Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation Anne-LaureVivant,a,bDominiqueGarmyn,a,bLaurentGal,b,cAlainHartmann,a,bPascalPiveteaua,b UniversitédeBourgogne,UMR1347Agroécologie,Dijon,Francea;INRA,UMR1347Agroécologie,Dijon,Franceb;AgroSupDijon,UMR1347Agroécologie,Dijon,Francec Inarecentpaper,wedemonstratedthatinactivationoftheAgrsystemaffectsthepatternsofsurvivalofListeriamonocytogenes (A.-L.Vivant,D.Garmyn,L.Gal,andP.Piveteau,FrontCellInfectMicrobiol4:160,http://dx.doi.org/10.3389/fcimb.2014.00160).In thisstudy,weinvestigatedwhethertheAgr-mediatedresponseistriggeredduringadaptationinsoil,andwecomparedsurvival patternsinasetof10soils.ThefateoftheparentalstrainL.monocytogenesL9(arifampin-resistantmutantofL.monocytogenes EGD-e)andthatofa(cid:2)agrAdeletionmutantwerecomparedinacollectionof10soilmicrocosms.The(cid:2)agrAmutantdisplayed D significantlyreducedsurvivalinthesebioticsoilmicrocosms,anddifferentialtranscriptomeanalysesshowedlargealterationsof o thetranscriptomewhenAgrAwasnotfunctional,whilethevariationsinthetranscriptomesbetweenthewildtypeandthe w n (cid:2)agrAdeletionmutantweremodestunderabioticconditions.Indeed,inbioticsoilenvironments,578protein-codinggenesand lo anextensiverepertoireofnoncodingRNAs(ncRNAs)weredifferentiallytranscribed.Thetranscriptionofgenescodingforpro- a d teinsinvolvedincellenvelopeandcellularprocesses,includingthephosphotransferasesystemandABCtransporters,andpro- e d teinsinvolvedinresistancetoantimicrobialpeptideswasaffected.Understerilizedsoilconditions,thedifferenceswerelimited f to86genesand29ncRNAs.TheseresultssuggestthattheresponseregulatorAgrAoftheAgrcommunicationsystemplaysim- ro portantrolesduringthesaprophyticlifeofL.monocytogenesinsoil. m h t t p Listeriamonocytogenesisthecausativeagentoflisteriosis,aseri- (25).Thiswascorrelatedwithalowerlevelofexpressionofin- :/ / ousfoodborneinfectionaffectingessentiallyimmunocompro- ternalin. a e mised individuals, the elderly, and pregnant women (1). The Recently,inastudyfocusingononesoil(27),weshowedthat m pathogenislargelyspreadintheenvironment.Ithasbeenisolated theAgrsystemprovidesabenefittothepopulationsofL.mono- .a fromwatersystems(2–4),vegetation(5),soil(6–8),farms(9–12), cytogenes, but the role of the Agr communication system in the sm foodindustries(13–15),andthefecesofanimals(16–18).Envi- adaptationofL.monocytogenespopulationsinthenaturalenvi- . o ronmental adaptation requires that the cell have the ability to ronment remains poorly understood. In order to gain a better r g integrateenvironmentalcuesinordertoadaptitsphysiologyto understandingoftheAgr-mediatedresponseduringtheadapta- / tion of L. monocytogenes to the telluric environment, we moni- o the surrounding conditions through the regulation of gene ex- n tored the fate of an inoculated L. monocytogenes parental strain pression. Genomics showed that an important part of the L. A andanin-frame(cid:2)agrAdeletionmutantinasetof10soilmicro- p monocytogenesgenome(7.3%)isdedicatedtoregulationandin- r cludes209transcriptionalregulators,15histidinekinases,and16 cosms.Wefurtherinvestigatedtheconsequencesofinactivation il ofAgrAonthetranscriptomeofL.monocytogenesduringadapta- 1 response regulators constituting two-component systems (19). 0 tiontothesoilenvironmentthroughadifferentialtranscriptome , Two-componentsystemsparticipateintheabilityofbacteriato 2 analysisapproach. 0 sense and respond to fluctuating environmental conditions. 1 AgrC/AgrAisatwo-componentregulatorysystemthatispartof 9 MATERIALSANDMETHODS b theAgrcommunicationsystem.InitiallydescribedinStaphylococ- Bacterialstrainsandinoculumpreparation.L.monocytogenesL9,ari- y cusaureus,thiscommunicationsystemisorganizedasafour-gene fampin-resistant (Rifr) mutant of the parental strain L. monocytogenes g u operon,agrBDCA.AgrBisamembrane-boundproteinthatpro- EGD-e(28),andL.monocytogenesDG125A6,arifampin-resistantmutant e cessesthepropeptideAgrDintoamatureautoinducingpeptide ofthe(cid:2)agrAin-framedeletionmutantDG125A(24),wereused.L.mono- s t (AIP).DetectionofAIPbythehistidinekinaseAgrCinducestran- cytogenesDG125A6wasisolatedonpolymyxin-acriflavine-lithiumchlo- scriptional regulation through activation of the regulator AgrA. DetaileddataconcerningtheroleoftheAgrsysteminthephysi- ology of S. aureus are available (20–22). So far, its role in the Received5January2015 Accepted12May2015 adaptationofL.monocytogenestoitsenvironmentisonlypartially Acceptedmanuscriptpostedonline22May2015 understood(23).ReportsshowthattheAgrcommunicationsys- CitationVivantA-L,GarmynD,GalL,HartmannA,PiveteauP.2015.Survivalof ListeriamonocytogenesinsoilrequiresAgrA-mediatedregulation.ApplEnviron temofL.monocytogenesisinvolvedinadhesiontoabioticsurfaces Microbiol81:5073–5084.doi:10.1128/AEM.04134-14. (24)intheearlystagesofbiofilmformation(24,25)andduring Editor:C.R.Lovell infection of the mammalian host (25, 26). Indeed, (cid:2)agrA and AddresscorrespondencetoPascalPiveteau,[email protected]. (cid:2)agrD in-frame deletion mutants showed defects in adherence Supplementalmaterialforthisarticlemaybefoundathttp://dx.doi.org/10.1128 andearlybiofilmdevelopment.Thevirulenceofa(cid:2)agrAmutant /AEM.04134-14. was attenuated in mice, but in vitro, adhesion and invasion in Copyright©2015,AmericanSocietyforMicrobiology.AllRightsReserved. severalcelllineswerenotaltered(26),whilevirulenceinmiceand doi:10.1128/AEM.04134-14 invasionofCaco-2intestinalcellswerereducedinanagrDmutant August2015 Volume81 Number15 AppliedandEnvironmentalMicrobiology aem.asm.org 5073 Vivantetal. TABLE1Nomenclature,landuse,soilparameters,andbacterialabundanceforthesoilsusedinthisstudy Organic content (g·kg(cid:4)1) Cultivablebacterial community(CFU· Soilsampleno. Landuse Texture pH C N C/Nratio CECa WHCb(%) g(cid:4)1ofsoil[107]) 748 Agriculturalfield Siltloam 8.2 9.80 1.0 9.8 13.2 18.5 5.1 749 Agriculturalfield Clayloam 8.0 19.2 1.8 10.7 16.6 24.4 5.2 750 Agriculturalfield Clay 8.0 26.4 2.8 9.4 37.8 42.3 3.1 907 Prairie Loam 5.9 25.0 2.4 10.4 11.6 20.7 4.1 909 Agriculturalfield Siltyclay 8.1 27.5 2.8 9.8 29.5 34.2 10.0 911 Prairie Siltyclay 5.9 38.1 3.7 10.3 23.6 40.7 2.6 1003 Forest Siltyclay 7.5 33.4 2.3 14.5 27.3 36.1 4.4 1005 Prairie Clay 6.7 35.3 3.9 9.1 31.4 46.6 6.0 1051 Prairie Sandyloam 5.4 26.2 2.5 10.5 8.8 18.8 4.4 1224 Agriculturalfield Clay 7.8 25.6 2.5 10.2 27.4 37.6 3.1 D o aCEC,cation-exchangecapacity. w bWHC,water-holdingcapacity. n lo a ride-ceftazidime-esculin-mannitol (PALCAM) agar (AES Chemunex, soil.Thevolumeoftheinoculumwasadjustedinordertoreachafinalsoil d Bruz,France)supplementedwith200(cid:3)g·ml(cid:4)1rifampin(Sigma-Aldrich, moisturecontentof60%ofthewater-holdingcapacity(WHC).Thein- e d SaintQuentinFallavier,France),asdescribedbyLemunieretal.(28).This oculatedsoilswerestirredwithasterilespatula,andthenthesoilmicro- f Rifrmutantwasselected,asitsgrowthrateduringplanktonicgrowthand cosmswereincubatedinthedarkat25°C.Themicrocosmsweresampled ro itsabilitytogrowasabiofilmintryptonesoybroth(TSB;AESChemunex, 5times.Thesoilswerestirredwithasterilespatulapriortosamplingof m Bruz,France)at25°Cwithoutshakingweresimilartothoserecordedwith 1g.ThedynamicsoftheL.monocytogenespopulationsinthesoilmicro- h L. monocytogenes DG125A. A working stock that had been stored at cosmswerefollowedimmediatelyafterinoculationandperiodicallyover tt p (cid:4)80°Cwasusedthroughoutthestudy.Strainsweregrownstaticallyat a14-dayperiodbyserialplatingonselectivePALCAMagar(AESChemu- : / 25°Cfor16hin5mlofTSB.Threeindependentinoculawerepreparedby nex,Bruz,France)supplementedwith100(cid:3)g·ml(cid:4)1cycloheximideand /a inoculating10mlofTSBtoanopticaldensityat600nm(OD )of0.04 100(cid:3)g·ml(cid:4)1rifampin(Sigma-Aldrich,SaintQuentinFallavier,France). e 600 m andincubatingstaticallyat25°CuntiltheOD reached0.4.Thecultures RNAextractionandcDNAsynthesis.Inoculawerepreparedaspre- 600 . werethencentrifugedat8,000(cid:5)gfor5minatroomtemperature,andthe viouslydescribed,exceptthatthepelletsweresuspendedin10mlofster- a s pelletsweresuspendedinNaCl(0.85%). ilizedorbioticsoilextracts.Theinoculatedsoilextractswereincubated m Soilscharacteristicsandpreparationofmicrocosms.Tensoilsina staticallyat25°Cfor30min.RNAswereimmediatelystabilizedbytreating . o country-widesoilsamplingnetworkintheBurgundysectionofFrance the bacterial cultures with the RNAprotect bacterial reagent (Qiagen, r g weresampledonthebasisofa16-by16-kmsystematicgrid.Withina20- Courtaboeuf, France) according to the manufacturer’s instructions. / by20-mgrid,25individualcoresamplesoftopsoil(depth,0to30cm) Threeindependentreplicateswerepreparedpercondition.Bacteriawere o n werecollectedwithahandaugerevery5mattheedgesofthe16inside5- harvestedbycentrifugationat8,000(cid:5)gfor5minatroomtemperature. A by5-msquares.Ateachsamplingsite,thecoresamplesweremixedintoa Pelletsweresuspendedin700(cid:3)lofRLTbuffer(Qiagen)supplemented p compositesample.Soilsamplesweresievedto5mmandstoredat4°C with(cid:6)-mercaptoethanol(1%)and0.2gofRNase-freeglassbeads(diam- r beforeanalysis.Theattributesofthesoilsamples,suchasthepedology, eter,100(cid:3)m).ThecellsweremechanicallydisruptedinaFastPrepcell il 1 chemistry,andlanduse,whichwereextractedfromtheDONESOLdata- disrupter(MPBio,IllkirchGraffenstaden,France)for3cycles(4m·s(cid:4)1, 0 base(29),andthebacterialabundancearelistedinTable1.EndogenousL. 30s).Thecellswerecentrifugedat7,000(cid:5)gfor5minat4°C,andthecell , 2 monocytogeneswasnotfoundinthesesoils.Physicalandchemicalanaly- debriswasdiscarded.Potassiumacetate(3M,pH5.5)wasaddedtothe 0 1 ses were performed by the Soil Analysis Laboratory of INRA (Arras, supernatants(10%),andthemixturewasincubatedonicefor10minand 9 France;http://www.lille.inra.fr/las).Foreachsoilsample,triplicatemi- centrifugedat14,000(cid:5)gfor5minat4°C.Theaqueousphasewasthen b crocosmswerepreparedbyadding50gofsoiltosterile180-mlcapped precipitatedwithanequalvolumeofcoldisopropanol((cid:4)20°C),washed, y plastictubes. anddried.Thepelletsweresuspendedin400(cid:3)lofRNase-freewaterand g u Sterilizedandbioticsoilextractswerepreparedformicroarrayexper- purifiedfirstonpolyvinylpolypyrrolidone(PVPP;Sigma-Aldrich,Saint e iments.SterilizedsoilextractswerepreparedasdescribedbyPiveteauetal. Quentin Fallavier, France) columns, then on Phase Lock gel (5Prime; s t (30).Briefly,500gofsoilwasmixedwith750mlofwaterfor30minat120 DominiqueDutscher,Brumath,France),andfinally,onaQiagenRNeasy rpmandautoclavedfor1hat130°C.Soilsuspensionswerecentrifugedat kit(Qiagen,Courtaboeuf,France)accordingtothemanufacturers’pro- 10,000(cid:5)gfor20min,andsupernatantswerefilteredonWhatmanpaper tocols.PurifiedRNAwasconcentratedwithaQiagenRNeasyMinElute (Sigma-Aldrich,SaintQuentinFallavier,France).Theparticle-freesoil cleanupkit(Qiagen,Courtaboeuf,France)followingthemanufacturer’s extract obtained was used after autoclaving (20 min, 120°C). A biotic instructions. fractionwaspreparedbyblending100gofsoilin300mlofwaterfor1.5 cDNA strands were then synthesized using a TransPlex complete mininaWaringblender.Toestimatethebacterialabundanceofthebiotic whole-transcriptome amplification kit (WTA2; Sigma, Saint Quentin fraction, culturable bacterial communities were enumerated by serial Fallavier, France) according to the manufacturer’s instructions. The platingonnutrientagar(3g·liter(cid:4)1beefextract,5g·liter(cid:4)1peptone,15 cDNAconcentrationwasdeterminedspectrophotometricallybymeasur- g·liter(cid:4)1agar)supplementedwith100(cid:3)g·ml(cid:4)1cycloheximide(Sigma- ingthe(cid:7)at260nm((cid:7) )and(cid:7) ((cid:7) (cid:8)1.0(cid:8)50(cid:3)gDNA/ml,(cid:7) / 260 280 260 260 Aldrich, Saint Quentin Fallavier, France) to suppress fungi. Biotic soil (cid:7) (cid:9)1.8).Foreachstrainandeachincubationcondition,threesetsof 280 extractswerepreparedbyadding1mlofthebioticfractionto9mlof cDNAswerepreparedfromthreesetsofRNAsextractedfromthreeinde- sterilizedsoilextractinordertoreachafinalconcentrationof2(cid:5)107 pendentbiologicalrepetitionsandhybridizedindependently. cultivableCFU/ml. Whole-genomemicroarraysanddataanalysis.Acustomizedwhole- Soilmicrocosmsurvivalassays.Fiftygramsofeachofthesoilmicro- genomemicroarrayincludingthe2,857annotatedopenreadingframes cosmswasinoculatedtoachieveafinalconcentrationof2(cid:5)106CFU/gof (ORFs) of the genome of L. monocytogenes EGD-e was designed by 5074 aem.asm.org AppliedandEnvironmentalMicrobiology August2015 Volume81 Number15 AgrAPromotesL.monocytogenesSoilAdaptation TABLE2Targetgenesandspecificprimersdesignedforreal-timePCR and(cid:2)agrAmutantpopulationsinsoilmicrocosms.Principalcomponents confirmationoftheresults analysiswasusedtoinvestigatetherelationshipsbetweensoilcharacter- Primer Sequence(5=¡3=) isticsandthedynamicsoftheL.monocytogenespopulations.Differences insoiltexturewererepresentedbyuseoftheUnitedStatesDepartmentof lmo0914F CATTTTACTCATTTGCGGATCAGGA Agriculture(USDA)pedologicalclassificationsystemusingthestatistical lmo0914R CCAAGTGCGGGCCTATTAATAAGTAAT softwareR(v2.14.1).Then,Spearman’srankcorrelationwasusedtotest lmo0349F TGCAGGTGGCTTTTTATTCC thedependencebetweenthefollowingvariables:thesurvivalprofilesof lmo0349R CAACCATTTTTCCCCACATC both the parental and mutant strains and soil attributes (texture, pH, lmo2257F GGGGATAAGACCCTATCATGG organicCandNcontent,C/Nratio,andcation-exchangecapacity). lmo2257R TGCCATTCTATTGGAAGATGG lmo0917F TGGAGTTGCTTGCTGAAATG RESULTS lmo0917R CCGCTTCATTTGGTTCAGTT L. monocytogenes population dynamics in the 10 soil micro- lmo2711F CCACTTGTCAAGGGCAGA lmo2711R TGCTAGACGGGGAGGT cosmsareaffectedbythedeletionofagrA.ThedynamicsofL. agrCF2 GGGGTCAATCGCAGGTTTTG monocytogenespopulationsinmicrocosmspreparedfromsoilsfor agrCR2 CTTTAAGTTCGTTGGTTGCCGTA which land use and edaphic parameters were different (Table 1 D agrAF2 GCAAGCAGAAGAACGATTTCCAA andFig.1)wererecordedovera14-dayperiod.Duringincubation o agrAR2 CGCTGTCTCAAAAAACAAGATAT inthesesoilmicrocosms,nogrowthofeitherofthetwostrainswas w lmo0477R GGCGAATAAAGCAGTGGGTA detectedandthepopulationsoftheparentalstrainandthe(cid:2)agrA n lmo0477F AACCACCCATTTTCCAATCTT lo mutant declined throughout the experiment (Fig. 2). However, a lmo0943F CGGAAGCCCATTCTCGACT survivalpatternsdifferedaccordingtothestrainunderscrutiny. d lmo0943R GTTACATTGTCGCCTTCTTTGTCAG e Regardless of the soil tested, the population of the mutant was d lmo2467F CCGGCAAGCCGTGTTTAT reproduciblylowerthanthepopulationoftheparentalstraininall f lmo2467R AGGTCCACTTATTGGAAAACC r o three replicates. Repeated-measures ANOVA showed that these m differencesweretransientlystatisticallysignificant.Indeed,insoil h samples748,749,and1224,thedifferencesweresignificantduring t t p NimbleGenSystems.Atotalof13,456probeswerededicatedtothetiling thefirstweekofincubation.Insoilsamples750and911,thedif- : / ofintergenicregionsevery14bp.Microarrayhybridization,washes,raw ferencesweresignificantafter2daysand4daysofincubation.In /a datapreprocessing,andnormalizationwereperformedbyPartnerchip soilsamples1005and907,theresultswerestatisticallysignificant e m (Evry,France)accordingtoNimbleGenstandardprotocols.DNASTAR atday2.Thesignificanceatday4wasconfirmedinsoilsamples . ArrayStarsoftware(Madison,WI)wasusedforanalysisofthenormalized 1003and1051.Finally,inmicrocosmspreparedwithsoilsample as results.tstatisticsandPvalues(P(cid:10)0.05)werecalculatedtodetermine 909,thedifferenceswerestatisticallysignificantatday4andday7. m differentiallyexpressedgenes.Thefoldchangeinthelevelsofexpression . Thedifferencesatday14werenolongerstatisticallysignificantin o betweenthetwostrainswascalculatedbycomparingtheexpressionlevels r allmicrocosms. g underthesameincubationconditions.Comparisonsbetweenbioticand / sterilizedconditionswerealsoperformedforeachstrain.Geneswithat Interestingly,foreachstrain,theabundanceattheendofthe o experimentwasstatisticallysignificantlydifferentaccordingtothe n leasta2-foldchangeinexpressionwereconsideredforinterpretation.In A ordertoidentifytherelationshipsbetweengenesandbiologicalfunctions, p thegeneontologywassubsequentlysearched.PvaluesandZ-scoreswere r calculatedinordertodeterminethechancethatacertainnumberofgenes il 1 wouldbeselectedforanygivengeneontologyterm.Informationregard- 0 , ingintergenicregions(location,presenceofnoncodingRNA[ncRNA]) 2 was retrieved from the web-accessible transcriptome browser (http: 0 1 //www.weizmann.ac.il/molgen/Sorek/listeria_browser/) provided with 9 thepublicationofWurtzeletal.(31). b qPCR.Inordertoconfirmthefoldchangesingeneexpressionob- y servedinthemicroarrayanalyses,thetranscriptlevelsofseveralgenes g u with higher and lower transcript levels were examined by quantitative e PCR(qPCR)usingtheAbsoluteqPCRSYBRgreencarboxy-X-rhodamine s t (ROX)mix(ThermoScientific,DominiqueDutscher,Brumath,France). Primers specific for each selected gene were designed (Table 2). Each reactionmixturecontained2(cid:5)AbsoluteqPCRSYBRgreenROXmix(7.5 (cid:3)l),0.6(cid:3)MeachPCRprimer,12.5ngofDNAtemplate,andsterilewater to15(cid:3)l.TheqPCRswerecarriedoutinaStepOnePCRsystem(Applied Biosystems) using the following program: an initial enzyme activation period(10minat95°C),followedby40cyclesof15sat95°Cand1minat 60°C.FollowingPCR,absolutequantificationwasperformedbyastan- dardcurvemethod.Foreachtarget,increasingconcentrationsofL.mono- cytogenesgenomicDNArangingfrom10to80ng/(cid:3)lwereamplifiedin ordertodrawarelationshipbetweentheconcentrationandthenumberof thresholdcycles.Foldchangesinexpressionwerecalculatedastheratioof FIG1Principalcomponentanalysis(PCA)ofsoils.Thelengthanddirection the absolute quantity of the target gene determined in the two strains ofthelinesrepresentthecontributionofeachparameter.Thenumbersindi- underthesameincubationconditions. catesoilsamplenumbers,andthelettersindicatewhethersoilswerefroman Statisticalanalyses.Repeated-measuresanalysisofvariance(ANOVA) agriculturalfield(AF),aprairie(P),oraforest(F).CEC,cation-exchange wasusedtocomparethesurvivalpatternsoftheL.monocytogenesparental capacity. August2015 Volume81 Number15 AppliedandEnvironmentalMicrobiology aem.asm.org 5075 Vivantetal. D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n A p r il 1 0 , 2 0 1 9 b y g u e s t FIG2L.monocytogenesparentalstrain(bluelines)and(cid:2)agrAmutant(redlines)dynamicsinsoilmicrocosms.Errorbarsrepresentstandarddeviationsfrom threeindependentreplicates.*,significantdifferences(P(cid:10)0.05)wereobservedafterANOVA. soil(Fig.3).Indeed,at14daysafterincubation,itwassignificantly 1224,wherelessthan3logunitsweredetected14daysafterinoc- higher in soil sample 1003 (repeated-measures ANOVA, P (cid:10) ulation. The Spearman rank correlation test was used to check 0.05),whereover4logunitsofthepopulationremaineddetect- correlationsbetweenthesurvivalrateofeachstrainandthesoils’ able,thaninsoilsamples1005and1051andintherestofthesoils attributes(texture,pH,organicCandNcontents,C/Nratio,and (soilsamples748,749,750,907,909,911,and1224).Moderate cation-exchange capacity). From these six metrics, a significant survivaloccurredinsoilsamples1005and1051.Theweakestsur- negative correlation between the survival rate and pH was de- vivalwasobservedinsoilsamples748,749,750,907,909,911,and tected(Spearman’s(cid:11)(cid:8)(cid:4)0.736,P(cid:10)0.05).Duringthefirstdaysof 5076 aem.asm.org AppliedandEnvironmentalMicrobiology August2015 Volume81 Number15 AgrAPromotesL.monocytogenesSoilAdaptation FIG3L.monocytogenesparentalstrainand(cid:2)agrAmutantabundanceafter14daysofincubationinsoilmicrocosms.Errorbarsrepresentstandarddeviations fromthreeindependentreplicates.LettersindicatethatsignificantdifferenceswereobservedafterANOVA. D o w n theexperiment,therateofdeclinewassteeperinthesoilswithpHs acid,anddeletionofthedltoperonaffectsadhesiontocelllines lo a lowerthan6(soilsamples907,911,and1051).InsoilswithpHs and antimicrobial peptide resistance (32). Several are also in- d higherthan6,thedeclineofthepopulationeitherwaslow(soil volved in the PTS system and ABC transporters. For example, e d samples 1003 and 1005) or became steeper only after 4 days of lmo2115 (anrB), which codes for a permease component of an f r incubation(soilsamples748,749,750,909,and1224). ABCtransporter,playsaroleinnisinresistanceandalsoinbaci- o m Numeroustranscriptomedifferencesbetweentheparental tracin, gallidermin, and beta-lactam antibiotic resistance, and strainandthe(cid:2)agrAmutantbackgroundareobservedinsoil lmo0153,whichcodesforaprobableABCtransporter,isaZurR- h t t environments.InordertobetterunderstandtheAgrA-mediated regulatedgenewhichisinvolvedinvirulenceinthemurinemodel p : responseintheadaptationofL.monocytogenestothetelluricen- (33).Fromfunctionalcategory3.7(proteinsynthesis),17genes // a vironment,wecomparedthetranscriptomesoftheparentaland wereidentified(3.7.1,ribosomalproteinssynthesis;3.7.4,elonga- e (cid:2)agrAstrainsduringadaptationtothesoilenvironment.Wede- tion). Finally, an important part of the differentially expressed m . cidedtofocusonsoilsample748,forwhichhighdifferencesin genes (87 genes) was associated with other functions, such as a s survival between the parental strain and the mutant were re- transposons and insertion sequences (functional category 4.4), m corded.DeletionofagrAresultedinlargevariationsinthetran- consistedofunknownproteins(functionalcategory5.1),ordid . o scriptome(Fig.4).Atotalof578genesweredifferentiallytran- nothaveanysimilaritytoknowngenes. r g scribed.Twohundredfifty-twogeneswererecordedinthesetof In silico analysis of intergenic regions with significant differ- / o genes with higher transcript levels in the (cid:2)agrA mutant back- encesintranscriptlevelsbetweenthe(cid:2)agrAmutantandthepa- n ground(seeTableS1inthesupplementalmaterial).Geneontol- rentalstrainhighlightedasetof41ncRNAs.Theirlocations,the A ogy did not identify any functional category to be a significant flankinggenes,andthemeasuredfoldchangesinexpressionare p r term.Afocusonthegeneshighlyexpressedidentifiedagroupof listedinTable3.Thelevelsofthetranscriptsof10genes(therliG, il 1 122geneswithover3-foldhighertranscriptlevelsinthe(cid:2)agrA Rli47, Rli80, Rli88, Rli99, Rli106, Rli120, Rli126, Rli127, and 0 mutantbackground(seeTableS2inthesupplementalmaterial). Rli140genes)werehigherinthe(cid:2)agrAbackgroundthaninthe , 2 Mostofthesegenescodeforfunctionsrelatedtothemetabolism parentalstrain,and31geneswereidentifiedtohavelowertran- 0 ofcarbohydrates,suchaslmo2110(mannose-6phosphateisomer- scriptlevelsinthe(cid:2)agrAbackgroundthanintheparentalstrain. 19 ase), lmo0347 (dihydroxyacetone kinase), and lmo2824 (D-3- Todate,271ncRNAshavebeenidentifiedandannotatedinthe b y phosphoglycerate dehydrogenase), or functions related to the genomeofL.monocytogenes(31,34–37).AmongthesencRNAs, g transport of proteins, such as the ABC transporter (lmo2123 to severalhavebeenlinkedtobiologicalfunctions.Theseincludethe u e lmo2125, lmo1739) and the phosphotransferase (PTS) system Rli28,Rli32,Rli38,andRli50genes,whichpairtomRNAswhose s (lmo2782,lmo2665,lmo2666,lmo2780).Fourteentranscriptional productsarepotentiallyinvolvedinbacterialadaptationandalso t regulatorswerealsointhissetofgenes. inrodentinfection(38);theRli31andRli50genesarerequired Moreover,328ORFswereidentifiedinthesetofgeneswith for full virulence in murine, larva, and macrophage infection lowertranscriptlevelsinthe(cid:2)agrAmutantbackground(seeTable models (37). Moreover, the S-adenosylmethionine riboswitch S1 in the supplemental material). As expected, lmo0048 (agrB), sreB(Rli47),whichcanbeproducedasashorttranscriptandactas lmo0049(agrD),lmo0050(agrC),andlmo0051(agrA)wereinthis atrans-regulator,negativelycontrolsPrfAexpressionbypairing setofgenesandshowed,respectively,5,4,4,and9timeslower tothe5=untranslatedregionofthemRNA(39).Finally,Mandin transcriptlevelsinthe(cid:2)agrAmutantbackgroundthaninthepa- etal.predictedthatthencRNArliItargetsmRNAwithbiological rentalstrainbackground.Geneontologyshowedthatfunctional functionsrelatedtosugarmetabolismandtransport(36). categories 1.1, 1.2, 1.8, 1.10, 3.7.1, 3.7.4, 4.4, 5.1, and 6.0 were Transcriptome variations between the parental strain and significantterms(Fig.5).Eightygeneswereincludedincategory the(cid:2)agrAmutantarelimitedinsterilizedsoilenvironments.In 1,cellenvelopeandcellularprocess(1.1,cellwall;1.2,transport/ sterilizedsoilextracts,deletionofagrAresultedinalimitedvari- bindingproteinsandlipoproteins;1.8,cellsurfaceproteins;and ationofthetranscriptome(Fig.6).Indeed,86genesand29inter- 1.10, transformation/competence). Among these genes, the dlt- genic regions showed significant differences in transcript levels ABCD operon is involved in D-alanine esterification of teichoic betweenthe(cid:2)agrAmutantandtheparentalstrain.Seventy-two August2015 Volume81 Number15 AppliedandEnvironmentalMicrobiology aem.asm.org 5077 Vivantetal. D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n A p r FIG4Heatmapofthesetofgeneswithsignificantdifferencesinlevelsofexpressionbetweenthe(cid:2)agrAmutantandtheparentalstrainunderbioticsoil il 1 conditions.Expressionlevelswerestandardizedsothatthoseoftheparentalstrainundersterilizedconditionsweresetasthebaseline.Genesarerepresentedin 0 rows.Theexpressionlevelsofthesegenesundersterilizedconditionsarealsopresented. , 2 0 1 9 genes had higher transcript levels in the mutant, and the fold ofexpressionvariedby16-,6-,and5-fold,respectively.Interest- b y changeinexpressionofmostofthemwaslessthan3(seeTable ingly,allentriesinthissetofgenesexceptlmo1798,lmo2286,and g S3 in the supplemental material). Gene ontology identified lysAwererecordedinthesetofgeneswithlowertranscriptlevels u functional categories of intermediary metabolism 2.1.1 (spe- duringgrowthofa(cid:2)agrAmutantofL.monocytogenesEGD-eat e s cific pathways, 18 genes) and 2.5 (metabolism of coenzymes 25°Cinrichmedium(40). t andprostheticgroups,12genes)tobesignificanttermsforthis Thepresenceofthebioticfractionresultsinhigherlevelsof setofgenes.Forexample,genesinvolvedinglycolyticandspe- transcriptionofmobilityandribosomalproteingenes.Inorder cificpathways(lmo0342tolmo0351)(31)wererepresented,as toextractinformationregardingtheresponseofL.monocytogenes weresomegenescodingforenzymesofthecobalaminsynthe- tothesoilbioticfraction,wefocusedonthegeneswithhighex- sispathway(lmo1190,lmo1192,lmo1193,andlmo1196). pressionlevels((cid:9)9logunits)andforwhich(cid:9)3-foldchangesin In the set of genes with lower transcript levels in the (cid:2)agrA expressionunderbioticconditionsincomparisontothelevelsof mutant(seeTableS3inthesupplementalmaterial),mostgenes expressioninasterilizedsoilenvironmentwererecorded.Consid- werealsodetectedinthecorrespondingsetofgenesidentifiedto eringL.monocytogenesL9,atotalof369genesmetthesecriteria. havelowertranscriptlevelsunderbioticconditions.Asexpected, One hundred seventeen genes had higher transcript levels (see thefourgenesoftheagroperon(agrBDCA)weredetected,andthe TableS4inthesupplementalmaterial).Ofthissetofgenes,func- greatestfoldchangewasdetectedwithagrD(whichhada17times tionalcategories3.7.1(ribosomalproteins,16/56genes),1.5(mo- lower level of expression). Three genes coding for putative se- bility and chemotaxis, 7/30 genes), and, to a lesser extent, 3.7.4 creted proteins (lmo0477, lmo0478, and lmo0479) were also in- (elongation,3/5genes),4.3(phage-relatedfunctions,6/48genes), cludedinthetop10geneswithlowertranscriptlevels.Theirlevels 1.2(transport/bindingproteinsandlipoproteins,19/331genes), 5078 aem.asm.org AppliedandEnvironmentalMicrobiology August2015 Volume81 Number15 AgrAPromotesL.monocytogenesSoilAdaptation D o w n lo a d e FIG5Functionalcategoriesidentifiedtobesignificantbygeneontologyandthepercentageofgenesfromthesetofgeneswithlowertranscriptlevelsinthe d (cid:2)agrAmutantthaninparentalstrainL.monocytogenesL9underbioticconditions.Thevaluesinparenthesesrepresentthenumberofgeneswithsignificant fr o variationsintranscriptlevels/thetotalnumberofgenesinthefunctionalcategory.IS,insertionsequence. m h t t and2.3(metabolismofnucleotidesandnucleicacids,7/61genes) units.Thismeansthateachsoilsample,characterizedbyacom- p : were identified by ontology analysis. Interestingly, 7 regulators bination of abiotic and biotic factors, has to be considered a // a were in this set of genes, including agrA (3.6-fold increased ex- unique environment. Depending on environmental factors, the e m pression).Thelevelsoftranscriptsofthegenesfortheglobalni- chanceofL.monocytogenessurvivalishigherinsomesoilsthanin . trogenregulator(GlnR),theferricuptakeregulator(Fur),andthe others.Theseresultsareconsistentwiththoseofapreviousstudy a s pyrimidineregulatoryprotein(PyrR)alsoincreasedinthebiotic which showed that the survival of L. monocytogenes in soil de- m environment.Inthemutantbackground,only5geneswerein- pendedonabioticproperties,inparticular,thebasiccationsatu- .o cludedinthesetofgeneswithhighertranscriptlevelsunderbiotic rationratio,pH,andclaycontent(42).Inourstudy,pHwasthe rg conditions(seeTableS5inthesupplementalmaterial). predominantabioticfactorhighlightedbytheSpearmanrankcor- o/ Thepresenceofabioticenvironmentresultedinlowerlevelsof relation.ItisknownthatlowpHisdetrimentaltothesurvivalofL. n transcriptionof253genesintheparentalbackground(seeTable A monocytogenesinsoil,butaspHisastructuringparameterforsoil p S6inthesupplementalmaterial).Geneontologyfailedtoidentify microbialcommunities,itisratherdifficulttodifferentiatethe r functionalcategoriesinthissetofgenesexceptforcategory4.3, actualdirecteffectofpHandtheindirectroleofthecomposi- il 1 phage-relatedfunctions(13/48genes).Again,thesetofgeneswith 0 tion and structure of the microbial communities on the dy- , lowertranscriptlevelsunderbioticconditionswasmoremodest namicsofthepopulationsofL.monocytogenes(42).Moregen- 2 inthemutantbackground(25genes;seeTableS5inthesupple- 0 erally, because the composition and structure of the microbial 1 mentalmaterial). 9 communitiesarestructuredbythecomplexcharacteristicsofthe PCRquantificationofselectedtranscripts.Inordertocon- b abioticenvironment(43–45),itisdifficulttoaddresstheweightof y firm the results of the expression profiles, 10 target genes were asingleparameterontheoverallsurvivalofL.monocytogenesin g selected for quantification. Four of these genes (lmo0349, u soil.Nevertheless,thereisclearevidencethatthebioticenviron- e lmo0914, lmo0917, and lmo2257) were in the set of genes with s higher transcript levels in the mutant background, 4 (lmo0050, mentisakeyplayerinthecontrolofthepopulationsofL.mono- t cytogenes,asevidencedbycomparisonsofpopulationdynamicsin lmo0051,lmo0477,andlmo2711)hadlowertranscriptlevelsinthe (cid:2)agrA mutant background, and 2 (lmo0943 and lmo2467) had microcosmsofsterilizedandunsterilizedsoils(9,46,47).More- over,inastudyofexperimentalecology,erosionofthesoilmicro- similar trends in both the mutant and wild-type strains. qPCR bial diversity resulted in the persistence of the population of L. analysis confirmed that all entries displayed patterns similar to monocytogenesinsoil(48).TheoverallfateofL.monocytogenesin thoseobservedwiththemicroarrayresults(Table4). soildependsonacombinationofabioticcharacteristics,themi- DISCUSSION crobial abundance, as well as the diversity and structure of the OneofthetrademarksofbacteriaofthespeciesListeriamonocy- microbial communities. Other components of the soil biology togenesistheirvarietyofhabitatsandtheircapacitytoswitchfrom couldalsoaffectthepopulationdynamicsofL.monocytogenes.For asaprophyticmodeoflifetoinfectionofanimals.Soilisoneof example,protozoansand/ornematodescouldfacilitatethesur- thesehabitatswhereListeriamonocytogenescanbefound(41).In vival of L. monocytogenes, and in vitro experiments suggest that this study, comparison of the population dynamics in 10 soils theymayshedthepathogenand,hence,facilitatedispersion(41). showedthatsurvivalisdependentonthetypeofsoil.Indeed,the Onecanspeculatethatinsoilsample1003,collectedinaforest, finalabundanceoflisterialpopulationsrangedfrom1.5to4log theabundanceofprotozoanscouldhavefacilitatedthepersistence August2015 Volume81 Number15 AppliedandEnvironmentalMicrobiology aem.asm.org 5079 Vivantetal. TABLE3Location,flankinggenes,andfoldchangeinexpressionofthencRNAsfoundtobedifferentiallytranscribedbetweenthe(cid:2)agrAmutant andtheparentalstrainunderbioticconditions Position Flankinggene Foldchangein ncRNAgroupandgene Start Stop 5= 3= expression ncRNAswithsignificantlyhighertranscript levelsin(cid:2)agrAmutant Rli26 388707 388590 lmo0360 lmo0361 5.277 Rli88 1320429 1320501 lmo1292 lmo1293 2.532 Rli127 1473829 1473701 lmo1439 lmo1440 4.109 Rli47(sreB) 2226036 2226481 lmo2141 lmo2142 3.457 Rli120 226546 226640 lmo0219 lmo0220 2.851 rliG 2386992 2386715 lmo2302 lmo2304 2.676 Rli99 2395032 2395236 lmo2320 lmo2321 4.911 Rli140 2395244 2395032 lmo2320 lmo2321 4.911 Rli106 2594785 2594561 lmo2515 lmo2516 2.309 D Rli52 552417 552313 lmo0517 lmo0518 3.351 o w Rli80 787038 787254 lmo0761 lmo0762 4.516 n lo ncRNAswithsignificantlylowertranscript a levelsin(cid:2)agrAmutant d e Rli38 1152549 1152917 lmo1115 lmo1116 2.495 d Rli55 1198108 1198561 lmo1170 pduQ 2.686 f r Rli56 1199848 1199937 pduQ lmo1172 2.624 o m Rli40 1275794 1275547 lmo1251 lmo1252 2.062 Rli59 1702543 1702361 lmo1652 lmo1653 2.464 h t Rli23 172171 172268 lmo0172 2.677 tp Rli43 1861533 1861377 inlC rplS 2.190 :/ / Rli44 2039087 2039375 lmo1964 lmo1965 2.154 a e Rli94 2039375 2039079 lmo1964 lmo1965 2.154 m Rli60 2054162 2054501 lmo1982 ilvD 2.613 . a Rli45 2154765 2154852 lmo2074 lmo2075 2.440 s Rli46 2155058 2154765 lmo2074 lmo2075 2.440 m Rli61 2275362 2275297 lmo2187 lmo2188 2.616 .o Rli48 2361405 2361274 lmo2271 lmo2272 2.571 rg Rli98 2361329 2361581 lmo2271 lmo2272 2.571 / o Rli112 2782978 2783221 lmo2709 lmo2710 3.483 n Rli50 2783264 2782981 lmo2709 lmo2710 3.483 A Rlii 2842199 2841962 lmo2760 lmo2761 2.437 p Rli25 357618 357516 lmo0330 2.731 ril Rli27 434817 434929 lmo0411 lmo0412 2.812 1 0 Rli28 507372 507141 lmo0470 lmo0471 3.364 , Rli78 507068 507473 lmo0470 lmo0471 3.364 2 0 Rli29 507632 507450 lmo0470 lmo0471 2.742 1 Rli52 552417 552313 lmo0517 lmo0518 2.423 9 Rli31 597806 597926 lmo0558 lmo0559 2.610 b y Rli32 600750 600604 lmo0560 lmo0561 2.334 g Rli33-2 708618 708860 lmo0671 lmo0672 2.501 u Rli35 855495 855393 lmo0828 2.642 e s Rli36 859521 859412 lmo0829 lmo0830 2.261 t Rli37 907526 907832 lmo0866 lmo0867 2.395 Rli53 955824 956021 lmo0918 lmo0919 2.358 of L. monocytogenes. The abundance of fungi could also impact togenestothesoilenvironment.Itisinterestingtonoticethatthe survival(49–51). consequencesoftheinactivationoftheAgrsystemwerelimitedin Inastudythatfocusedononesiltyloamsoil,wepreviously soilsample1003,whichwaspermissivetoL.monocytogenes.This showedthatimpairmentoftheresponseregulatorAgrAorinac- suggeststhattheactivityoftheAgrsystemmaybecriticalwhenL. tivation of the production of the propeptide AgrD reduced the monocytogenes has to face unfavorable conditions and when its fitnessofL.monocytogenesinthishabitat(27).Theresultsofthe survivaliscompromised.AgrAispartofthecomplextranscrip- present study allow the general observation that inactivation of tionalregulatorycircuitryofL.monocytogenes,andexperimental theAgrsystemaffectsthedynamicsofL.monocytogenesinother evidencesuggeststhattheAgrAregulonincludesgenesresponsi- kindsofsoilwithtexturesrangingfromsandyloamtoclayand bleforthetransportandmetabolismofaminoacidsandrelated confirmthatdeletionofagrAaffectstheadaptationofL.monocy- molecules, genes responsible for motility and chemotaxis, and 5080 aem.asm.org AppliedandEnvironmentalMicrobiology August2015 Volume81 Number15 AgrAPromotesL.monocytogenesSoilAdaptation D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o FIG6Heatmapofthesetofgeneswithsignificantdifferencesinlevelsofexpressionbetweenthe(cid:2)agrAmutantandtheparentalstrainundersterilizedsoil rg conditions.Expressionlevelswerestandardizedsothatthoseoftheparentalstrainundersterilizedconditionsweresetasthebaseline.Genesarerepresentedin / o rows.Theexpressionlevelsofthesegenesunderbioticconditionsarealsopresented. n A alsogenesthatcodeforregulators(40).Theobservedintercon- thatAgrAactivityparticipatesintheoveralladaptationofthecell p nectionbetweentheAgrregulonandthe(cid:12)Bregulon(40)sustains followingtheintegrationofenvironmentalcues. ril theideathattheimpactofAgractivityismorepronouncedunder Major variations to the transcriptome were recorded in the 1 0 biotic and abiotic stress conditions. These observations suggest parentalbackgroundunderbioticconditions.Thissuggeststhat , 2 thesensingofthebioticenvironmenttriggersarangeofphysio- 0 logical adaptations. This adaptation could be depicted as a sce- 1 TABLE4Comparisonoffoldchangeinexpressionbetweenthe(cid:2)agrA narioinwhichthecellsurfacemustberearrangedasaprotective 9 b mutantandparentalstrainofselectedgenesinmicroarrayandqPCR action and for the development of resistance to antimicrobial y analyses compounds.Moreover,theupregulationofseveraltransportsys- g u Foldchangeinexpression tems and modification of metabolic activity are most likely, as e s Gene qPCR Array evidencedbytheupregulationofcarbon,nitrogen,andpyrimi- t dinemetabolismregulators.Increasedmotilitymayalsobeastrat- Upregulated lmo0914 2.6 6.6 egydevelopedinresponsetothebioticenvironment.Thehigher lmo0349 4.7 21.4 leveloftranscriptionoffurprobablyreflectstheneedtocompete lmo2257 6.3 4.0 foravailableiron,asoverexpressionofthisregulatorwasobserved lmo0917 7.2 3.2 underiron-limitingconditions(52).Thehigherleveloftranscrip- tionofagrAunderbioticconditionsisanotherindicationofthe Downregulated involvementofAgrAintheregulationcascaderequiredtoadapt lmo2711 (cid:4)7.2 (cid:4)5.4 lmo0050(agrC) (cid:4)8.2 (cid:4)8.7 tothebioticenvironment.Infact,theinactivationofAgrAim- lmo0051(agrA) (cid:4)6.7 (cid:4)6.4 pededtheappropriaterearrangementofthetranscriptomeinthe lmo0477 (cid:4)37.9 (cid:4)16.0 mutantbackground.Asaconsequence,comparisonofthetran- scriptomesoftheparentaland(cid:2)agrAmutantstrainsshowedlarge Unchanged variationsunderbioticconditions.Theseresultssuggestthatthe lmo0943 1.4 extensivemodificationofgeneexpressionthatL.monocytogenes lmo2467 1.2 undergoesduringadaptationtosoilrequiresAgrAactivity.Inthis August2015 Volume81 Number15 AppliedandEnvironmentalMicrobiology aem.asm.org 5081 Vivantetal. study,inactivationofAgrAalteredthetranscriptionofgenesre- bioticparameters,eitherdirectlyorindirectly.Theseresultshigh- latedtocellenvelopeandcellularprocesses.ItincludedPTSsys- lightthattheadaptationofL.monocytogenestosoilrequiresre- tems and ABC transporters dedicated to carbohydrate uptake. shapingofgeneexpressionatthetranscriptionallevel.Finally,our Upregulationofthesegenesintheparentalbackgroundmayillus- datasuggestthat,incomplexenvironments,theregulatorAgrA trateametabolicadaptationrequiredtouseresourcesavailablein mayhaveacentralroleintheregulationoftranscriptionandit thesoilenvironment,wherecompetitionforsubstratesmayoccur may participate in the modulation of the large repertoire of (53–56). Indeed, the prevalence of nutrient acquisition mecha- ncRNAs. nismsintheonsetofsoiladaptationhasbeenreportedpreviously ACKNOWLEDGMENTS (30). Similarly, modification of the bacterial cell surface is re- quiredforenvironmentaladaptationandduringgrowthandsur- ThisworkreceivedagrantfromtheRegionalCouncilofBurgundy(ref- vivalinsoil(30,38,57–59).InactivationofAgrAcouldhavepre- erencePARIAGRALE11). Thefundershadnoroleinthestudydesign,datacollectionandanal- ventedappropriateadjustmentofthecellsurfacetotheconditions ysis,thedecisiontopublish,orpreparationofthemanuscript. oftheenvironment.Interestingly,genesknowntocodeforpro- teinsinvolvedinresistancetoantimicrobialpeptidesweretran- REFERENCES scribed to lower levels in the mutant background. This finding 1. CossartP,Toledo-AranaA.2008.Listeriamonocytogenes,auniquemodel D may indicate that the deletion of agrA impairs the onset of the ininfectionbiology:anoverview.MicrobesInfect10:1041–1050.http: o w appropriatemechanismsrequiredtoresistcompetitionbyinter- //dx.doi.org/10.1016/j.micinf.2008.07.043. n ferenceandtoresistantimicrobialweaponry. 2. DeLucaG,ZanettiF,Fateh-MoghadmP,StampiS.1998.Occurrence lo ofListeriamonocytogenesinsewagesludge.ZentralblHygUmweltmed a Thedetectionofasetofgeneswithhighertranscriptlevelsin 201:269–277. d the(cid:2)agrAbackgroundisanindicationoftheinabilityofthemu- 3. GarrecN,Picard-BonnaudF,PourcherAM.2003.OccurrenceofListe- e d tant to downregulate the transcription of these targets. Similar riasp.andL.monocytogenesinsewagesludgeusedforlandapplication: f effectofdewatering,limingandstorageintankonsurvivalofListeria r observationswerereportedduringincubationinthelaboratory o species.FEMSImmunolMedMicrobiol35:275–283.http://dx.doi.org/10 m mediumtryptonesoybrothat25°Cand37°C(40).Attheinvivo .1016/S0928-8244(02)00443-1. temperatureof37°C,inthe(cid:2)agrAbackground,downregulation 4. Lyautey E, Lapen DR, Wilkes G, McCleary K, Pagotto F, Tyler K, h t wassuppressedforasetofgenescodingforproteinsinvolvedin HartmannA,PiveteauP,RieuA,RobertsonWJ,MedeirosDT,Edge tp cellularprocessesandmetabolism. TA,GannonV,ToppE.2007.DistributionandcharacteristicsofListeria :// monocytogenesisolatesfromsurfacewatersoftheSouthNationRiverwa- a Theregulatorycascadesunderlyingthesetranscriptomerear- tershed,Ontario,Canada.ApplEnvironMicrobiol73:5401–5410.http: e rangementsalsoprobablyinvolvencRNAs,asthetranscriptlevels //dx.doi.org/10.1128/AEM.00354-07. m . of a repertoire of ncRNAs also varied under biotic conditions. 5. BeuchatLR.1996.Listeriamonocytogenes:incidenceonvegetables.Food a Theyhavebeenrecognizedtobeimportantregulatorsinbiolog- Control7:223–228.http://dx.doi.org/10.1016/S0956-7135(96)00039-4. sm 6. WeisJ,SeeligerHPR.1975.IncidenceofListeriamonocytogenesinnature. icalprocessesineukaryotes(60)andbacteria(61,62).Sofar,a . ApplMicrobiol30:29–32. o large repertoire of ncRNAs has been described in L. monocyto- r 7. WelshimerHJ.1960.SurvivalofListeriamonocytogenesinsoil.JBacteriol g genes,andevidencesuggeststhattheyarecentraltoenvironmental 80:316–320. / o adaptation(31,35–38,63–65).Asinotherbacterialmodels,this 8. Locatelli A, Depret G, Jolivet C, Henry S, Dequiedt S, Piveteau P, n noncodingpartofthegenomeisanimportantcontributortothe HartmannA.2013.Nation-widestudyoftheoccurrenceofListeriamono- A regulation of virulence in L. monocytogenes (35–39). These cytogenes in French soils using culture-based and molecular detection p methods. J Microbiol Methods 93:242–250. http://dx.doi.org/10.1016/j r ncRNAs may participate to the transition from saprophytic to .mimet.2013.03.017. il 1 intracellularlife.Forexample,theL.monocytogenes-specificRli38 9. MoshtaghiH,GargSR,MandokhotUV.2009.SurvivabilityofListeria 0 geneisupregulatedduringinvasionofthehost’sbloodsystemand monocytogenesinagriculturalfieldsoil.IndianJVetRes18:1–7. , 2 10. Latorre AA, Kessel JASV, Karns JS, Zurakowski MJ, Pradhan AK, forms a complex with the transcripts of three genes coding for 0 ZadoksRN,BoorKJ,SchukkenYH.2009.MolecularecologyofListeria 1 proteinsinvolvedinL.monocytogenesadaptationtoblood(38). monocytogenes:evidenceforareservoirinmilkingequipmentonadairy 9 TheRli28,Rli32,Rli34,Rli38,Rli49,andRli50genesregulatethe farm.ApplEnvironMicrobiol75:1315–1323.http://dx.doi.org/10.1128 b expressionofvirulencefactors,suchasinternalins,bypairingto /AEM.01826-08. y mRNAs (38). Beyond virulence, there is evidence that ncRNAs 11. LatorreAA,KesselJSV,KarnsJS,ZurakowskiMJ,PradhanAK,Boor gu KJ, Jayarao BM, Houser BA, Daugherty CS, Schukken YH. 2010. e participateintheregulationofthetransportofsugarsandmetab- Biofilminmilkingequipmentonadairyfarmasapotentialsourceofbulk s olism(36,63),thesynthesisofvitamins(35),andmotility(35). tankmilkcontaminationwithListeriamonocytogenes.JDairySci93:2792– t TheinterconnectionbetweentheRNomeandotherregulonsis 2802.http://dx.doi.org/10.3168/jds.2009-2717. evidencedbythepresenceof(cid:12)A,(cid:12)B,orPrfAboxesupstreamof 12. NightingaleKK,SchukkenYH,NightingaleCR,FortesED,HoAJ,Her Z,GrohnYT,McDonoughPL,WiedmannM.2004.Ecologyandtrans- ncRNAs (35, 66), and deletion of lhrA affects the expression of missionofListeriamonocytogenesinfectingruminantsandinthefarm morethan300genes(63).Inaccordancewiththefindingsofthese environment.ApplEnvironMicrobiol70:4458–4467.http://dx.doi.org studies,ourresultsmaysuggestthattheregulatorAgrAalsopar- /10.1128/AEM.70.8.4458-4467.2004. ticipatesintheregulationoftheRNome.However,furtherinves- 13. GarridoV,VitasAI,Garcia-JalonI.2009.SurveyofListeriamonocyto- tigation will be required to decipher the actual role of these genesinready-to-eatproducts:prevalencebybrandsandretailestablish- mentsforexposureassessmentoflisteriosisinnorthernSpain.FoodCon- ncRNAsduringthesaprophyticlifeofL.monocytogenesinsoil. trol20:986–991.http://dx.doi.org/10.1016/j.foodcont.2008.11.013. Altogethertheseresultsgivemoreinsightintotheroleofthe 14. Goulet V, Rocourt J, Rebiere I, Jacquet C, Moyse C, Dehaumont P, AgrA-mediatedresponseandAgrcommunicationsystemdur- SalvatG,VeitP.1998.Listeriosisoutbreakassociatedwiththeconsump- ingtheenvironmentaladaptationofL.monocytogenes.Theac- tionofrillettesinFrancein1993.JInfectDis177:155–160.http://dx.doi .org/10.1086/513814. tivityoftheAgrcommunicationsystem,throughAgrA-mediated 15. vanHoudtR,MichielsC.2010.Biofilmformationandthefoodindustry, regulation,istriggeredinresponsetothesoilenvironment.Inter- afocusonthebacterialoutersurface.JApplMicrobiol109:1117–1131. estingly,insoil,AgrA-mediatedregulationcomesinresponseto http://dx.doi.org/10.1111/j.1365-2672.2010.04756.x. 5082 aem.asm.org AppliedandEnvironmentalMicrobiology August2015 Volume81 Number15
Description: