H O E K • E T A L Sustainable Desalination and Water Reuse Eric M.V. Hoek, University of California, Los Angeles (UCLA) and California NanoSystems Institute David Jassby, University of California, Los Angeles (UCLA) and California NanoSystems Institute Richard B. Kaner, California NanoSystems Institute, and University of California, Los Angeles (UCLA) Jishan Wu, University of California, Los Angeles (UCLA) S U Jingbo Wang, University of California, Los Angeles (UCLA) S T Yiming Liu, University of California, Los Angeles (UCLA) A I Unnati Rao, University of California, Los Angeles (UCLA) N A B Over the past half century, reverse osmosis (RO) has grown from a nascent niche technology into L E the most versatile and effective desalination and advanced water treatment technology available. D However, there remain certain challenges for improving the cost-effectiveness and sustainability E S of RO desalination plants in various applications. In low-pressure RO applications, both capital A L (CAPEX) and operating (OPEX) costs are largely influenced by product water recovery, which I N is typically limited by mineral scale formation. In seawater applications, recovery tends to be A T limited by the salinity limits on brine discharge and cost is dominated by energy demand. The I O combination of water scarcity and sustainability imperatives, in many locations, is driving system N designs towards minimal and zero liquid discharge (M/ZLD) for inland brackish water, municipal A and industrial wastewaters, and even seawater desalination. Herein, we review the basic principles N D of RO processes, the state-of-the-art for RO membranes, modules and system designs as well W as methods for concentrating and treating brines to achieve MLD/ZLD, resource recovery and A renewable energy powered desalination systems. Throughout, we provide examples of installations T E employing conventional and some novel approaches towards high recovery RO in a range of R applications from brackish groundwater desalination to oil and gas produced water treatment and R E seawater desalination. U S E About SYNTHESIS This volume is a printed version of a work that appears in the Synthesis Digital Library of Engineering and Computer Science. Synthesis books provide concise, original presentations of M O important research and development topics, published quickly, in digital and print formats. R G A N & C L A Y P O O L Sustainable Desalination and Water Reuse Synthesis Lectures on Sustainable Development Editor ThomasSiller,ColoradoStateUniversiy TheSynthesisLecturesonSustainableDevelopment serieswillpublishshortbooksrelatedto sustainabledevelopmentpracticesrelevanttoengineers,technologists,managers,educators,and policymakers.ThebooksareorganizedaroundtheUnitedNationsSustainableDevelopment Goalsfor2015–2030.Designforsustainabilityalongwiththeeconomicsofsustainable developmentwillbethecommonthemesforeachbook.Topicstobecoveredwillspanallthe majorengineeringdisciplines,alongwiththenaturalandenvironmentalsciencesthatcontributeto anunderstandingofsustainabledevelopment.Thegoalofthisseriesistomaketheoryandresearch accessibletopractitionersworkingonsustainabledevelopmentefforts. SustainableDesalinationandWaterReuse EricM.V.Hoek,DavidJassby,RichardB.Kaner,JishanWu,JingboWang,YimingLiu,and UnnatiRao 2021 Oil&GasProducedWaterManagement EricM.V.Hoek,JingboWang,TonyD.Hancock,ArianEdalat,SubirBhattacharjee,andDavid Jassby 2021 JustTechnology:TheQuestforCultural,Economic,Environmental,andTechnical Sustainability ThomasJ.SillerandGearoldJohnson 2018 Copyright©2021byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. SustainableDesalinationandWaterReuse EricM.V.Hoek,DavidJassby,RichardB.Kaner,JishanWu,JingboWang,YimingLiu,andUnnatiRao www.morganclaypool.com ISBN:9781636391892 paperback ISBN:9781636391908 ebook ISBN:9781636391915 hardcover DOI10.2200/S01110ED1V01Y202106SDE003 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONSUSTAINABLEDEVELOPMENT Lecture#3 SeriesEditor:ThomasSiller,ColoradoStateUniversiy SeriesISSN Print2637-7675 Electronic2637-7691 Sustainable Desalination and Water Reuse Editors Eric M.V. Hoek UniversityofCalifornia,LosAngeles(UCLA) CaliforniaNanoSystemsInstitute,CA David Jassby UniversityofCalifornia,LosAngeles(UCLA) CaliforniaNanoSystemsInstitute,CA Richard B. Kaner CaliforniaNanoSystemsInstitute,CA UniversityofCalifornia,LosAngeles(UCLA) Authors Jishan Wu UniversityofCalifornia,LosAngeles(UCLA) Jingbo Wang UniversityofCalifornia,LosAngeles(UCLA) Yiming Liu UniversityofCalifornia,LosAngeles(UCLA) Unnati Rao UniversityofCalifornia,LosAngeles(UCLA) SYNTHESISLECTURESONSUSTAINABLEDEVELOPMENT#3 M &C Morgan &cLaypool publishers ABSTRACT Overthepasthalfcentury,reverseosmosis(RO)hasgrownfromanascentnichetechnologyinto themostversatileandeffectivedesalinationandadvancedwatertreatmenttechnologyavailable. However,thereremaincertainchallengesforimprovingthecost-effectivenessandsustainability of RO desalination plants in various applications. In low-pressure RO applications, both cap- ital (CAPEX) and operating (OPEX) costs are largely influenced by product water recovery, which is typically limited by mineral scale formation. In seawater applications, recovery tends tobelimitedbythesalinitylimitsonbrinedischargeandcostisdominatedbyenergydemand. The combination of water scarcity and sustainability imperatives, in many locations, is driving systemdesignstowardsminimalandzeroliquiddischarge(M/ZLD)forinlandbrackishwater, municipal and industrial wastewaters, and even seawater desalination. Herein, we review the basicprinciplesofROprocesses,thestate-of-the-artforROmembranes,modulesandsystem designsaswellasmethodsforconcentratingandtreatingbrinestoachieveMLD/ZLD,resource recoveryandrenewableenergypowereddesalinationsystems.Throughout,weprovideexamples ofinstallationsemployingconventionalandsomenovelapproachestowardshighrecoveryRO inarangeofapplicationsfrombrackishgroundwaterdesalinationtooilandgasproducedwater treatmentandseawaterdesalination. KEYWORDS reverse osmosis, nanofiltration, desalination, water recycling & reuse, high- recovery,brackishgroundwater,seawater,zeroliquiddischarge,minimalliquiddis- charge,renewableenergy vii Contents 1 Introduction .......................................................1 2 BasicPrinciples.....................................................3 2.1 OsmoticPressure ................................................. 3 2.2 MinimumWorkofSeparation((cid:129)G ) ............................... 3 min 2.3 Solution-DiffusionModel .......................................... 4 2.4 RecoveryandConcentrationFactor .................................. 5 2.5 The“ThermodynamicRestriction”.................................... 5 2.6 ConcentrationPolarization ......................................... 6 2.7 RepresentativeSalineWaterQualities ................................ 7 2.8 MembraneFouling................................................ 9 2.8.1 OrganicandInorganicColloidalCakeFormation ................ 9 2.8.2 BiologicalFouling......................................... 10 2.8.3 MineralScaleFormation ................................... 12 3 State-of-the-ArtROMembranes&Modules...........................15 3.1 RO/NFMembraneMaterials ...................................... 15 3.1.1 MembraneSurfacePropertiesandFouling ..................... 15 3.1.2 SurfaceModification ...................................... 18 3.1.2.1 PhysicalCoatings .................................. 18 3.1.2.2 CovalentAttachment ............................... 20 3.1.2.3 ChemicalModification ............................. 21 3.2 ModuleDesigns ................................................. 21 3.2.1 SpiralWoundElement..................................... 21 3.2.2 SpacerGeometry ......................................... 21 3.2.3 NovelSpacers ............................................ 24 4 SystemDesign&Performance .......................................29 4.1 SystemDesign .................................................. 29 4.1.1 SingleStageandMulti-StageArrays.......................... 29 4.1.2 Multi-PassROSystemDesignforHighPurity ................. 30 viii 4.2 KeyPerformanceIndicators........................................ 31 4.2.1 PressureandFlux ......................................... 31 4.2.2 ProductWaterQuality ..................................... 32 4.2.3 ProductWaterRecovery.................................... 33 4.2.4 SpecificEnergyConsumption ............................... 33 4.3 CapExandOpExDrivers ......................................... 34 4.3.1 IntakeandDistribution .................................... 37 4.3.2 FeedQualityandPre-Treatment ............................. 38 4.3.3 ProductWaterRecovery.................................... 38 4.3.4 ChemicalCleaningandMembraneReplacement................ 38 4.3.5 BrineDisposal............................................ 39 4.3.5.1 SewerDischarge ................................... 40 4.3.5.2 SurfaceWaterDischarge ............................ 40 4.3.5.3 Deep-WellInjection................................ 41 4.3.5.4 EvaporationPonds ................................. 41 4.3.6 SustainabilityBenefitsofMinimalandZeroLiquidDischarge (ZLD/MLD) ............................................ 43 5 MethodsforAchievingHighRecovery ................................49 5.1 Pre-Treatment................................................... 49 5.1.1 SuspendedSolidsRemoval.................................. 49 5.1.1.1 TurbidityandTSSRemoval.......................... 49 5.1.1.2 ChemicalCoagulation .............................. 51 5.1.1.3 CartridgeandBagFilters/MediaFilter ................. 52 5.1.1.4 MembraneFiltration(MF/UF) ....................... 52 5.1.2 Organic&BiofoulingInhibition ............................. 54 5.1.2.1 ChemicalDisinfection .............................. 54 5.1.2.2 ChemicalTPH/TOC/AOCDestruction ............... 56 5.1.3 MineralandMetalScaleInhibition........................... 57 5.1.3.1 Anti-Scalants ..................................... 57 5.1.3.2 ChemicalHardnessandAlkalinityRemoval............. 60 5.1.3.3 SilicaRemoval .................................... 65 5.1.3.4 PhysicalHardnessRemoval .......................... 67 5.1.3.5 Metals(Fe/Mn)Removal............................ 71 5.2 IntegratedMembraneSystems ..................................... 72 5.2.1 HERO/OPUS ........................................... 72 5.2.2 Inter-StageDemineralizationandSecondaryRO................ 76