ebook img

Survey of Small Antenna Theory - McGraw-Hill Professional PDF

106 Pages·2010·3.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Survey of Small Antenna Theory - McGraw-Hill Professional

June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 1 CHAPTER Survey of Small Antenna Theory JeffreyChalas,KyoheiFujimoto,JohnL.Volakis,andKubilaySertel 1.1 Introduction Antennaminiaturizationhaslongbeendiscussedasoneofthemost significantandinterestingsubjectsinantennaandrelatedfields.Since thebeginningofradiocommunications,thedesireforsmallandver- satile antennas has been ever increasing. Today’s needs for more multifunctionalsystemsfurtherdriverequirementsforsmallmobile terminals, including cell phones, handheld portable wireless equip- mentforinternetconnection,short-andlong-rangecommunication devices, RFIDs (radio frequency identification), etc. Similarly, small equipment and devices used for data transmission and navigation (GPSsystems)requiresmallantennas.Theseapplicationsandcontin- uinggrowthofwirelessdeviceswillcontinuetochallengethecom- munitytocreatesmallerandmoremultifunctionalantennas. Thischapterisintendedtoprovideachronologicalreviewofpast theoreticalworkcrucialtoantennaminiaturization.Throughout,we shall refer to the small antennas as “electrically small antennas,” or ESAs,implyingthattheirsizeismuchsmallerthanawavelengthat theoperationalfrequency. Wheeler[1]proposedtheESAdefinitionasanantennawhosemax- imum dimension is less than (cid:2)/2(cid:3), referred to as a “radianlength.” Anothercommonlyused(andequivalent)definitionofanESAisan 1 June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 2 Small Antennas antennathatsatisfiesthecondition ka <0.5 (1.1) wherekisthewavenumber2(cid:3)/(cid:2),andaistheradiusoftheminimum sizespherethatenclosestheantenna(seeFig.1.1).Weshallreferto thissphericalenclosureasthe“Chusphere.”Smallantennasfittingthe WheelerdefinitionradiatethefirstordersphericalmodesofaHertzian dipole (see Fig. 1.2) and have radiation resistances, efficiencies, and bandwidths. As is well known, these parameters typically decrease withelectricalsizeka. Another commonly accepted definition of a small antenna is ka <1,[2].Thisdefinitioncanbeinterpretedasanantennaenclosed inside a sphere of radius equal to one radianlength. Such a sphere is referred to as a “radiansphere” [33], and represents the bound- ary between the near- and far-field radiation for a Hertzian dipole. Hansen[2]notesthatforantennasofthissize,higherorderspherical modes(n>1)areevanescent. Inthesectionstofollow,thesmallantennaperformancewillbechar- acterizedbytheirsizeka,qualityfactorQ,fractionalbandwidth B,and gain G. It is therefore important to have an understanding of these parameters.Ofparticularinterestishowantennabandwidth(or Q) is related to the antenna size. As will see, there is an optimum Q Chu sphere z radius = a Input y x FIGURE1.1 Chusphereofradius“a”centeredabouttheorigin. TheChusphereistheminimumcircumscribingsphereenclosingtheantenna ofmaximumdimension2a. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 3 z sin2 (θ) θ 1.0 1.0 x φ y FIGURE1.2 TM10orTE10modepowerpatternwiththeregion (0◦<(cid:4)<90◦,0◦<(cid:5)<90◦)omittedforclarity. (smallestpossible Q)foragivenantennasize.Followingareviewof somebasicantennaparameters,ashortdiscussiononlumpedreso- nant circuits and circuit Q is presented, which lays the foundation forsmallantennaanalysis.Achronologicalreviewofthesignificant contributionstosmallantennaswillthenbepresented,withafocus onthetheoreticaldevelopmentofthefield. 1.2 Small Antenna Parameters Toestablishafoundationfordiscussingsmallantennas,anoverview oftheirmostimportantcharacteristicsispresentedbelow. 1.2.1 Directivity It is often stated that small antennas have the familiar doughnut- shaped(seeFig.1.2)omni-directionalradiationpatternofaHertzian dipole of directivity D = 1.5. This pattern may be also thought as theradiationofTE orTM sphericalmodes.However,thisisnot 10 10 the only possible pattern for a small antenna, as seen in the work presented by Harrington [3], Kwon [4,5], and Pozar [6]. By super- posingvariouselectricandmagneticHertziandipolearrangements, unidirectional and bidirectional patterns are theoretically possible, along with directivities ranging from D = 1.5 to 3 (see Sec. 1.3.11 inthischapter).Wecanstatethatantennashavingsignificantspher- ical TE and TM mode radiation with n > 1 are generally not nm nm of the small type. Small antennas are also classified as superdirec- tiveantennas,sincefordecreasingsizeka,theirdirectivityDremains constant[2,7]. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 4 Small Antennas 1.2.2 Radiation Efficiency Radiation efficiency is a critical topic for small antennas but has notbeenstudiedrigorously.Antennaradiationefficiencyfactor(cid:6)is simply the ratio of the power radiated by the antenna to the power deliveredtotheinputterminalsoftheantenna.Oftentheefficiency factorisseenintheformulaG =(cid:6)(1−|(cid:2)|2)DwhereGistherealized gainthatincludesthemismatchesbetweenthesourceandmatching network(seeFig.1.3).WeassumethematchingnetworkofFig.1.3is lossless.Thelossesintheantennaapartfromradiationarefrequently modeledthroughaserieslossresistorR ,inwhichcasetheradiation loss efficiency(cid:6)canberepresentedas R R (cid:6)= rad = rad (1.2) R +R R rad loss A whereR isthetotalantennainputresistanceR +R (seeFig.1.3). A rad loss It has been observed that as antenna size ka decreases, R rad decreases and the loss resistance R dominates the efficiency ex- loss pression of Eq. (1.2). This decrease in efficiency is primarily due to frequency-dependentconductionanddielectriclosseswithinthean- tenna.Asmentionedlater,Harrington[3]quantifiedtheefficiencyfor anidealsphericalantenna,showingthatlossesareextremelypromi- nentforsmallerkavalues. A simple method to find the radiation efficiency (cid:6) and separate R from R istousetheWheelerCap[8]method(seeFig.1.4).The rad A Wheeler Cap (shown in Fig. 1.4) is a hollow perfectly electric con- ducting(PEC),enclosingsphereofthesamesizeastheradiansphere. WheelernotedthatthesizeandshapeoftheWheelerCapisnotcrit- ical. However, it must be electrically large enough so that the near- zone-antennafieldsarenotdisturbedwhilestillpreventingradiation, andsmallenoughsothatcavityresonancesarenotexcited.Indeed, Z Antenna A R loss ZS XA + Lossless passive V R − Γ matching rad network FIGURE1.3 Losslesspassivematchingnetworkwithantennaloadand inputreflectioncoefficient(cid:2). June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 5 Shielding PEC sphere equal to 1 radiansphere + − Small antenna of ka << 0.5 FIGURE1.4 WheelerCapforsmallantennaefficiencymeasurement.(After Wheeler[8].) Huang[9]provedrigorouslythatusingtheradiansphere-sizedspher- icalWheelerCapdoesnotsignificantlyaffectthenearfieldsexcited. To measure the radiation efficiency (cid:6) using the Wheeler Cap method,firstacomputationormeasurementisdoneattheantenna resonantfrequencyintheabsenceoftheWheelerCaptoobtain R . A If the antenna is not self-resonant, it must be tuned to resonance by a reactive element at the input. The tuned antenna is then en- closed inside the Wheeler Cap, and the measured input resistance thenyields R .Substitutionof R and R inEq.(1.2)thengives loss A loss (cid:6)= R /R . rad A 1.2.3 Quality Factor 1.2.3.1 AntennaQualityFactor An intrinsic quantity of interest for a small antenna is the Q factor, definedin[3]as 2(cid:7) max(W ,W ) Q= 0 E M (1.3) P A W and W are the time averaged stored electric and magnetic E M energies,and P istheantennareceivedpower.Theradiatedpower A isrelatedtothereceivedpowerthrough P = (cid:6)P ,where(cid:6)isthe rad A June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 6 Small Antennas antennaefficiency.ItisassumedinEq.(1.3)thatthesmallantennais tunedtoresonanceatthefrequency(cid:7) ,eitherthroughself-resonance 0 orbyusingalosslessreactivetuningelement. AntennaQisaquantityofinterestandcanbealsoevaluatedusing equivalentcircuitrepresentationsoftheantenna.Anotherimportant characteristicofQisthatitisinverselyproportionaltoantennaband- width(approximately).AcommonlyusedapproximationbetweenQ andthe3dBfractionalbandwidth Boftheantennais 1 Q≈ for Q(cid:4)1 (1.4) B Equation (1.4) is based on resonant circuit analysis and tends to becomemoreaccurateasQincreases.Anexplicitrelationshipbetween Qandbandwidthisgivenlater(seeSec.1.3.10orYaghjianandBest [10]).Forthemomentletusreviewthelumpedresonantcircuitanal- ysisusedforcomputing Qinthischapter. ThereadermaywonderwhyQisthequantityofinterestratherthan bandwidthitself.Onepracticalreasonisthatbandwidthremainsan ambiguous term. Though it is often implied that bandwidth refers to the 3 dB bandwidth, this is not always the case for antennas. It isdesirabletofindanindependentlyderivedquantity Qthatisalso related to bandwidth. This idea is given in Sec. 1.3.10 by Yaghjian andBest[10].However,themostimportantreasonthatQremainsof interestforsmallantennasisthatafundamentallowerlimitonQcan be found using a number of techniques (and consequently the max bandwidthofasmallantenna).ThisfundamentallimitationonQ(or max bandwidth) drives the majority of the work examined later on smallantennas. 1.2.3.2 QualityFactorforLumpedCircuits Wheeler[1]recognizedthatasmallantennaradiatingthesinglespher- icalTE modecanbeaccuratelyrepresentedasaRLCcombination 10 of Fig. 1.5a. We note the series capacitor represents the ideal tuning elementinEq.(1.3)whichbringstheantennatoresonance.Similarly,a smallantennaradiatingonlyasphericalTM modecanbeaccurately 10 representedbytheparallelRLCcombinationasinFig.1.5b,wherethe shunt inductor represents the ideal tuning element in Eq.(1.3) that brings the antenna to resonance. More complicated, high-Q circuits can be accurately represented as a series [for X(cid:5) ((cid:7) ) > 0] or paral- in 0 lel [for X(cid:5) ((cid:7) ) < 0] RLC circuits within the neighborhood of their in 0 resonantfrequencies. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 7 Z in C L I + V R − (a) Z in I + V L C R − (b) FIGURE1.5 SeriesandparallelRLCcircuits.(a)SeriesRLC,(b)ParallelRLC. Series RLC Circuit For the series RLC circuit of Fig. 1.5a, the input impedanceis (cid:2) (cid:3) j (cid:7)2−(cid:7)2 1 Z = R+ j(cid:7)L− = R+ j(cid:7)L 0 with (cid:7) = √ (1.5) in (cid:7)C (cid:7)2 0 LC where (cid:7) represents the resonant frequency at which the input 0 impedance is purely real. This resonance occurs when the average storedelectricenergyisequaltotheaveragestoredmagneticenergy in the circuit. Using the general definition of Q in Eq. (1.3) and rec- ognizing the current is the same in all circuit components, we find that (cid:2) (cid:3) 1 2(cid:7) LI2 2(cid:7) W 0 4 (cid:7) L 1 Q= 0 H = = 0 = (1.6) P 1 R (cid:7) RC a I2R 0 2 where I isthecurrentthroughtheseriesRLCcircuitinFig.1.5a.The bandwidthoftheseriesRLCcircuitcanbeestimatedafterintroducing theapproximation F((cid:7)) =(cid:7)2−(cid:7)2 ≈ F((cid:7) )+((cid:7)−(cid:7) )F(cid:5)((cid:7) ) =2(cid:7)(cid:3)(cid:7) (1.7) 0 0 0 0 June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 8 Small Antennas validforsmall(cid:3)(cid:7)=(cid:7)−(cid:7) .WiththisTaylorseries,Eq.(1.5)becomes 0 (cid:2) (cid:3) 2(cid:7)((cid:7)−(cid:7) ) Z ≈ R+ j(cid:7)L 0 = R+ j2L(cid:3)(cid:7) (1.8) in (cid:7)2 FromEq.(1.8),itisthenevidentthatthe3dBpointsoccurwhen 2L(cid:3)(cid:7) =±R (1.9) 3dB where(cid:3)(cid:7) isthedifferencebetweenthe3dBfrequencyandreso- 3dB nantfrequency.UsingEqs.(1.6)and(1.9)wecannowwrite (cid:3)(cid:7) 2Q 3dB = QB =1 (1.10) (cid:7) 0 sincebydefinition,2(cid:3)(cid:7) /(cid:7) = B foranantennahaving(cid:7) asits 3dB 0 0 operationalfrequency.Fromthisresult,wethenhavetherelationship B = 1/QasmentionedinEq.(1.4).Figure1.6depictstheimpedance asafunctionoffrequencyforatypicalseriesRLCcircuitforvarious Q(cid:4)1values. 5 |Z | = |R(1 + j2QΔω/ω)| 4.5 in 0 4 3.5 Q = 500 3 R Q = 200 / |n 2.5 Zi | 2 Q = 100 1.5 1 0.5 3 dB above |Zin(ω0)| 0 0.994 0.996 0.998 1 1.002 1.004 1.006 ω/ω 0 FIGURE1.6 NormalizedimpedancemagnitudeforaseriesRLCcircuitnear resonance. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 9 ParallelRLCCircuit FortheparallelRLCcircuitofFig.1.5b,theinput admittanceis (cid:2) (cid:3) j (cid:7)2−(cid:7)2 1 Y =G+ j(cid:7)C− =G+ j(cid:7)C 0 with (cid:7) = √ (1.11) in (cid:7)L (cid:7)2 0 LC where(cid:7) isagaintheresonantfrequencyforwhichtheinputadmit- 0 tanceispurelyreal.UsingthegeneraldefinitionofQandrecognizing fortheparallelRLCcircuitthevoltageVacrosseachcomponentisthe same,the QfortheparallelRLCcircuitatresonanceisfoundtobe (cid:2) (cid:3) 1 2(cid:7) CV2 2(cid:7) W 0 4 (cid:7) C 1 Q= 0 E = = 0 = (1.12) P 1 G (cid:7) GL a V2G 0 2 FromthedualnatureoftheseriesandparallelRLCcircuits,thesame bandwidthrelationsobtainedinEq.(1.10)holdfortheparallelRLC circuit. Figure 1.7 depicts the impedance as a function of frequency foratypicalparallelRLCcircuithaving Q(cid:4)1. Arbitrary Lumped Networks In many cases, tuning the antenna impe- dancetoresonanceusingasinglelosslessreactiveelementdoesnot giveasuitablevaluefortheinputresistancetomatchthetransmis- sionline.Tominimizemismatches(reflections)anddelivermaximum powertotheantenna,twodegreesoffreedomareneededtoprovide 1.2 |Z | = |R(1 + jQΔω/ω)|−1 in 0 1 0.8 R / | Zin 0.6 Q = 100 | 0.4 Q = 200 0.2 3 dB below |Z (ω)| in 0 Q = 500 0 0.994 0.996 0.998 1 1.002 1.004 1.006 ω/ω 0 FIGURE1.7 NormalizedimpedancemagnitudeforaparallelRLCcircuit nearresonance. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 10 Small Antennas LC tuner Antenna / Load Circuit L I 1 IL + + C1 CL VL RL V Zin − − FIGURE1.8 AntennacircuitwithLCtuner. animpedancematchtoatransmissionline.Figure1.8showsanexam- pleofalumpedmatchingnetworkwithtwodegreesoffreedom—one seriesandanothershuntelement.Withthesetwodegreesoffreedom, anarbitraryloadimpedancecanbetransformedtoarealimpedance value,andmatchedtothetransmissionline. Tofindthe QforthecircuitconfigurationinFig.1.8,wenotethat atresonance Z =Re(Z ) = R in in in 1 P = P = |I |2R in L L L 2 where Z istheinputimpedance, P istheinputpower,and P is in in L the power at the load. Using these conditions, we can find Q from Eq.(1.3).ToemployEq.(1.3),wenote 1|V|2 1|V |2 P = = P = L (1.13) in L 2 R 2 R in L 1 W = |V|2C (1.14) E1 1 4 1 1 R W = |V |2C = C L |V|2 (1.15) EL L L L 4 4 R in SubstitutingthesequantitiesintoEq.(1.3),weget 2(cid:7) W 2(cid:7) (W +W ) Q= 0 E = 0 E1 EL =(cid:7) C R +(cid:7) C R (1.16) 0 1 in 0 L L P P L L FindingQforarbitrarycircuittopologiescanbecomeacumbersome procedure.FormulatingthetopologyusingapproximateRLCcircuits canthereforebebeneficial.OnemethodusedbyChu[11]istoequate theinputresistance,reactance,andreactancefrequencyderivativeof

Description:
Wheeler definition radiate the first order spherical modes of a Hertzian dipole ( see Fig. some basic antenna parameters, a short discussion on lumped reso- nant circuits .. antennas enclosed in such a prolate spheroid, assuming only TM or only TE Thal (2006–2009) set out to determine a mor
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.