasvectorbosonpro- straininginMSUGRA/CMSSMforthischoiceofparam- ductionplusjets (W + jets, Z + jets), top quarkpair pro- eters,buttheseanalysesarecomplementary,andtherefore duction and single top production,QCD multijet produc- nolessimportant. tion, and diboson production.Backgroundsare estimated The search with two isolated opposite-chargeleptons isalsointerpretedintheframeworkofminimalgaugeme- a e-mail:[email protected] diatedsupersymmetrybreaking(GMSB),asshowninFig- EPJWebofConferences GMSB: M =250TeV, N=3, sign(µ) = +, C =1 Squark-gluino-neutralino model βn 50 mes 5 grav V]2000 ATLAS Preliminary ta ATLAS Preliminary Observed 95% CL Ge 0 lepton 2011 combined 3400 Theory excl. Lint = 1.0MOLLE4EExP efpPPdAbe iL99a-c1 55nt,9e%% 5e d% x CClspi mLLCe= cLi((7 tt∼~τe .± 1 RT)9 )15eσ%V CL ark mass [11570500 ∫ L dt = 1.04EEOO xxfbbbppss-..1.., mmmmsLLLLSS=SSPPPP7 == ==T e0101V 9 9GG55e e GGVVeeVV OS combined EmTiss + 3 jets qu EOxbps.. mmLSP == 339955 GGeeVV s1250 LSP 1200 χ∼10 ∼τC1oNLSP ~ lR 1705000 Tevatron, Run I CDF, Run II D0, Run II σσSSUUSSYY == 00..10 1p pbb 10 20 30 40 50 60 Λ [TeV7]0 σSUSY = 1 pb 500 Fig. 2. Exclusion contours in the GMSB Λ-tanβ plane, for σSUSY = 10 pb M =250TeV,N =3andµ>0,resultingfromtheopposite- 250 chmaregseleptonanalys5is. LEP2 ~q 0 0 250 500 750 1000 1250 1500 1750 2000 gluino mass [GeV] ure2[6].Assumingamessengermassscale M of250 mes Fig.3. Exclusioncontours inthesquark-gluino massplane, for TeV, 3 generations of messengers (N = 3) and µ > 0, 5 three values of the LSP mass, using the simplified model de- limitsaresetontheeffectiveSUSY breakingscaleΛ and scribedinthetext. ontanβ.TheselimitssignificantlyimproveontheLEPre- sults. ∼∼ Direct decay, ~g~g ⇒ qqqqχ0χ0 V]1000 11 102 b] 3 Simplified model interpretation mass [Ge 890000 ∫0A0 LllTee dppLttt oo=Ann 1 22S.000411 11 Pf bcc-r1oo,e mmlsbbi=miinn7ee TiddneVary % C.L. [p ATLAShasfounditusefultonotonlyinterprettheresults P CLs observed 95% C.L. limit 10 95 ienlscaosnssutrmaiinnegdsmpeocdifielcs,pbruotdaulcstoioinnatenrdmdseocfasyimmpoldifieesd[7m].oIdn- LS 670000 CExLps emceteddia lnim eitx ±p1e cσted limit ded at seulsclhikseimMpSliUfiGedRmA/oCdMelsS,StMheocroGnsMtrSaiBntasreimrepllaixededb,yleamvoindg- 500 ~g LS P exclu more freedom for variation of particle masses and decay 400 1 BR) modes.Interpretationsinsimplifiedmodelsthusshowbet- × 300 σ terthelimitationsoftheanalysesasafunctionoftherel- ( evantkinematicvariables,andaidindrawingconclusions 200 10-1 fromtheresults. 100 Inclusivesearchresultswithjetsandmissingmomen- tumareinterpretedusingsimplifiedmodelswitheitherpair 0 300 400 500 600 700 800 900 1000 productionofsquarksorofgluinos,orproductionofsquark- gluino mass [GeV] gluinopairs.Directsquarkdecays(q˜ qχ˜0)ordirectglu- 1 ino decays (g˜ qq¯χ˜0) are dominan→tif all other particle Fig.4.Crosssectionlimitsandexclusioncontoursinthegluino- masses have m→ulti-TeV1 values, so that those do not play neutralinomassplane,fordirectgluinodecays,g˜ →qq¯χ˜01,asob- tainedbytheno-leptonanalysis.Allsquarkmassesareassumed arole.Additionalcomplexitymaybebuiltin,forexample byallowingone-stepdecaystointermediatecharginos,χ˜±, tobemulti-TeV,sothatonlygluinopairproductiontakesplace, and thedirect decay isassumed tooccur with100% branching orheavierneutralinos,χ˜0. 2 fraction. Figure3showstheATLASresultsinterpretedinterms of limits on (first and secondgeneration)squark and glu- inomasses,forthreevaluesoftheLSP(χ˜0)mass,andas- 1 catethatmassesoffirstandsecondgenerationsquarksand sumingthatallotherSUSYparticlesareverymassive[8]. ofgluinosmustbeaboveapproximately750GeV.Anim- Furtherinterpretationsaredoneintermsoflimitsongluino portant caveat in this interpretation is the fact that this is massvsLSPmassassuminghighsquarkmasses,asshown onlytrueforneutralinoLSPmassesbelowapproximately for example in Figure 4 for direct decays, or in terms of 250GeV(asinMSUGRA/CMSSMforvaluesofm be- 1/2 limitsonsquarkmassvsLSPmassassuminghighgluino low (600)GeV).ForhigherLSPmasses,thesquarkand masses [3,8]. Figure 5 shows an example of limits in the O gluinomasslimitsaresignificantlylessrestraining.Itwill gluino-LSPmassplaneobtainedfromone-stepgluinode- be a challengefor furtheranalysesto extendthe sensitiv- cays,g˜ qq¯′χ˜±, χ˜± W(∗)χ˜01,bytheone-leptonanaly- ity of inclusive squark and gluino searches to the case of → → sis.Thecharginomassinsuchdecaysisafreeparameter, heavyneutralinos.If the LSPis heavy,eventsare charac- characterizedbyx=(mχ˜±−mχ˜01)/(mg˜−mχ˜01),andFigure5 terized by less energetic jets and less missing transverse showsx=1/2asanexample. momentum.This will be more difficult to trigger on, and The results of the inclusivejets plusmissing momen- lead to higherStandard Modelbackgroundsin the analy- tumsearches,interpretedinthesesimplifiedmodels,indi- sis. HadronColliderPhysicsSymposium2011 V] 800 b] [GemLSP 670000 ~LgC1~gi-noS→t m=teqb p1qin .qD0aq4etWi cofbanW-y1,,χ∼ x01s=χ∼=0117/2 TeV ATLAS 102at 95% CL [p m [GeV]∼0χ1330500 ~b1-~b1C pDroFd 2u.c6ti5o nfb, -~b11→ b+∼χ01 C±CC LLL1sss σ EOE NxxbppLseeOeccr vttseeecddda lLLeLii immmuniiitttc (±(.9 9155 σ%% CC..LL..)) 500 Observed 95% CL ded 250 D0 5.2 fb-1 ATLAS 340000 EExxppeecctteedd ±1σ 10 Section Exclu 125000 ~b →1 b ∼χ0 1forbidden ∫L dt = 2.05 fb-1, s = 7 TeV 1 s s 200 Cro 100 Reference point 100 10-1 50 0 300 400 500 600 700 800 0 100 150 200 250 300 350 400 450 mgluino [GeV] m~ [GeV] b 1 Fig.5.Crosssectionlimitsandexclusioncontoursinthegluino- Fig. 6. Exclusion contour inthesbottom-neutralino mass plane neutralino mass plane, for one-step gluino decays, g˜ qq¯′χ˜±, resultingfromtheanalysissearchingforsbottomquarkpairpro- χ˜± → W(∗)χ˜01,asobtainedbytheone-leptonanalysis.→Onlyglu- duction,assumingsbottomtobottomplusneutralinodecay. inopairproductionisconsidered,theone-stepgluinodecayisas- sm4uamSsseUdisStcohYoacraaccuntredrwizintehda1bt0yu0x%ra=bl1rna/ne2cs(hsisenegtferxatc)t.ion,andthechargino [GeV]m~t1556050000~g-~g 1>A>+-== ~lTte -11~tpL tpbboAr--nottaa,dS gg4u,, c jmmePtitoeesrffnff e,>> ~g l66 i→00m00 ~t iGG1+neet,aVV ~tr1→y b+χ∼±1 OECCExxLLbppsss∫ eeoeeLccbxrdtvtpseeteee dd=drc vC AtA1eeTL.Tdd0sLL 3llAliiAim mmfSSbiiit t-t (1 (,3±3 515sσ p=pb7b--11 )T)eV 450 m(χ∼0) = 60 GeV , m(χ∼±) ≈ 2 m(χ∼0) 1 1 1 ItrmypaorretatnhtemfaocttivsatthioatnsSUfoSrYelemctirgohwteparko-vsicdaeleasnuapteurrsaylmsomlue-- 334050000 m(~q1,2) >> m(~g) ~g → ~tt1 forbidden tion to the hierarchy problem by preventing “unnatural” 250 fine-tuning of the Higgs sector, and that the lightest sta- bleSUSYparticleisanexcellentdarkmattercandidate.It 200 Reference point isinstructivetoconsiderwhatsuchamotivationreallyre- 150 quiresfromSUSY:arelativelylighttopquarkpartner(the 300 350 400 450 500 550 600 650 700 750 800 stop, t˜) (and an associated sbottom-leftquark, b˜ ), a glu- mg~ [GeV] L inonotmuchheavierthanabout1.5TeVtokeepthestop Fig.7.Exclusioncontourinthegluino-stopmassplaneresulting light (the stop receives radiative corrections from loops fromtheanalysissearchingfor stopquark production ingluino liket˜ g˜t t˜),andelectroweakgauginosbelowtheTeV decays.Theassumptionsmadetoderivetheplotarelistedinthe scale→[9].Th→erearenostrongconstraintsonfirstandsec- plot. ondgenerationsquarksandsleptons;infactheavysquarks andsleptonsmakeiteasierforSUSYtosatisfythestrong constraintsfromflavourphysics.Motivatedbythese con- a neutralino (LSP) with a 100% branching fraction. Un- siderations,ATLASexplicitlysearchesforthirdgeneration dertheseassumptions,sbottommassesupto390GeVare squarksandforelectroweakgauginos. excludedforneutralinomassesbelow60GeV. ATLAShassearchedforstopquarkproductioninglu- ino decays [12] using an analysis requiring at least four high-p jetsofwhichatleastoneshouldbeb-tagged,one T 5 Stop and sbottomsearches isolatedlepton,andsignificantmissingtransversemomen- tum.Afterapplyingtheselectioncriteria,74eventsareob- ATLAS has carried out a number of searches for super- servedin1.0fb−1ofdata,where55 14backgroundevents ± symmetrywith b-taggedjets, which are sensitive to sbot- are expected from a data-driven estimation procedure, or tom and stop quarks production, either direct, or in glu- 52 28 from Monte Carlo simulations. Since there is no ± inodecays.Jetsaretaggedasoriginatingfromb-quarksby significant excess, limits are set in the gluino-stop mass analgorithmthatexploitsbothtrackimpactparameterand plane,assumingthegluinotodecayasg˜ t˜t,andthestop secondaryvertexinformation. quarktodecayast˜ bχ˜±1,asshowninF→igure7. → Directsbottompairproductionissearchedforinadata Inaddition,ATLAShassearchedforsbottomproduc- samplecorrespondingto2fb 1 byrequiringtwob-tagged tionin gluinodecays,setting limitsinthegluino-sbottom − jetswith p > 130,50GeVandsignificantmissingtrans- massplaneandinthegluino-neutralinomassplane[13]. T versemomentumofmorethan130GeV[10].Thefinaldis- Furthersearches for directstop quarkpair production criminantistheboost-correctedcontransversemassm [11], areinprogress.Thesesearchesarechallengingduetothe CT andsignalregionswithm >100,150,200GeVarecon- similaritywiththetopquarkpairproductionfinalstatefor CT sidered.Noexcessesareobservedabovetheexpectedback- stop masses similar to the top mass, and due to the low groundsoftop,W+heavyflavourandZ+heavyflavourpro- cross section for high stop masses. ATLAS has searched duction.Figure6showstheresultinglimitsinthesbottom- forsignsofnewphenomenaintopquarkpaireventswith neutralino mass plane, assuming sbottom quark pair pro- large missing transverse momentum [14]; such an analy- ductionandsbottomquarkdecayintoabottomquarkplus sis is sensitive to pair production of massive partners of EPJWebofConferences m [GeV]~g111102000000GGM: bin±AAAo TTT1-LLLl iσAAAkeSSS nCCCeLLLussst oreoabxblpssineeeorcrvvt,eee tddda 9n995β55%%% = CCC2LLL, cllliiimmmτNiiitttL S(3P6 < pA b0.T-11)L mAmS [GeV]m∼0χ1330500 χ∼±1∫ mχ∼L∼χ02 ±1d →=t =m ~ lν1∼χ02. ~,0l lm,4 l~ lν∼,fν∼b ~=l-l1 , → m Ls Sl=νP7 +χ∼ T 011e l/Vl2 χ∼ (01m∼χ±1 - m∼χ01) 345345 % CL [pb]% CL [pb] CMS observed 95% CL limit (35 pb-1) Observed 95% CL 22 9595 900 250 Expected at at Expected ± 1 σ d d 800 ∫Ldt = 1.07 fb-1 200 ATLAS 11 cludeclude 700 xx s = 7 TeV 150 n En E 600 oo 500 ~g NLSP 100 s Sectis Secti 400 200 400 600 800 1000 1200 50 CrosCros mχ∼ [GeV] 0 150 200 250 300 350 00..22 m∼χ±,∼χ0 [GeV] 1 2 Fig.8.Exclusioncontourinthegluino-neutralinomassplanein Fig. 9. Cross section limits and exclusion contours in the thegeneralgaugemediation(GGM)model,assumingabino-like chargino-neutralino massplane,resultingfromthesame-charge neutralino,resultingfromthediphotonplusmissingmomentum dilepton analysis. The interpretation is done in a simplified analysis. model,detailsaregivenintheplot. the top quark, decaying to a top quark and a long-lived undetected neutral particle. No excess above background selectioncriteriaonjetsandonthemissingtransversemo- wasobserved,andlimitsonthecrosssectionforpairpro- mentum. For all signal regions, the observed event count duction of top quark partners are set. These limits con- agreeswiththeexpectedbackground.Theanalysisselect- strain fermionic exotic fourth generation quarks, but not ing same-chargeleptonspluslargemissing momentumis yetscalarpartnersofthetopquark,suchasthestopquark. sensitive to electroweak gaugino production, and results for this analysis are shown in Figure 9. The interpreta- tionisdoneinasimplifiedmodelassumingchargino(χ˜±1) 6 Electroweakgaugino searches plusaheavierneutralino(χ˜0)production,anddecaytolep- 2 tonsandLSPsthroughintermediatesleptons.Undertheas- Searchesforcharginosandneutralinosarecarriedoutvia sumptionofequalmassofχ˜±1 andχ˜02,limitsaresetinthe amneanlytusmes,oofrfimnualltsilteaptetsoninsvpolluvsinmgipsshiontgonmsopmluesnmtuimss.ingmo- χ˜±1 −χ˜01massplane. Ingaugemediationmodels,neutralinosdecaytograv- itinosplusoneormorestandardmodelparticles,depend- 7 Specialfinal states ing on the neutralinocomposition.For bino-likeneutrali- nos, the final state consists of a pair of high-p photons T ThenumberofdifferentfinalstatessensitivetoSUSYpro- plusmissingtransversemomentum.ATLAShassearched foranexcessinsuchfinalstatesusing1.1fb 1ofdata[15]. duction is very large. SUSY particles may be long-lived, − whentheirdecayissuppressedkinematically(splitSUSY, Theselectionrequirestwophotons,identifiedwith“tight” R-hadrons,anomaly-mediatedSUSYbreaking,certainparts criteria,with p > 25GeV,andsignificantmissingtrans- T of phase space of gauge-mediatedSUSY breaking)or by versemomentum.Theresultsareinterpretedinthegeneral verysmallcouplings(e.g.R-parityviolation).ATLAShas gauge mediation model (GGM), in terms of limits in the carried out searches for stable massive particles [17], for gluino-neutralinomassplane,andassumingtheneutralino stoppedgluinos[18],forkinkedordisappearingtracks[19] tobetheNLSP.TheresultsareshowninFigure8.Theas- andforsecondaryverticesofdecayingmassiveparticles[20]. sumptionismadethatphotonsareproducedpromptly,i.e. Furthermore,there is a dedicatedsearch for third genera- cτoftheNLSPisassumedtobelessthan0.1mm.Inthis tion sneutrinos decaying to an electron-muon pair in R- model,agluinomassbelow805GeVisexcludedforbino parity violation scenarios [21]. It is also noteworthy that massesabove50GeV. ATLAShassearchedforascalarpartnerofthegluon[22]. Thediphotonplusmissingtransversemomentumanal- Kinkedordisappearingtracksareapossiblesignature ysis is also interpreted in the minimal gauge mediation ofhigh-p massiveparticlesdecayinginthedetectorvol- model(GMSB),fortheSPS8parametersM =2Λ,N = T mes 5 ume to an almost degenerate daughter particle, such as 1,tanβ=15andµ>0.TheATLASresultsimplyalower limitonΛfortheSPS8parametersof145TeVat95%CL. χ˜±1 χ˜01π±inanomaly-mediatedSUSYbreaking(AMSB) Multileptonanalyses[4,16]aresensitivetoproduction mod→els, where χ˜±1 and χ˜01 are almost degenerate, and the ofcharginosand/orneutralinosotherthantheLSP,decay- resultingpiontrackhaslow p andiseasilymissedinthe T ing leptonically to the LSP. These analyses comprise the reconstruction. ATLAS has searched for such signatures goldensearch modesat the Tevatron,butare also rapidly in 1.0 fb 1 of data [19], demandinga track p of at least − T gaining relevance at the LHC. ATLAS searches for ex- 10 GeV, good reconstruction quality in the silicon track- cessesinfinalstateswiththreeormoreleptonsonthe2011 ingdetectorsandintheinnerlayersofthetransitionradi- dataareinprogress.ATLAShaspublishedresultsofvar- ation tracker (TRT), but no, or only few hits in the outer ious analyses searching for dilepton events plus missing layerof theTRT. Backgroundsarise fromtracksinteract- momentum, in 1.0 fb 1 of data [4]. Three signal regions ing with the TRT material(dominant),or frommisrecon- − aredefinedforopposite-chargeleptons,andtwosignalre- structed low-p tracks. Figure 10 (top)shows probability T gions are defined for same-charge leptons, with varying density functions (pdfs) in p for signal and background T HadronColliderPhysicsSymposium2011 bability density1100-1-21 ATLAS Prelims=i7nTaerVy SHBiaagddn ratorlan: c LtkrLa 0bc1ak,c bτk(agχ∼cr±1ok) ug=nr o1dunnsd x mass [GeV]102 ×111..460-3 Pro10-3 Verte 1.2 1 10-4 Signal region 10 0.8 10-5 ATLAS ∫ 0.6 Ldt = 33 pb-1 10-6 102 103 0.4 track pT [GeV] 1 Data 2010 0.2 V102 Signal MC Ge Data 0 1 2 3 4 5 6 78910 20 30 40 s / 10 Fit results Number of tracks in vertex k c a Tr 1 ATLAS Preliminary Fig.11.Vertexmassandnumberoftracksinthesecondaryver- s=7TeV, ∫Ldt = 1.02 fb-1 tex,forverticesselectedbytheanalysissearchingforhighmass 10-1 secondaryvertices. 10-2 in triggering,andindealingwithhighpile-upconditions. Inthelongerterm,increasingtheLHCbeamenergyto>6 10-3 10 20 50 100 200 500 1000 TeVwillagainenablethecrossingofkinematicalbarriers track p [GeV] andopenthewayformulti-TeVSUSYsearches. T Fig. 10. Top: Probability density functions for signal (AMSB model) and expected background distributions of track p for T References trackssatisfyingthekinked-trackselection.Bottom:Distribution oftrack p for185tracksindatasatisfyingthekinked-trackse- T 1. See the reviews of S. P. Martin, hep-ph/9709356 and lection,andtheresultofthepdffit.Thefitisconsistentwiththe H. P. Nilles, Phys. Rept. 110 (1984) 1, and references background-onlyhypothesis. therein. 2. ATLASCollaboration,arXiv:1109.6572(2011) tracks;Figure10(bottom)showsthe p distributionofthe 3. ATLASCollaboration,arXiv:1109.6606(2011) T 185tracksindatasatisfyingtheselectioncriteria,andthe 4. ATLASCollaboration,arXiv:1110.6189(2011) pdf fit to the data. The data is consistent with the back- 5. ATLASCollaboration,JHEP11(2011)99 groundexpectation,andupperlimitsonthesignalareset. 6. ATLAS Collaboration, ATLAS-CONF-2011-156 ATLAShasalsosearchedforhigh-masssecondaryver- (2011),http://cdsweb.cern.ch/record/1398247/ tices,consistentwiththedecayofmassiveparticles,in33 7. D.Alvesetal.,arXiv:1105.2838(2011) pb 1ofdatacollectedin2010.Theanalysisisdesignedin 8. ATLAS Collaboration, ATLAS-CONF-2011-155 − particularforthe decayχ˜0 µ˜µandthe R-parityviolat- (2011),http://cdsweb.cern.ch/record/1398201/ ingdecayµ˜ qq¯ through→anon-zeroλ coupling[20]. 9. R.Barbieri,these(HCP2011)proceedings → ′ ′2ij 10. ATLASCollaboration,arXiv:1112.3832(2011) Backgroundsarise from interactionsin the inner detector 11. G.PoleselloandD.Tovey,JHEP03(2010)030 material,andthefiducialvolumeofthisanalysisexcludes 12. ATLAS Collaboration, ATLAS-CONF-2011-130 regionswithsuchdetectormaterial.Asignalregionisde- (2011),http://cdsweb.cern.ch/record/1383833/ fined requiringa vertexmass of10 GeV or more,with at 13. ATLAS Collaboration, ATLAS-CONF-2011-098 leastfourtracksinthevertex,asshowninFigure11.The (2011),http://cdsweb.cern.ch/record/1369212/ dataisconsistentwiththebackgroundhypothesis. 14. ATLASCollaboration,arXiv:1109.4725(2011) 15. ATLASCollaboration,arXiv:1111.4116(2011) 16. ATLAS Collaboration, ATLAS-CONF-2011-039 8 Conclusion and Outlook (2011),http://cdsweb.cern.ch/record/1338568/ 17. ATLASCollaboration,Phys.Lett.B703(2011)428, The results of ATLAS supersymmetry searches are sum- Phys.Lett.B701(2011)1 marizedinFigure12. 18. ATLASCollaboration,(inpreparation) AlthoughnosignsofSUSYhavebeenfoundsofar,it 19. ATLASCollaboration,(inpreparation) isimportanttorealizethatactualtestsof“natural”SUSY 20. ATLASCollaboration,arXiv:1109.2242(2011) are onlyjustbeginning[23]. Inthisrespect, theLHC run 21. ATLASCollaboration,Eur.Phys.J.C71(2011)1809 of2012,withanexpectedluminosityofmorethan10fb−1, 22. ATLASCollaboration,Eur.Phys.J.C71(2011)1828 possibly at √s = 8 TeV, will be very important. How- 23. G.Polesello,these(HCP2011)proceedings ever,experimentallytherewillbeconsiderablechallenges EPJWebofConferences ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec. 2011) MSUGRA/CMSSM : 0-lep + j’s + ET,miss L=1.0 fb-1 (2011) [arXiv:1109.6572] 950 GeV ~q = ~g mass ATLAS MSUGRA/CMSSM : 1-lep + j’s + ET,miss L=1.0 fb-1 (2011) [arXiv:1109.6606] 820 GeV ~q = ~g mass Preliminary MSUGRA/CMSSM : multijets + ET,miss L=1.3 fb-1 (2011) [arXiv:1110.2299] 680 GeV ~g mass (for m(~q) = 2m(~g)) ∫ Simpl. mod. : 0-lep + j’s + ET,miss L=1.0 fb-1 (2011) [arXiv:1109.6572] 1.075 TeV ~q = ~g mass (light χ∼01) Ldt = (0.03 - 2.0) fb-1 Simpl. mod. : 0-lep + j’s + ET,miss L=1.0 fb-1 (2011) [arXiv:1109.6572] 875 GeV ~q mass (m(~g) < 2 TeV, light χ∼01) s = 7 TeV Simpl. mod. : 0-lep + j’s + ET,miss L=1.0 fb-1 (2011) [arXiv:1109.6572] 700 GeV ~g mass (m(~q) < 2 TeV, light χ∼01) Simpl. mod. : 0-lep + j’s + ET,miss L=1.0 fb-1 (2011) [ATLAS-CONF-2011-155] 700 GeV ~q mass (m(~g) < 2 TeV, m(χ∼01) < 200 GeV) Simpl. modS. i(m~g→pl. qmqoχ∼d±). :: 10--lleepp ++ jj’’ss ++ EETT,,mmiissss LL==11..00 ffbb--11 ((22001111)) [[AarTXLiAv:S1-1C0O9.N6F60-260]11-155] 60605 0G GeVe V ~g~g m maassss ( m (m(χ∼(01~q)) < < 2 20 T0e GVe, mV,( ∆χ∼01m) (<χ∼ ±2,0 χ∼00 )G / e∆Vm)(~g, χ∼0) > 1/2) SUSY SimpSli.m mpoSlS.d imim.m (op~gpdl→l... mm(tχ∼toχ∼o±1dχ01∼d).02. ::(→ ~b101-- →ll3eelpp χ∼b 01χ+∼+)01 bb): --2:jj ee-2ltte ssbp -++ jSe jjtS’’sss ++++ EEEETTTT,,,,mmmmiiiissssssss LLLL====1120....0008 53ff bbffbb--11 --11(( 22((22001001111111)) ))[[ Aa[[PArTXrTLeiLAvlAi:Sm1S-1Ci-1nCO0aO.rN6yN1F]8F-229-020]001 G111-e1-V03 098]]χ∼3±19 0m Gae5Vs40 s G(7b~eli2V g0m h Gate~ gχ∼sV sm 01, (am~gms (m~s(l)χ∼ a (01=ms) 2s1(< (χ∼( m601m)0( (χ∼< b~G±1 )8) e <0+V G6m)0e(0χ∼V 02)G))e)V, lightχ∼ 01) GMSB : 2-lep OSSF + ET,miss L=1.0 fb-1 (2011) [ATLAS-CONF-2011-156] 810 GeV ~g mass (corresp. to Λ < 35 TeV, tanβ < 35) GGM + Simpl. model : γγ + ET,miss L=1.1 fb-1 (2011) [arXiv:1111.4116] 805 GeV ~g mass (m(bino) > 50 GeV) GMSB : stable ∼τ L=37 pb-1 (2010) [1106.4143965 ]GeV ∼τ mass AMSB : long-lived χ∼±1 L=1.0 fb-1 (2011) [9P2r eGle]V χ∼±1 mass (0.5 < τ(χ∼±1) < 2 ns ) Stable massive particles : R-hadrons L=34 pb-1 (2010) [arXiv:1103.1984] 562 GeV ~g mass ~ Stable massive particles : R-hadrons L=34 pb-1 (2010) [arXiv:1103.1984] 294 GeV b mass Stable massive particles : R-hadrons L=34 pb-1 (2010) [arXiv:1103.1984] 309 GeV ~t mass Hypercolour scalar gluons : 4 jets, mij ≈ mkl L=34 pb-1 (2010) [arXiv:1110.2168953 ]GeV sgluon mass (excl: msg < 100 GeV, m sg ≈ 140 ± 3 GeV) RPV : high-mass eµ L=1.1 fb-1 (2011) [arXiv:1109.3089] 1.32 TeV ν∼τ mass (λ,311=0.10, λ312=0.05) Bilinear RPV : 1-lep + j’s + ET,miss L=1.0 fb-1 (2011) [arXiv:1109.6606] 760 GeV ~q = ~g mass (cτLSP < 15 mm) 10-1 1 10 Mass scale [TeV] *Only a selection of the available results leading to mass limits shown Fig. 12. Summary of limitsset on SUSY particlemasses by ATLAS,resulting from analyses of up to2 fb 1 of pp collision data at − √s=7TeV.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.