Springer Tracts in Civil Engineering Sašo Medved Suzana Domjan Ciril Arkar Sustainable Technologies for Nearly Zero Energy Buildings Design and Evaluation Methods Springer Tracts in Civil Engineering Springer Tracts in Civil Engineering (STCE) publishes the latest developments in Civil Engineering—quickly, informally and in top quality. The series scope includes monographs, professional books, graduate textbooks and edited volumes, aswellasoutstandingPh.D.theses.Itsgoalistocoverallthemainbranchesofcivil engineering, both theoretical and applied, including: Construction and Structural Mechanics Building Materials Concrete, Steel and Timber Structures Geotechnical Engineering Earthquake Engineering Coastal Engineering Hydraulics, Hydrology and Water Resources Engineering Environmental Engineering and Sustainability Structural Health and Monitoring Surveying and Geographical Information Systems Heating, Ventilation and Air Conditioning (HVAC) Transportation and Traffic Risk Analysis Safety and Security Tosubmitaproposalorrequestfurtherinformation,pleasecontact:PierpaoloRiva at [email protected], or Li Shen at [email protected] More information about this series at http://www.springer.com/series/15088 š Sa o Medved Suzana Domjan (cid:129) Ciril Arkar Sustainable Technologies for Nearly Zero Energy Buildings Design and Evaluation Methods 123 Sašo Medved Ciril Arkar Faculty of MechanicalEngineering Faculty of MechanicalEngineering University of Ljubljana University of Ljubljana Ljubljana, Slovenia Ljubljana, Slovenia Suzana Domjan Faculty of MechanicalEngineering University of Ljubljana Ljubljana, Slovenia ISSN 2366-259X ISSN 2366-2603 (electronic) SpringerTracts inCivil Engineering ISBN978-3-030-02821-3 ISBN978-3-030-02822-0 (eBook) https://doi.org/10.1007/978-3-030-02822-0 LibraryofCongressControlNumber:2018959255 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In the past decades, the energy performance of buildings has increased by a factor of 10, which is significantly higher than in other energy use sectors. At that time, the EU’s energy and environment policy led to the creation of regulatory require- ments,standardsandtechnologiesfortheimplementationofcomplexsystemssuch as passive buildings or sustainable buildings. European Union expressed commit- ment to develop sustainable, competitive, secure and decarbonized energy system, by adopting Directive on the Energy Performance of Buildings (EPBD), including requirementsfornearlyZero-EnergyBuildings(nZEB).Sinceenergyefficiencyand environmental sustainability requirements are becoming more and more complex, the knowledge of building designers must be more comprehensive too—from understanding of physical principles, have an overview of legal framework, to be familiar with advanced building service technologies and finally to have a knowledge of using methods for comprehensive verification of the ‘final product’: nZEB. Awareness that deep interdisciplinary knowledge is the only guarantee that this task will be fulfilled has been a guide to the design of the contents and the scope of this book. Through 14 chapters, the book leads the reader through basics of planning and evaluationoflivingcomfortintheindoorenvironment,basicsofbuildingphysics, instructions for determination of thermal response of building structures, explana- tionsandevaluationofnZEBrequirementsanddesign,energyefficiencyevaluation of buildings’service systems,presentation of methods for planning and evaluation ofbuildings’energyperformanceandtheenvironmentalimpactscausedbylifelong use of energy and materials in buildings. Students of architecture, civil and mechanical engineering and students of other engineering professions, as well as professional building planners, will get acquainted with modern technologies for ‘in-situ’and‘near-by’productionofheat,coldandelectricityinnearlyzero-energy buildings including energy-efficient measures and renewable energy technologies utilization. Theoretical content is supported by in-situ experiments results, numerical examples and case studies, which were developed by colleges of Laboratory for Sustainable Technologies in Buildings (LOTZ), Faculty of Mechanical Engineering, University of Ljubljana. v vi Preface The book is an upgraded teaching material developed in the frame of ERASMUS+ProjectEduLabFrame(2014-1-RO01-KA203-002986)andwewould like tothank thecolleagues involved intheproject.The authorswouldalso liketo thankViessmannWerkeGmbH&Co.KGforextendedpicturematerial.Wewould like to thank all other cited authors and sources. Finally, we would like to thank company TRIMO d.o.o. to enable TRIMOExpert software for downloading from www.TRIMO/eu. Ljubljana, Slovenia Sašo Medved Suzana Domjan Ciril Arkar Contents 1 Indoor Comfort Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Indoor Thermal Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Criteria for Indoor Environment Thermal Comfort Global Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Integral Indicators of Indoor Thermal Comfort: PMV and PPD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.3 Adaptive Model of Thermal Comfort . . . . . . . . . . . . . 13 1.1.4 Local Indoor Thermal Comfort Indicators . . . . . . . . . . 14 1.2 Indoor Air Quality (IAQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.1 Required Ventilation for IAQ . . . . . . . . . . . . . . . . . . . 15 1.3 Visual Comfort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.1 Criteria of Visual Comfort Parameters. . . . . . . . . . . . . 21 1.4 Acoustic Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.1 Sound Recognition and Noise Protection. . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Energy Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Renewable Energy Sources (RES) . . . . . . . . . . . . . . . . . . . . . . 31 2.1.1 Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.2 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.3 Tidal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Fuels as Energy Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.1 Non-renewable Fossil Fuels . . . . . . . . . . . . . . . . . . . . 43 2.2.2 Renewable Fuels Made from Biomass. . . . . . . . . . . . . 46 2.3 Electricity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Introduction to Building Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1 Heat Transfer in Building Structures . . . . . . . . . . . . . . . . . . . . 59 3.1.1 Thermal Transmittance of Building Structures (U-Value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 vii viii Contents 3.1.2 Thermal Transmittance of Homogeneous Structures . . . 61 3.1.3 Thermal Transmittance of Structures with Closed Air Gap or Ventilated Air Layer. . . . . . . . . . . . . . . . . . . . 63 3.1.4 Thermal Transmittance of Green Building Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.1.5 Thermal Transmittance of Building Structures in Contact with the Ground . . . . . . . . . . . . . . . . . . . . . . 66 3.1.6 Thermal Transmittance of Windows (and Doors) . . . . . 67 3.1.7 Thermal Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.8 Specific Transmission Heat Transfer Coefficient (Average Thermal Transmittance of Building Envelope) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.1.9 Total Solar Energy Transmittance of Windows (and Transparent Envelope Structures). . . . . . . . . . . . . 75 3.1.10 Heat Accumulation in Building Structures . . . . . . . . . . 76 3.2 Psychrometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 Experimental Evaluation of Buildings’ Envelope Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1 Semi-professional Tools and Applications for Evaluation of Indoor Comfort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 In-Situ Determination of Heat Transfer Coefficient U of Building Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3 In-Situ Determination of Glazing Total Solar Energy Transmittance g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4 In-Situ Determination of the Building Envelope Thermal Insulation with Thermography . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.5 In-Situ Determination of Building Airtightness . . . . . . . . . . . . . 96 4.6 In-Situ Determination of Overall Building Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 Global Climate and Energy Performance of the Building. . . . . . . . 105 5.1 Energy Performance of Building Directive (EPBD) and Nearly Zero Energy Buildings (NZEB) . . . . . . . . . . . . . . . 107 5.2 Determination of Energy Performance of the Buildings. . . . . . . 109 5.2.1 Time Step Intervals and Calculation Period . . . . . . . . . 111 5.3 Determination of Building Energy Needs . . . . . . . . . . . . . . . . . 112 5.3.1 Energy Need for Heating Q . . . . . . . . . . . . . . . . . . 112 NH 5.3.2 Energy Need for Cooling Q : Monthly Calculation NC Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.3 Energy Need for Heating Q and Cooling Q : NH HC Hourly Calculation Method. . . . . . . . . . . . . . . . . . . . . 118 Contents ix 5.3.4 Energy Need for Ventilation Q . . . . . . . . . . . . . . . . . 121 V 5.3.5 Energy Need for Domestic Hot Water Q . . . . . . . . . . 121 W 5.3.6 Energy Need for Humidification Q HU and Dehumidification Q of Indoor Air. . . . . . . . . . 122 DHU 5.3.7 Energy Need for Lighting Q . . . . . . . . . . . . . . . . . . . 123 L 5.4 Delivered Energy for the Building Operation Q . . . . . . . . . . . . 124 f 5.5 Primary Energy Needed for the Building Operation . . . . . . . . . 127 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6 Best Available Technologies (BAT) for On-Site and Near-by Generation of Heat for NZEB . . . . . . . . . . . . . . . . . . 131 6.1 Local or Decentralized Heat Generators for Residential Buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.1.1 Biomass Stoves and Furnaces . . . . . . . . . . . . . . . . . . . 132 6.1.2 Electrical Heaters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2 Heat Generators for Central Heating Systems . . . . . . . . . . . . . . 136 6.2.1 Combustion Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.2.2 Heat Pumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.3 Solar Thermal Collectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.1 Thermal Efficiency of Solar Thermal Collectors. . . . . . 154 6.3.2 Production of Heat: Rule of Thumb . . . . . . . . . . . . . . 157 6.4 District Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.5 Other Heat Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7 Best Available Technologies (BAT) for On-Site Electricity Generation for nZEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.1 Photovoltaic (PV) Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.1.1 Types of PV Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.1.2 PV Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.1.3 Building Integrated PV Modules. . . . . . . . . . . . . . . . . 171 7.1.4 PV Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.1.5 Production of Electricity: Rule of Thumb . . . . . . . . . . 174 7.1.6 Environmental Impacts of PV Cells. . . . . . . . . . . . . . . 175 7.2 Small Scale Cogeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.2.1 Cost Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.2.2 Environmental Benefits of mCHP . . . . . . . . . . . . . . . . 179 7.3 Wind Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.3.1 Wind Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3.2 Rated Power and Efficiency of Wind Turbines. . . . . . . 182 7.3.3 Types of Wind Turbines. . . . . . . . . . . . . . . . . . . . . . . 184 7.3.4 Production of Electricity: Rule of Thumb . . . . . . . . . . 186 7.3.5 Environmental Impacts. . . . . . . . . . . . . . . . . . . . . . . . 186