June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 1 CHAPTER Survey of Small Antenna Theory JeffreyChalas,KyoheiFujimoto,JohnL.Volakis,andKubilaySertel 1.1 Introduction Antennaminiaturizationhaslongbeendiscussedasoneofthemost significantandinterestingsubjectsinantennaandrelatedfields.Since thebeginningofradiocommunications,thedesireforsmallandver- satile antennas has been ever increasing. Today’s needs for more multifunctionalsystemsfurtherdriverequirementsforsmallmobile terminals, including cell phones, handheld portable wireless equip- mentforinternetconnection,short-andlong-rangecommunication devices, RFIDs (radio frequency identification), etc. Similarly, small equipment and devices used for data transmission and navigation (GPSsystems)requiresmallantennas.Theseapplicationsandcontin- uinggrowthofwirelessdeviceswillcontinuetochallengethecom- munitytocreatesmallerandmoremultifunctionalantennas. Thischapterisintendedtoprovideachronologicalreviewofpast theoreticalworkcrucialtoantennaminiaturization.Throughout,we shall refer to the small antennas as “electrically small antennas,” or ESAs,implyingthattheirsizeismuchsmallerthanawavelengthat theoperationalfrequency. Wheeler[1]proposedtheESAdefinitionasanantennawhosemax- imum dimension is less than (cid:2)/2(cid:3), referred to as a “radianlength.” Anothercommonlyused(andequivalent)definitionofanESAisan 1 June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 2 Small Antennas antennathatsatisfiesthecondition ka <0.5 (1.1) wherekisthewavenumber2(cid:3)/(cid:2),andaistheradiusoftheminimum sizespherethatenclosestheantenna(seeFig.1.1).Weshallreferto thissphericalenclosureasthe“Chusphere.”Smallantennasfittingthe WheelerdefinitionradiatethefirstordersphericalmodesofaHertzian dipole (see Fig. 1.2) and have radiation resistances, efficiencies, and bandwidths. As is well known, these parameters typically decrease withelectricalsizeka. Another commonly accepted definition of a small antenna is ka <1,[2].Thisdefinitioncanbeinterpretedasanantennaenclosed inside a sphere of radius equal to one radianlength. Such a sphere is referred to as a “radiansphere” [33], and represents the bound- ary between the near- and far-field radiation for a Hertzian dipole. Hansen[2]notesthatforantennasofthissize,higherorderspherical modes(n>1)areevanescent. Inthesectionstofollow,thesmallantennaperformancewillbechar- acterizedbytheirsizeka,qualityfactorQ,fractionalbandwidth B,and gain G. It is therefore important to have an understanding of these parameters.Ofparticularinterestishowantennabandwidth(or Q) is related to the antenna size. As will see, there is an optimum Q Chu sphere z radius = a Input y x FIGURE1.1 Chusphereofradius“a”centeredabouttheorigin. TheChusphereistheminimumcircumscribingsphereenclosingtheantenna ofmaximumdimension2a. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 3 z sin2 (θ) θ 1.0 1.0 x φ y FIGURE1.2 TM10orTE10modepowerpatternwiththeregion (0◦<(cid:4)<90◦,0◦<(cid:5)<90◦)omittedforclarity. (smallestpossible Q)foragivenantennasize.Followingareviewof somebasicantennaparameters,ashortdiscussiononlumpedreso- nant circuits and circuit Q is presented, which lays the foundation forsmallantennaanalysis.Achronologicalreviewofthesignificant contributionstosmallantennaswillthenbepresented,withafocus onthetheoreticaldevelopmentofthefield. 1.2 Small Antenna Parameters Toestablishafoundationfordiscussingsmallantennas,anoverview oftheirmostimportantcharacteristicsispresentedbelow. 1.2.1 Directivity It is often stated that small antennas have the familiar doughnut- shaped(seeFig.1.2)omni-directionalradiationpatternofaHertzian dipole of directivity D = 1.5. This pattern may be also thought as theradiationofTE orTM sphericalmodes.However,thisisnot 10 10 the only possible pattern for a small antenna, as seen in the work presented by Harrington [3], Kwon [4,5], and Pozar [6]. By super- posingvariouselectricandmagneticHertziandipolearrangements, unidirectional and bidirectional patterns are theoretically possible, along with directivities ranging from D = 1.5 to 3 (see Sec. 1.3.11 inthischapter).Wecanstatethatantennashavingsignificantspher- ical TE and TM mode radiation with n > 1 are generally not nm nm of the small type. Small antennas are also classified as superdirec- tiveantennas,sincefordecreasingsizeka,theirdirectivityDremains constant[2,7]. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 4 Small Antennas 1.2.2 Radiation Efficiency Radiation efficiency is a critical topic for small antennas but has notbeenstudiedrigorously.Antennaradiationefficiencyfactor(cid:6)is simply the ratio of the power radiated by the antenna to the power deliveredtotheinputterminalsoftheantenna.Oftentheefficiency factorisseenintheformulaG =(cid:6)(1−|(cid:2)|2)DwhereGistherealized gainthatincludesthemismatchesbetweenthesourceandmatching network(seeFig.1.3).WeassumethematchingnetworkofFig.1.3is lossless.Thelossesintheantennaapartfromradiationarefrequently modeledthroughaserieslossresistorR ,inwhichcasetheradiation loss efficiency(cid:6)canberepresentedas R R (cid:6)= rad = rad (1.2) R +R R rad loss A whereR isthetotalantennainputresistanceR +R (seeFig.1.3). A rad loss It has been observed that as antenna size ka decreases, R rad decreases and the loss resistance R dominates the efficiency ex- loss pression of Eq. (1.2). This decrease in efficiency is primarily due to frequency-dependentconductionanddielectriclosseswithinthean- tenna.Asmentionedlater,Harrington[3]quantifiedtheefficiencyfor anidealsphericalantenna,showingthatlossesareextremelypromi- nentforsmallerkavalues. A simple method to find the radiation efficiency (cid:6) and separate R from R istousetheWheelerCap[8]method(seeFig.1.4).The rad A Wheeler Cap (shown in Fig. 1.4) is a hollow perfectly electric con- ducting(PEC),enclosingsphereofthesamesizeastheradiansphere. WheelernotedthatthesizeandshapeoftheWheelerCapisnotcrit- ical. However, it must be electrically large enough so that the near- zone-antennafieldsarenotdisturbedwhilestillpreventingradiation, andsmallenoughsothatcavityresonancesarenotexcited.Indeed, Z Antenna A R loss ZS XA + Lossless passive V R − Γ matching rad network FIGURE1.3 Losslesspassivematchingnetworkwithantennaloadand inputreflectioncoefficient(cid:2). June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 5 Shielding PEC sphere equal to 1 radiansphere + − Small antenna of ka << 0.5 FIGURE1.4 WheelerCapforsmallantennaefficiencymeasurement.(After Wheeler[8].) Huang[9]provedrigorouslythatusingtheradiansphere-sizedspher- icalWheelerCapdoesnotsignificantlyaffectthenearfieldsexcited. To measure the radiation efficiency (cid:6) using the Wheeler Cap method,firstacomputationormeasurementisdoneattheantenna resonantfrequencyintheabsenceoftheWheelerCaptoobtain R . A If the antenna is not self-resonant, it must be tuned to resonance by a reactive element at the input. The tuned antenna is then en- closed inside the Wheeler Cap, and the measured input resistance thenyields R .Substitutionof R and R inEq.(1.2)thengives loss A loss (cid:6)= R /R . rad A 1.2.3 Quality Factor 1.2.3.1 AntennaQualityFactor An intrinsic quantity of interest for a small antenna is the Q factor, definedin[3]as 2(cid:7) max(W ,W ) Q= 0 E M (1.3) P A W and W are the time averaged stored electric and magnetic E M energies,and P istheantennareceivedpower.Theradiatedpower A isrelatedtothereceivedpowerthrough P = (cid:6)P ,where(cid:6)isthe rad A June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 6 Small Antennas antennaefficiency.ItisassumedinEq.(1.3)thatthesmallantennais tunedtoresonanceatthefrequency(cid:7) ,eitherthroughself-resonance 0 orbyusingalosslessreactivetuningelement. AntennaQisaquantityofinterestandcanbealsoevaluatedusing equivalentcircuitrepresentationsoftheantenna.Anotherimportant characteristicofQisthatitisinverselyproportionaltoantennaband- width(approximately).AcommonlyusedapproximationbetweenQ andthe3dBfractionalbandwidth Boftheantennais 1 Q≈ for Q(cid:4)1 (1.4) B Equation (1.4) is based on resonant circuit analysis and tends to becomemoreaccurateasQincreases.Anexplicitrelationshipbetween Qandbandwidthisgivenlater(seeSec.1.3.10orYaghjianandBest [10]).Forthemomentletusreviewthelumpedresonantcircuitanal- ysisusedforcomputing Qinthischapter. ThereadermaywonderwhyQisthequantityofinterestratherthan bandwidthitself.Onepracticalreasonisthatbandwidthremainsan ambiguous term. Though it is often implied that bandwidth refers to the 3 dB bandwidth, this is not always the case for antennas. It isdesirabletofindanindependentlyderivedquantity Qthatisalso related to bandwidth. This idea is given in Sec. 1.3.10 by Yaghjian andBest[10].However,themostimportantreasonthatQremainsof interestforsmallantennasisthatafundamentallowerlimitonQcan be found using a number of techniques (and consequently the max bandwidthofasmallantenna).ThisfundamentallimitationonQ(or max bandwidth) drives the majority of the work examined later on smallantennas. 1.2.3.2 QualityFactorforLumpedCircuits Wheeler[1]recognizedthatasmallantennaradiatingthesinglespher- icalTE modecanbeaccuratelyrepresentedasaRLCcombination 10 of Fig. 1.5a. We note the series capacitor represents the ideal tuning elementinEq.(1.3)whichbringstheantennatoresonance.Similarly,a smallantennaradiatingonlyasphericalTM modecanbeaccurately 10 representedbytheparallelRLCcombinationasinFig.1.5b,wherethe shunt inductor represents the ideal tuning element in Eq.(1.3) that brings the antenna to resonance. More complicated, high-Q circuits can be accurately represented as a series [for X(cid:5) ((cid:7) ) > 0] or paral- in 0 lel [for X(cid:5) ((cid:7) ) < 0] RLC circuits within the neighborhood of their in 0 resonantfrequencies. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 7 Z in C L I + V R − (a) Z in I + V L C R − (b) FIGURE1.5 SeriesandparallelRLCcircuits.(a)SeriesRLC,(b)ParallelRLC. Series RLC Circuit For the series RLC circuit of Fig. 1.5a, the input impedanceis (cid:2) (cid:3) j (cid:7)2−(cid:7)2 1 Z = R+ j(cid:7)L− = R+ j(cid:7)L 0 with (cid:7) = √ (1.5) in (cid:7)C (cid:7)2 0 LC where (cid:7) represents the resonant frequency at which the input 0 impedance is purely real. This resonance occurs when the average storedelectricenergyisequaltotheaveragestoredmagneticenergy in the circuit. Using the general definition of Q in Eq. (1.3) and rec- ognizing the current is the same in all circuit components, we find that (cid:2) (cid:3) 1 2(cid:7) LI2 2(cid:7) W 0 4 (cid:7) L 1 Q= 0 H = = 0 = (1.6) P 1 R (cid:7) RC a I2R 0 2 where I isthecurrentthroughtheseriesRLCcircuitinFig.1.5a.The bandwidthoftheseriesRLCcircuitcanbeestimatedafterintroducing theapproximation F((cid:7)) =(cid:7)2−(cid:7)2 ≈ F((cid:7) )+((cid:7)−(cid:7) )F(cid:5)((cid:7) ) =2(cid:7)(cid:3)(cid:7) (1.7) 0 0 0 0 June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 8 Small Antennas validforsmall(cid:3)(cid:7)=(cid:7)−(cid:7) .WiththisTaylorseries,Eq.(1.5)becomes 0 (cid:2) (cid:3) 2(cid:7)((cid:7)−(cid:7) ) Z ≈ R+ j(cid:7)L 0 = R+ j2L(cid:3)(cid:7) (1.8) in (cid:7)2 FromEq.(1.8),itisthenevidentthatthe3dBpointsoccurwhen 2L(cid:3)(cid:7) =±R (1.9) 3dB where(cid:3)(cid:7) isthedifferencebetweenthe3dBfrequencyandreso- 3dB nantfrequency.UsingEqs.(1.6)and(1.9)wecannowwrite (cid:3)(cid:7) 2Q 3dB = QB =1 (1.10) (cid:7) 0 sincebydefinition,2(cid:3)(cid:7) /(cid:7) = B foranantennahaving(cid:7) asits 3dB 0 0 operationalfrequency.Fromthisresult,wethenhavetherelationship B = 1/QasmentionedinEq.(1.4).Figure1.6depictstheimpedance asafunctionoffrequencyforatypicalseriesRLCcircuitforvarious Q(cid:4)1values. 5 |Z | = |R(1 + j2QΔω/ω)| 4.5 in 0 4 3.5 Q = 500 3 R Q = 200 / |n 2.5 Zi | 2 Q = 100 1.5 1 0.5 3 dB above |Zin(ω0)| 0 0.994 0.996 0.998 1 1.002 1.004 1.006 ω/ω 0 FIGURE1.6 NormalizedimpedancemagnitudeforaseriesRLCcircuitnear resonance. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 Chapter 1: Survey of Small Antenna Theory 9 ParallelRLCCircuit FortheparallelRLCcircuitofFig.1.5b,theinput admittanceis (cid:2) (cid:3) j (cid:7)2−(cid:7)2 1 Y =G+ j(cid:7)C− =G+ j(cid:7)C 0 with (cid:7) = √ (1.11) in (cid:7)L (cid:7)2 0 LC where(cid:7) isagaintheresonantfrequencyforwhichtheinputadmit- 0 tanceispurelyreal.UsingthegeneraldefinitionofQandrecognizing fortheparallelRLCcircuitthevoltageVacrosseachcomponentisthe same,the QfortheparallelRLCcircuitatresonanceisfoundtobe (cid:2) (cid:3) 1 2(cid:7) CV2 2(cid:7) W 0 4 (cid:7) C 1 Q= 0 E = = 0 = (1.12) P 1 G (cid:7) GL a V2G 0 2 FromthedualnatureoftheseriesandparallelRLCcircuits,thesame bandwidthrelationsobtainedinEq.(1.10)holdfortheparallelRLC circuit. Figure 1.7 depicts the impedance as a function of frequency foratypicalparallelRLCcircuithaving Q(cid:4)1. Arbitrary Lumped Networks In many cases, tuning the antenna impe- dancetoresonanceusingasinglelosslessreactiveelementdoesnot giveasuitablevaluefortheinputresistancetomatchthetransmis- sionline.Tominimizemismatches(reflections)anddelivermaximum powertotheantenna,twodegreesoffreedomareneededtoprovide 1.2 |Z | = |R(1 + jQΔω/ω)|−1 in 0 1 0.8 R / | Zin 0.6 Q = 100 | 0.4 Q = 200 0.2 3 dB below |Z (ω)| in 0 Q = 500 0 0.994 0.996 0.998 1 1.002 1.004 1.006 ω/ω 0 FIGURE1.7 NormalizedimpedancemagnitudeforaparallelRLCcircuit nearresonance. June2,2010 12:27 SmallAntennas:MiniaturizationTechniques&Applications/JohnVolakis/162553-4/Ch01 10 Small Antennas LC tuner Antenna / Load Circuit L I 1 IL + + C1 CL VL RL V Zin − − FIGURE1.8 AntennacircuitwithLCtuner. animpedancematchtoatransmissionline.Figure1.8showsanexam- pleofalumpedmatchingnetworkwithtwodegreesoffreedom—one seriesandanothershuntelement.Withthesetwodegreesoffreedom, anarbitraryloadimpedancecanbetransformedtoarealimpedance value,andmatchedtothetransmissionline. Tofindthe QforthecircuitconfigurationinFig.1.8,wenotethat atresonance Z =Re(Z ) = R in in in 1 P = P = |I |2R in L L L 2 where Z istheinputimpedance, P istheinputpower,and P is in in L the power at the load. Using these conditions, we can find Q from Eq.(1.3).ToemployEq.(1.3),wenote 1|V|2 1|V |2 P = = P = L (1.13) in L 2 R 2 R in L 1 W = |V|2C (1.14) E1 1 4 1 1 R W = |V |2C = C L |V|2 (1.15) EL L L L 4 4 R in SubstitutingthesequantitiesintoEq.(1.3),weget 2(cid:7) W 2(cid:7) (W +W ) Q= 0 E = 0 E1 EL =(cid:7) C R +(cid:7) C R (1.16) 0 1 in 0 L L P P L L FindingQforarbitrarycircuittopologiescanbecomeacumbersome procedure.FormulatingthetopologyusingapproximateRLCcircuits canthereforebebeneficial.OnemethodusedbyChu[11]istoequate theinputresistance,reactance,andreactancefrequencyderivativeof
Description: