ebook img

Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS PDF

617 Pages·2018·10.02 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS

SURVIVAL ANALYSIS with INTERVAL-CENSORED DATA A Practical Approach with Examples in R, SAS, and BUGS CHAPMAN & HALL/CRC Interdisciplinar y Statistics Series Series editors: N. Keiding, B.J.T. Morgan, C.K. Wikle, P. van der Heijden Published titles AGE-PERIOD-COHORT ANALYSIS: NEW MODELS, METHODS, AND EMPIRICAL APPLICATIONS Y. Yang and K. C. Land ANALYSIS OF CAPTURE-RECAPTURE DATA R. S. McCrea and B. J. T. Morgan AN INVARIANT APPROACH TO STATISTICAL ANALYSIS OF SHAPES S. Lele and J. Richtsmeier ASTROSTATISTICS G. Babu and E. Feigelson BAYESIAN ANALYSIS FOR POPULATION ECOLOGY R. King, B. J. T. Morgan, O. Gimenez, and S. P. Brooks BAYESIAN DISEASE MAPPING: HIERARCHICAL MODELING IN SPATIAL EPIDEMIOLOGY, SECOND EDITION A. B. Lawson BIOEQUIVALENCE AND STATISTICS IN CLINICAL PHARMACOLOGY S. Patterson and B. Jones CAPTURE-RECAPTURE METHODS FOR THE SOCIAL AND MEDICAL SCIENCES D. Böhning, P. G. M. van der Heijden, and J. Bunge CLINICAL TRIALS IN ONCOLOGY, THIRD EDITION S. Green, J. Benedetti, A. Smith, and J. Crowley CLUSTER RANDOMISED TRIALS R.J. Hayes and L.H. Moulton CORRESPONDENCE ANALYSIS IN PRACTICE, THIRD EDITION M. Greenacre THE DATA BOOK: COLLECTION AND MANAGEMENT OF RESEARCH DATA M. Zozus DESIGN AND ANALYSIS OF QUALITY OF LIFE STUDIES IN CLINICAL TRIALS, SECOND EDITION D.L. Fairclough DYNAMICAL SEARCH L. Pronzato, H. Wynn, and A. Zhigljavsky FLEXIBLE IMPUTATION OF MISSING DATA S. van Buuren GENERALIZED LATENT VARIABLE MODELING: MULTILEVEL, LONGITUDI- NAL, AND STRUCTURAL EQUATION MODELS A. Skrondal and S. Rabe-Hesketh GRAPHICAL ANALYSIS OF MULTI-RESPONSE DATA K. Basford and J. Tukey INTRODUCTION TO COMPUTATIONAL BIOLOGY: MAPS, SEQUENCES, AND GENOMES M. Waterman MARKOV CHAIN MONTE CARLO IN PRACTICE W. Gilks, S. Richardson, and D. Spiegelhalter Published titles MEASUREMENT ERROR ANDMISCLASSIFICATION IN STATISTICS AND EPIDE- MIOLOGY: IMPACTS AND BAYESIAN ADJUSTMENTS P. Gustafson MEASUREMENT ERROR: MODELS, METHODS, AND APPLICATIONS J. P. Buonaccorsi MEASUREMENT ERROR: MODELS, METHODS, AND APPLICATIONS J. P. Buonaccorsi MENDELIAN RANDOMIZATION: METHODS FOR USING GENETIC VARIANTS IN CAUSAL ESTIMATION S.Burgess and S.G. Thompson META-ANALYSIS OF BINARY DATA USINGPROFILE LIKELIHOOD D. Böhning, R. Kuhnert, and S. Rattanasiri MISSING DATA ANALYSIS IN PRACTICE T. Raghunathan MODERN DIRECTIONAL STATISTICS C. Ley and T. Verdebout POWER ANALYSIS OF TRIALS WITH MULTILEVEL DATA M. Moerbeek and S. Teerenstra SPATIAL POINT PATTERNS: METHODOLOGY AND APPLICATIONS WITH R A. Baddeley, E Rubak, and R. Turner STATISTICAL ANALYSIS OF GENE EXPRESSION MICROARRAY DATA T. Speed STATISTICAL ANALYSIS OF QUESTIONNAIRES: A UNIFIED APPROACH BASED ON R AND STATA F. Bartolucci, S. Bacci, and M. Gnaldi STATISTICAL AND COMPUTATIONAL PHARMACOGENOMICS R. Wu and M. Lin STATISTICS IN MUSICOLOGY J. Beran STATISTICS OF MEDICAL IMAGING T. Lei STATISTICAL CONCEPTS AND APPLICATIONS IN CLINICAL MEDICINE J. Aitchison, J.W. Kay, and I.J. Lauder STATISTICAL AND PROBABILISTIC METHODS IN ACTUARIAL SCIENCE P.J. Boland STATISTICAL DETECTION AND SURVEILLANCE OF GEOGRAPHIC CLUSTERS P. Rogerson and I. Yamada STATISTICAL METHODS IN PSYCHIATRY AND RELATED FIELDS: LONGITUDINAL, CLUSTERED, AND OTHER REPEATED MEASURES DATA R. Gueorguieva STATISTICS FOR ENVIRONMENTAL BIOLOGY AND TOXICOLOGY A. Bailer and W. Piegorsch STATISTICS FOR FISSION TRACK ANALYSIS R.F. Galbraith SURVIVAL ANALYSIS WITH INTERVAL-CENSORED DATA: A PRACTICAL APPROACH WITH EXAMPLES IN R, SAS, AND BUGS K. Bogaerts, A. Komárek, and E. Lesaffre VISUALIZING DATA PATTERNS WITH MICROMAPS D.B. Carr and L.W. Pickle Chapman & Hall/CRC Interdisciplinary Statistics Series SURVIVAL ANALYSIS with INTERVAL-CENSORED DATA A Practical Approach with Examples in R, SAS, and BUGS Kris Bogaerts Arnošt Komárek Emmanuel Lesaffre CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20171012 International Standard Book Number-13: 978-1-4200-7747-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Tables xvii List of Figures xxi Notation xxvii Preface xxix I Introduction 1 1 Introduction 3 1.1 Survival concepts . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Types of censoring . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Right censoring . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Interval and left censoring . . . . . . . . . . . . . . . . 4 1.2.3 Some special cases of interval censoring . . . . . . . . 5 1.2.4 Doubly interval censoring . . . . . . . . . . . . . . . . 7 1.2.5 Truncation . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Ignoring interval censoring . . . . . . . . . . . . . . . . . . . 8 1.4 Independent noninformative censoring . . . . . . . . . . . . . 13 1.4.1 Independent noninformative right censoring . . . . . . 13 1.4.2 Independent noninformative interval censoring . . . . 14 1.5 Frequentist inference . . . . . . . . . . . . . . . . . . . . . . 15 1.5.1 Likelihood for interval-censored data . . . . . . . . . . 15 1.5.2 Maximum likelihood theory . . . . . . . . . . . . . . . 17 1.6 Data sets and research questions . . . . . . . . . . . . . . . . 20 1.6.1 Homograft study . . . . . . . . . . . . . . . . . . . . . 20 1.6.2 Breast cancer study . . . . . . . . . . . . . . . . . . . 22 1.6.3 AIDS clinical trial . . . . . . . . . . . . . . . . . . . . 22 1.6.4 Sensory shelf life study. . . . . . . . . . . . . . . . . . 23 1.6.5 Survey on mobile phone purchases . . . . . . . . . . . 25 1.6.6 Mastitis study . . . . . . . . . . . . . . . . . . . . . . 27 1.6.7 Signal Tandmobiel study . . . . . . . . . . . . . . . . 28 1.7 Censored data in R and SAS . . . . . . . . . . . . . . . . . . 30 1.7.1 R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 vii viii Contents 1.7.2 SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 Inference for right-censored data 35 2.1 Estimation of the survival function . . . . . . . . . . . . . . . 35 2.1.1 Nonparametric maximum likelihood estimation . . . . 35 2.1.2 R solution . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1.3 SAS solution . . . . . . . . . . . . . . . . . . . . . . . 40 2.2 Comparison of two survival distributions . . . . . . . . . . . 41 2.2.1 Review of significance tests . . . . . . . . . . . . . . . 41 2.2.2 R solution . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.3 SAS solution . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 Regression models . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.1 Proportional hazards model . . . . . . . . . . . . . . . 46 2.3.1.1 Model description and estimation . . . . . . 46 2.3.1.2 Model checking. . . . . . . . . . . . . . . . . 47 2.3.1.3 R solution . . . . . . . . . . . . . . . . . . . 50 2.3.1.4 SAS solution . . . . . . . . . . . . . . . . . . 52 2.3.2 Accelerated failure time model . . . . . . . . . . . . . 53 2.3.2.1 Model description and estimation . . . . . . 53 2.3.2.2 Model checking. . . . . . . . . . . . . . . . . 55 2.3.2.3 R solution . . . . . . . . . . . . . . . . . . . 56 2.3.2.4 SAS solution . . . . . . . . . . . . . . . . . . 58 II Frequentist methods for interval-censored data 61 3 Estimating the survival distribution 63 3.1 Nonparametric maximum likelihood . . . . . . . . . . . . . . 63 3.1.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Asymptotic results . . . . . . . . . . . . . . . . . . . . 67 3.1.3 R solution . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.1.4 SAS solution . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Parametric modelling . . . . . . . . . . . . . . . . . . . . . . 77 3.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.2 Model selection . . . . . . . . . . . . . . . . . . . . . . 78 3.2.3 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . 78 3.2.4 R solution . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.2.5 SAS solution . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 Smoothing methods . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.1 Logspline density estimation . . . . . . . . . . . . . . 85 3.3.1.1 A smooth approximation to the density . . . 85 3.3.1.2 Maximum likelihood estimation . . . . . . . 86 3.3.1.3 R solution . . . . . . . . . . . . . . . . . . . 87 3.3.2 Classical Gaussian mixture model . . . . . . . . . . . 90 Contents ix 3.3.3 Penalized Gaussian mixture model . . . . . . . . . . . 93 3.3.3.1 R solution . . . . . . . . . . . . . . . . . . . 99 3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 104 4 Comparison of two or more survival distributions 105 4.1 Nonparametric comparison of survival curves . . . . . . . . . 105 4.1.1 Weighted log-rank test: derivation . . . . . . . . . . . 107 4.1.2 Weighted log-rank test: linear form . . . . . . . . . . . 109 4.1.3 Weighted log-rank test: derived from the linear transformation model . . . . . . . . . . . . . . . . . . 109 4.1.4 Weighted log-rank test: the G(cid:37),γ family . . . . . . . . 111 4.1.5 Weighted log-rank test: significance testing . . . . . . 112 4.1.6 R solution . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.1.7 SAS solution . . . . . . . . . . . . . . . . . . . . . . . 123 4.2 Sample size calculation . . . . . . . . . . . . . . . . . . . . . 127 4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 128 5 The proportional hazards model 131 5.1 Parametric approaches . . . . . . . . . . . . . . . . . . . . . 132 5.1.1 Maximum likelihood estimation . . . . . . . . . . . . . 132 5.1.2 R solution . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.3 SAS solution . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 Towards semiparametric approaches . . . . . . . . . . . . . . 136 5.2.1 Piecewise exponential baseline survival model . . . . . 137 5.2.1.1 Model description and estimation . . . . . . 137 5.2.1.2 R solution . . . . . . . . . . . . . . . . . . . 138 5.2.1.3 SAS solution . . . . . . . . . . . . . . . . . . 140 5.2.2 SemiNonParametric approach . . . . . . . . . . . . . . 141 5.2.2.1 Model description and estimation . . . . . . 141 5.2.2.2 SAS solution . . . . . . . . . . . . . . . . . . 142 5.2.3 Spline-based smoothing approaches . . . . . . . . . . . 144 5.2.3.1 Two spline-based smoothing approaches . . . 144 5.2.3.2 R solution . . . . . . . . . . . . . . . . . . . 146 5.2.3.3 SAS solution . . . . . . . . . . . . . . . . . . 147 5.3 Semiparametric approaches . . . . . . . . . . . . . . . . . . . 149 5.3.1 Finkelstein’s approach . . . . . . . . . . . . . . . . . . 149 5.3.2 Farrington’s approach . . . . . . . . . . . . . . . . . . 150 5.3.3 Iterative convex minorant algorithm . . . . . . . . . . 153 5.3.4 Grouped proportional hazards model . . . . . . . . . . 153 5.3.5 Practical applications . . . . . . . . . . . . . . . . . . 154 5.3.5.1 Two examples . . . . . . . . . . . . . . . . . 154 5.3.5.2 R solution . . . . . . . . . . . . . . . . . . . 155 5.3.5.3 SAS solution . . . . . . . . . . . . . . . . . . 158

Description:
Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censor
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.