ebook img

Surveys in Contemporary Mathematics PDF

370 Pages·2007·3.143 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Surveys in Contemporary Mathematics

LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor:ProfessorN.J.Hitchin,MathematicalInstitute, UniversityofOxford,24–29StGiles,OxfordOX13LB,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,or,fromCambridgeUniversityPressatwww.cambridge.org/mathematics 191 Finitegeometryandcombinatorics, F.DECLERCKetal 192 Symplecticgeometry, D.SALAMON(ed) 194 Independentrandomvariablesandrearrangementinvariantspaces, M.BRAVERMAN 195 Arithmeticofblowupalgebras, W.VASCONCELOS 196 Microlocalanalysisfordifferentialoperators, A.GRIGIS&J.SJO¨STRAND 197 Two-dimensionalhomotopyandcombinatorialgrouptheory, C.HOG-ANGELONIetal 198 Thealgebraiccharacterizationofgeometric4-manifolds, J.A.HILLMAN 199 InvariantpotentialtheoryintheunitballofC(cid:2)(cid:2), M.STOLL 200 TheGrothendiecktheoryofdessinsd’enfant, L.SCHNEPS(ed) 201 Singularities, J.-P.BRASSELET(ed) 202 Thetechniqueofpseudodifferentialoperators, H.O.CORDES 203 HochschildcohomologyofvonNeumannalgebras, A.SINCLAIR&R.SMITH 204 Combinatorialandgeometricgrouptheory, A.J.DUNCAN,N.D.GILBERT&J.HOWIE(eds) 205 Ergodictheoryanditsconnectionswithharmonicanalysis, K.PETERSEN&I.SALAMA(eds) 207 GroupsofLietypeandtheirgeometries, W.M.KANTOR&L.DIMARTINO(eds) 208 Vectorbundlesinalgebraicgeometry, N.J.HITCHIN,P.NEWSTEAD&W.M.OXBURY(eds) 209 Arithmeticofdiagonalhypersurfacesoverinfitefields, F.Q.GOUVE´A&N.YUI 210 HilbertC∗-modules, E.C.LANCE 211 Groups93Galway/StAndrewsI, C.M.CAMPBELLetal(eds) 212 Groups93Galway/StAndrewsII, C.M.CAMPBELLetal(eds) 214 GeneralisedEuler-Jacobiinversionformulaandasymptoticsbeyondallorders, V.KOWALENKOetal 215 Numbertheory1992–93, S.DAVID(ed) 216 Stochasticpartialdifferentialequations, A.ETHERIDGE(ed) 217 Quadraticformswithapplicationstoalgebraicgeometryandtopology, A.PFISTER 218 Surveysincombinatorics,1995, P.ROWLINSON(ed) 220 Algebraicsettheory, A.JOYAL&I.MOERDIJK 221 Harmonicapproximation, S.J.GARDINER 222 Advancesinlinearlogic, J.-Y.GIRARD,Y.LAFONT&L.REGNIER(eds) 223 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems, KAZUAKITAIRA 224 Computability,enumerability,unsolvability, S.B.COOPER,T.A.SLAMAN&S.S.WAINER(eds) 225 Amathematicalintroductiontostringtheory, S.ALBEVERIOetal 226 Novikovconjectures,indextheoremsandrigidityI, S.FERRY,A.RANICKI&J.ROSENBERG(eds) 227 Novikovconjectures,indextheoremsandrigidityII, S.FERRY,A.RANICKI&J.ROSENBERG(eds) 228 ErgodictheoryofZdactions, M.POLLICOTT&K.SCHMIDT(eds) 229 Ergodicityforinfinitedimensionalsystems, G.DAPRATO&J.ZABCZYK 230 Prolegomenatoamiddlebrowarithmeticofcurvesofgenus2, J.W.S.CASSELS&E.V.FLYNN 231 Semigrouptheoryanditsapplications, K.H.HOFMANN&M.W.MISLOVE(eds) 232 ThedescriptivesettheoryofPolishgroupactions, H.BECKER&A.S.KECHRIS 233 Finitefieldsandapplications, S.COHEN&H.NIEDERREITER(eds) 234 Introductiontosubfactors, V.JONES&V.S.SUNDER 235 Numbertheory1993–94, S.DAVID(ed) 236 TheJamesforest, H.FETTER&B.G.DEBUEN 237 Sievemethods,exponentialsums,andtheirapplicationsinnumbertheory, G.R.H.GREAVESetal 238 Representationtheoryandalgebraicgeometry, A.MARTSINKOVSKY&G.TODOROV(eds) 240 Stablegroups, F.O.WAGNER 241 Surveysincombinatorics,1997, R.A.BAILEY(ed) 242 GeometricGaloisactionsI, L.SCHNEPS&P.LOCHAK(eds) 243 GeometricGaloisactionsII, L.SCHNEPS&P.LOCHAK(eds) 244 Modeltheoryofgroupsandautomorphismgroups, D.EVANS(ed) 245 Geometry,combinatorialdesignsandrelatedstructures, J.W.P.HIRSCHFELDetal 246 p-Automorphismsoffinitep-groups, E.I.KHUKHRO 247 Analyticnumbertheory, Y.MOTOHASHI(ed) 248 Tametopologyando-minimalstructures, L.VANDENDRIES 249 Theatlasoffinitegroups:tenyearson, R.CURTIS&R.WILSON(eds) 250 Charactersandblocksoffinitegroups, G.NAVARRO 251 Gro¨bnerbasesandapplications, B.BUCHBERGER&F.WINKLER(eds) 252 Geometryandcohomologyingrouptheory, P.KROPHOLLER,G.NIBLO,R.STO¨HR(eds) 253 Theq-Schuralgebra, S.DONKIN 254 Galoisrepresentationsinarithmeticalgebraicgeometry, A.J.SCHOLL&R.L.TAYLOR(eds) 255 Symmetriesandintegrabilityofdifferenceequations, P.A.CLARKSON&F.W.NIJHOFF(eds) 256 AspectsofGaloistheory, H.VO¨LKLEINetal 257 Anintroductiontononcommutativedifferentialgeometryanditsphysicalapplications2ed, J.MADORE 258 Setsandproofs, S.B.COOPER&J.TRUSS(eds) 259 Modelsandcomputability, S.B.COOPER&J.TRUSS(eds) 260 GroupsStAndrews1997inBath,I, C.M.CAMPBELLetal 261 GroupsStAndrews1997inBath,II, C.M.CAMPBELLetal 262 Analysisandlogic, C.W.HENSON,J.IOVINO,A.S.KECHRIS&E.ODELL 263 Singularitytheory, B.BRUCE&D.MOND(eds) 264 Newtrendsinalgebraicgeometry, K.HULEK,F.CATANESE,C.PETERS&M.REID(eds) 265 Ellipticcurvesincryptography, I.BLAKE,G.SEROUSSI&N.SMART 267 Surveysincombinatorics,1999, J.D.LAMB&D.A.PREECE(eds) 268 Spectralasymptoticsinthesemi-classicallimit, M.DIMASSI&J.SJO¨STRAND 269 Ergodictheoryandtopologicaldynamics, M.B.BEKKA&M.MAYER 270 AnalysisonLieGroups, N.T.VAROPOULOS&S.MUSTAPHA 271 Singularperturbationsofdifferentialoperators, S.ALBEVERIO&P.KURASOV 272 Charactertheoryfortheoddorderfunction, T.PETERFALVI 273 Spectraltheoryandgeometry, E.B.DAVIES&Y.SAFAROV(eds) 274 TheMandelbrotset,themeandvariations, TANLEI(ed) 275 Descriptivesettheoryanddynamicalsystems, M.FOREMANetal 276 Singularitiesofplanecurves, E.CASAS-ALVERO 277 Computationalandgeometricaspectsofmodernalgebra, M.D.ATKINSONetal 278 Globalattractorsinabstractparabolicproblems, J.W.CHOLEWA&T.DLOTKO 279 Topicsinsymbolicdynamicsandapplications, F.BLANCHARD,A.MAASS&A.NOGUEIRA(eds) 280 CharactersandAutomorphismGroupsofCompactRiemannSurfaces, T.BREUER 281 Explicitbirationalgeometryof3-folds, A.CORTI&M.REID(eds) 282 Auslander-Buchweitzapproximationsofequivariantmodules, M.HASHIMOTO 283 Nonlinearelasticity, Y.FU&R.W.OGDEN(eds) 284 Foundationsofcomputationalmathematics, R.DEVORE,A.ISERLES&E.SU¨LI(eds) 285 Rationalpointsoncurvesoverfinitefield, H.NIEDERREITER&C.XING 286 Cliffordalgebrasandspinors2ed, P.LOUNESTO 287 TopicsonRiemannsurfacesandFuchsiangroups, E.BUJALANCEetal 288 Surveysincombinatorics,2001, J.HIRSCHFELD(ed) 289 AspectsofSobolev-typeinequalities, L.SALOFF-COSTE 290 QuantumgroupsandLietheory, A.PRESSLEY(ed) 291 Titsbuildingsandthemodeltheoryofgroups, K.TENT(ed) 292 Aquantumgroupsprimer, S.MAJID 293 SecondorderpartialdifferentialequationsinHilbertspaces, G.DAPRATO&J.ZABCZYK 294 Introductiontothetheoryofoperatorspace, G.PISIER 295 Geometryandintegrability, L.MASON&YAVUZNUTKU(eds) 296 Lecturesoninvarianttheory, I.DOLGACHEV 297 Thehomotopycategoryofsimplyconnected4-manifolds, H.-J.BAUES 298 Higheroperads,highercategories, T.LEINSTER 299 Kleiniangroupsandhyperbolic3-manifolds, Y.KOMORI,V.MARKOVIC&C.SERIES(eds) 300 IntroductiontoMo¨biusdifferentialgeometry, U.HERTRICH-JEROMIN 301 StablemodulesandtheD(2)-problem, F.E.A.JOHNSON 302 DiscreteandcontinuousnonlinearSchro¨dingersystems, M.J.ABLOWITZ,B.PRINARI&A.D.TRUBATCH 303 NumberTheoryandAlgebraicGeometry, M.REID&A.SKOROBOGATOV(eds) 304 GroupsStAndrews2001inOxfordVol.1, C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 305 GroupsStAndrews2001inOxfordVol.2, C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 306 Peyresqlecturesongeometricmechanicsandsymmetry, J.MONTALDI&T.RATIU(eds) 307 Surveysincombinatorics2003, C.D.WENSLEY(ed) 308 Topology,geometryandquantumfieldtheory, U.L.TILLMANN(ed) 309 CoringsandComodules, T.BRZEZINSKI&R.WISBAUER 310 TopicsinDynamicsandErgodicTheory, S.BEZUGLYI&S.KOLYADA(eds) 311 Groups:topological,combinatorialandarithmeticaspects, T.W.MU¨LLER(ed) 312 FoundationsofComputationalMathematics,Minneapolis2002, FELIPECUCKERetal(eds) 313 Transcendentalaspectsofalgebraiccycles, S.MU¨LLER-STACH&C.PETERS(eds) 314 Spectralgeneralizationsoflinegraphs, D.CVETKOVIC,P.ROWLINSON&S.SIMIC 315 Structuredringspectra, A.BAKER&B.RICHTER(eds) 316 LinearLogicinComputerScience, T.EHRHARDetal(eds) 317 Advancesinellipticcurvecryptography, I.F.BLAKE,G.SEROUSSI&N.SMART 318 Perturbationoftheboundaryinboundary-valueproblemsofPartialDifferentialEquations, D.HENRY 319 DoubleAffineHeckeAlgebras, I.CHEREDNIK 320 L-FunctionsandGaloisRepresentations, D.BURNS,K.BUZZARD&J.NEKOVA´Rˇ(eds) 321 SurveysinModernMathematics, V.PRASOLOV&Y.ILYASHENKO(eds) 322 Recentperspectivesinrandommatrixtheoryandnumbertheory, F.MEZZADRI&N.C.SNAITH(eds) 323 Poissongeometry,deformationquantisationandgrouprepresentations, S.GUTTetal(eds) 324 SingularitiesandComputerAlgebra, C.LOSSEN&G.PFISTER(eds) 325 LecturesontheRicciFlow, P.TOPPING 326 ModularRepresentationsofFiniteGroupsofLieType, J.E.HUMPHREYS 328 FundamentalsofHyperbolicManifolds, R.D.CANARY,A.MARDEN&D.B.A.EPSTEIN(eds) 329 SpacesofKleinianGroups, Y.MINSKY,M.SAKUMA&C.SERIES(eds) 330 NoncommutativeLocalizationinAlgebraandTopology, A.RANICKI(ed) 331 FoundationsofComputationalMathematics,Santander2005, L.PARDO,A.PINKUS,E.SULI&M.TODD(eds) 332 HandbookofTiltingTheory, L.ANGELERIHU¨GEL,D.HAPPEL&H.KRAUSE(eds) 333 SyntheticDifferentialGeometry2ed, A.KOCK 334 TheNavier-StokesEquations, P.G.DRAZIN&N.RILEY 335 LecturesontheCombinatoricsofFreeProbability, A.NICA&R.SPEICHER 336 IntegralClosureofIdeals,Rings,andModules, I.SWANSON&C.HUNEKE 337 MethodsinBanachSpaceTheory, J.M.F.CASTILLO&W.B.JOHNSON(eds) 338 SurveysinGeometryandNumberTheory, N.YOUNG(ed) 339 GroupsStAndrews2005Vol.1, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 340 GroupsStAndrews2005Vol.2, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 341 RanksofEllipticCurvesandRandomMatrixTheory, J.B.CONREY,D.W.FARMER,F.MEZZADRI&N.C. SNAITH(eds) 342 EllipticCohomology, H.R.MILLER&D.C.RAVENEL(eds) 343 AlgebraicCyclesandMotivesVol.1, J.NAGEL&C.PETERS(eds) 344 AlgebraicCyclesandMotivesVol.2, J.NAGEL&C.PETERS(eds) 345 AlgebraicandAnalyticGeometry, A.NEEMAN 346 SurveysinCombinatorics,2007, A.HILTON&J.TALBOT(eds) 347 SurveysinContemporaryMathematics, N.YOUNG&Y.CHOI(eds) LondonMathematicalSocietyLectureNoteSeries.347 Surveys in Contemporary Mathematics Editedby NICHOLAS YOUNG UniversityofLeeds and YEMON CHOI UniversityofManitoba CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,Sa˜oPaulo,Delhi CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org (cid:4)C CambridgeUniversityPress2008 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2008 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata ISBN-13 978-0-521-70564-6paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLs forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Contents Preface page vii Rank and determinant functions for matrices over semi- rings A. E. Guterman 1 Algebraic geometry over Lie algebras I. V. Kazachkov 34 Destabilization of closed braids A. V. Malyutin 82 n-dimensional local fields and adeles on n-dimensional schemes D. V. Osipov 131 Cohomology of face rings, and torus actions T. E. Panov 165 Three lectures on the Borsuk partition problem A. M. Raigorodskii 202 EmbeddingandknottingofmanifoldsinEuclideanspaces A. B. Skopenkov 248 On Maxwellian and Boltzmann distributions V. V. Ten 343 v Preface This is the second of two volumes that showcase young scientists who arecontinuingtheoutstandingtraditionofRussianmathematicsintheir home country. There remain numerous strong research groups, partic- ularly in Moscow and St. Petersburg, despite the familiar difficulties: academic salaries in Russia remain low, many leading figures have de- partedandthereareplentifulopportunitiesforemploymentinuniversity positions abroad or in sectors in Russia that offer a living wage. It is hoped that the articles in this book give a picture of the interests and achievements of mathematicians that participate in some of the active seminars in the country. Seven have something of the character of a survey, but also contain many original results and give extensive bibli- ographies;theeighthisarevisedandexpandedversionofa2002research article. The first of the two volumes (LMS Lecture Notes 338) was entitled Surveys in Geomety and Number Theory; this one is mainly on com- binatorial and algebraic geometry and topology. Both volumes contain papers based on courses of lectures given at British universities by the authors under the ‘Young Russian Mathematicians’ scheme, which the London Mathematical Society set up to help such mathematicians visit the UK and to provide them with financial support. In the nineties sheer subsistence was difficult for Russian academics. Over the last five years things have improved, and the salaries of uni- versity employees, though not generous, are closer to sufficing for the necessities of life. It still remains difficult for young scientists to get established in a career, and two of the contributors to this volume have since chosen other paths, one in the mathematical diaspora and one in industry. Nicholas Young Department of Pure Mathematics Leeds University Yemon Choi Department of Mathematics University of Manitoba. vii Rank and determinant functions for matrices over semirings Alexander E. Guterman Introduction The difference between semirings and rings is the lack of additive in- versesin semirings. The most commonexamples of semiringswhich are not rings are the non-negative integers Z+, the non-negative rationals Q+ and the non-negative reals R+ with usual addition and multiplica- tion. There are classical examples of non-numerical semirings as well. One of the first examples appearedin the workof Dedekind [29]in con- nection with the algebra of ideals of a commutative ring (one can add and multiply ideals but it is not possible to subtract them). Later Van- diver [62] proposed the class of semirings as the best class of algebraic structures which includes both rings and bounded distributive lattices. Booleanalgebras,max-algebras,tropicalsemiringsandfuzzyscalarsare otherimportantexamplesofsemirings. See the monographs[37,38, 44] for more details. During the last few decades, matrices with entries from various semi- rings have attracted the attention of many researchers working both in theoretical and applied mathematics. It should be emphasized that the majority of examples of semirings arise in various applications of algebra. Toillustrateanapplicationofsemirings,wepresentasituation that arises constantly in parallel computations. To make this situation more apparent, we give its ‘real life’ analogue. Let us consider k sea- ports. A ship with certain goods arrivesat the i-th port at the moment x ,i=1,...,k. Alsotherearel airportswithaairplaneineachairport. i Each airplane has to depart at the time b , j = 1,...,l. All goods are j delivered by trains from the sea-ports to the airports. Let t denote i,j the traveltime fromthe i-thportto the j-thairport. Theproblemis to find x , i = 1,...,k, (or certain relations between them) in such a way i 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.