ebook img

Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient PDF

21 Pages·2015·4.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient

EnvironmentalModelling&Software77(2016)122e142 ContentslistsavailableatScienceDirect Environmental Modelling & Software journal homepage: www.elsevier.com/locate/envsoft Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget * Ioannis Tsoukalas , Panagiotis Kossieris, Andreas Efstratiadis, Christos Makropoulos DepartmentofWaterResourcesandEnvironmentalEngineering,NationalTechnicalUniversityofAthens,HeroonPolytechneiou5,GR-15780,Zographou, Greece a r t i c l e i n f o a b s t r a c t Articlehistory: Inwaterresourcesoptimizationproblems,theobjectivefunctionusuallypresumestofirstrunasimu- Received10April2015 lationmodelandthenevaluateitsoutputs.However,longsimulationtimesmayposesignificantbarriers Receivedinrevisedform to the procedure. Often, to obtain a solution within a reasonable time, the user has to substantially 1December2015 restrict the allowable numberof function evaluations, thus terminating the search much earlier than Accepted7December2015 required. A promising strategy to address these shortcomings is the use of surrogate modeling tech- Availableonlinexxx niques.HereweintroducetheSurrogate-EnhancedEvolutionaryAnnealing-Simplex(SEEAS)algorithm thatcouplesthestrengthsofsurrogatemodelingwiththeeffectivenessandefficiencyoftheevolutionary Keywords: annealing-simplex method. SEEAS combines three different optimization approaches (evolutionary Globaloptimization Meta-models search, simulated annealing, downhill simplex). Its performance is benchmarked against other Radialbasisfunctions surrogate-assisted algorithms in several test functions and two water resources applications (model Hydrologicalcalibration calibration,reservoirmanagement).ResultsrevealthesignificantpotentialofusingSEEASinchallenging Multi-reservoirmanagement optimizationproblemsonabudget. Syntheticdata ©2015ElsevierLtd.Allrightsreserved. Softwareavailability space to maximize the system performance; at each trial, new valuesareassignedtothecontrolvariablesofthesimulationmodel, EASandSEEAS(RandMATLABversions)areavailableonlineat:: which runs automatically to update the value of the objective http://www.itia.ntua.gr/en/softinfo/29/ function. Combinedsimulation-optimizationschemesforwaterresource systems can be generally classified into two categories: (a) 1. Introduction decision-making problems, in which the system properties and associated processes are known a priori, but either some of its Couplingofsimulationandoptimizationisapowerfultechnique thathasgainedsignificantattentioninwaterresourcesscienceand designquantitiesoritsmanagementpolicyareunknown;and(b) calibration problems, in which some internal properties of the technology, sinceitensures greatadvantages overthetraditional system,eitherphysicalorconceptual,areunknownandhavetobe individual implementation of the two approaches (e.g., invertedbyminimizingthedeparturesofthesimulatedresponses KoutsoyiannisandEconomou,2003).Inthiscontext,asimulation against the observed ones. Despite their different rationale, both model is used to faithfully represent the dynamics of the system types of problems suffer from significant uncertainties and com- under study in subsequent time steps and next to evaluate its overall performance against one or more user-specified criteria. plexities, and theyare subject to multiple (and often conflicting) criteriaaswellasnumerousconstraints. Provided that these criteria are expressed in terms of objective Forconvenience,weconsiderthatallcriteriaareaggregatedina function,simulationcanbedrivenbyanoptimizationmodel,which singleobjectivefunctionrepresentingaglobalperformancemea- employs systematic search through the parameter (or decision) sure of the system (an alternative approach would require the formulation of a multiobjective function and the identification of * Correspondingauthor.Tel.:þ302107722842. acceptable tradeoffs among conflicting criteria, which is not the E-mailaddress:[email protected](I.Tsoukalas). case here). We also assume that all “internal” constraints (i.e., http://dx.doi.org/10.1016/j.envsoft.2015.12.008 1364-8152/©2015ElsevierLtd.Allrightsreserved. I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 123 constraints associated with the system dynamics) are handled 2006; Feyen et al., 2007; He et al., 2007; Regis and Shoemaker, through the simulation model (Koutsoyiannis and Economou, 2009; Dias et al., 2013); (2) computationally efficient optimiza- 2003),whileanyadditional“external”constraints,whichareusu- tionalgorithms(e.g.,TolsonandShoemaker,2007;Kuzminetal., allyassociated with decision-making problems, are embedded in 2008;Tanetal.,2008;Tolsonetal.,2009);(3)strategiestoavoid the objective function, typically as penalty terms. Under this opportunistically(expensive)modelevaluations(e.g.,Ostfeld and premise, the combined simulation-optimization problem is Salomons, 2005; Razavi et al., 2010; Matott et al., 2012); and (4) formalized as the determination of the global optimum (for con- surrogatemodelingtechniques,alsoreferredtoasmeta-modeling, venience,minimum)ofanonlinearobjectivefunctionf(x),where function approximation, response surface modeling and model f(,)representsthesimulationmodelandxisthevectorofcontrol emulation (Razavi et al., 2012a), where surrogate approaches are variables. The search space is a hypervolume, since the unique used to approximate the responses of the original simulation constraintsoftheproblemarethelowerandupperboundsofpa- model.Parallelcomputing,allowingtheexecutionofindependent rameters.Asf(x)isablack-boxfunction,itsanalyticalexpressionas simulations by multiple processors, requires significant in- wellasitsderivativesarenotavailable,whichprohibitstheuseof vestmentsinhardwareinfrastructure,whichmakesitimpractical gradient-basedoptimization.Givenalsothat,duetouncertainties forcommonuse.Weremarkthatinordertoreducetheentiretime and complexities of the system, f(x) is non-convex, and thus of computations three orders of magnitude e a reasonable multimodal(i.e.,itcontainsmultiplelocaloptima),derivative-free requirement when dealing with complex simulation models e methods combined with stochastic search approaches are essen- 1,000parallelprocessorsshouldbeused,whichisfarfromrealistic. tialtosolvethisso-calledglobaloptimizationproblem. The other two options, i.e., the improvement of efficiency of The need for advanced global optimization tools (e.g., evolu- existing algorithms, as well as the interruption of the function tionaryalgorithms)hasbeenearlyrecognizedbythehydrological evaluationprocedure, when the model performance seems to be community,whichhassignificantexperienceintheiruseandalso verypoorfromearlystepsofsimulation,maysavesometimebut remarkablecontributionintheirdevelopment.Intheliteratureare notasmuchasrequired.Ontheotherhand,surrogatemodelsdo found numerous reviews of optimization approaches in such nothaveanyspecificrequirementsincomputerresourcesandalso problems.Forinstance,inthecontextofwaterresourcesplanning ensureveryfastcomputations,sincetheyreplace,tosomecontext, and management, we distinguish the works by Labadie (2004), the(expensive)simulationmodel.Theirkeyobjectiveistogenerate Fowler et al. (2008), Nicklow et al. (2010), Reed et al. (2013) modelsthatareaccurateinacertainregionofthesearchspace(i.e., (emphasis to multiobjective applications) and Ahmad et al. around a potential optimum) and thus intelligently guide the (2014). The literature for hydrological calibration is even more optimization(Couckuytetal.,2013). extended.Forconvenience,wehighlighttherecentworksbyDuan Although response surface approaches go back to 70's (2013) and Efstratiadis and Koutsoyiannis (2010), who provide a (Blanning,1975),surrogate-basedoptimizationmethodshavebeen comprehensive review of global and multiobjective calibration popularizedsincethepioneeringworkbyJonesetal.(1998),who approaches,respectively.Itisalsoworthmentioningthearticleby developedtheEfficientGlobalOptimization(EGO)algorithm.EGO Maier et al. (2014), who summarize the current status of evolu- uses Kriging as surrogate model and an acquisition function tionary algorithms and other metaheuristics, and highlight new (namedExpectedImprovement),inordertolocatepotentialgood directionsforfutureresearchacrosswaterresourcesapplications. samples that should be evaluated through expensive simulation Apparently,inthewholecomputationalprocedure,simulation functions(Sacksetal.,1989;Jonesetal.,1998).Later,Sasenaetal. isbyfarthemosttime-consumingcomponent.Asmodelsbecome (2002) implemented and investigated various acquisition func- more complex and data-demanding, their requirements in tions for EGO. Literature also reports multi-objective versions of computationaltimeand/orCPUincreasesubstantially(e.g.,Tolson EGO(e.g.,Knowles,2005;Ponweiseretal.,2008;Couckuytetal., and Shoemaker, 2007; Keating et al., 2010; Razavi et al., 2010; 2013). Tsoukalas and Makropoulos, 2015a). Typical example is the case OthercommonlyusedsurrogatemodelsareRadialBasisFunc- of physically-based hydrological models of fine spatial and tem- tions(RBFsePowell,1992;Buhmann,2003),polynomials(Myers poral resolution, in contrast to lumped conceptual rainfall-runoff and Montgomery, 1995), artificial neural networks, and support models.Inotherapplications,referredtoasstochasticsimulation vectormachines(CortesandVapnik,1995;Dibikeetal.,2001).The problems,thecomputationaleffortincreasestwoorthreeordersof use RBFs within the context of evolutionary algorithms was magnitudeduetotheuseofsynthetic(insteadofhistorical)time popularized after the publication Regis and Shoemaker (2004). series of very large length (e.g., thousands of years), in order to Other typical examples of RBFs are the Multistart Local Metric provide estimations for probabilistic quantities (e.g., reliability, StochasticRBF(MLMSRBF)andtheConstrLMSRBF,whichhandles risk)withsatisfactoryaccuracy.Ontheotherhand,dependingon inequalityconstraints(RegisandShoemaker,2007b;Regis,2011). the number of parameters and the irregularity of the response Additionally,Regis(2014)andTangetal.(2012)proposedhybrid- surface,theoptimizationalgorithmmayneedtocallthesimulation izations of the particle swarm optimization algorithm (Kennedy modelhundredsorthousandsof times,inordertoconvergetoa andEberhart,1995)thatuseRBFstoassistthesearch.Shoemaker good solution. Therefore, the time effort of simulation imposes a et al. (2007) developed an evolutionary algorithm that uses an practical barrier to optimization, which is necessary to run with RBF approximation and benchmarked its performance against significantlyrestricted“budget”,bymeansofmaximumallowable severaltestproblems,withdimensionsrangingfrom8-Dto14-D. numberoffunctionevaluations.Considerasimulationmodelthat Finally, Regis and Shoemaker (2013) developed the DYnamic CO- requiresapproximately1.5minforasinglesimulationrunandan ordinate Search (DYCORS) that uses Response Surface models to optimization algorithm that requires 10,000 function evaluations handle high-dimensional expensive optimization problems. (iterations)toapproximatetheglobalminimum.Consequently,the DYCORSwasbenchmarkedagainstotherRBF-basedalgorithmsina procedurewouldlastmorethantendays,whichmakesitpracti- varietyoftestproblems,rangingfrom14-Dto200-D. callyinfeasible. Comprehensive reviews of surrogate-based optimization AccordingtoRazavietal.(2010),theapproachestoalleviatethe methodscanbefoundinthebroaderoptimizationliterature(e.g., computational burden imposed by time-consuming simulation Jin,2005;ForresterandKeane,2009;Jin,2011).Therearealsore- models are classified into four main categories: (1) parallel ported several successful applications in time-demanding hydro- computing(e.g.,Schutteetal.,2004;Chengetal.,2005;Vrugtetal., logicalproblems(e.g.,Broadetal.,2005;Mugunthanetal.,2005; 124 I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 Mugunthan and Shoemaker, 2006; Regis and Shoemaker, 2007a; 2. Optimizationmethodology Zou et al., 2007; Kourakos and Mantoglou, 2009; Tsoukalas and Makropoulos, 2015a). Razavi et al. (2012b) summarize the use of 2.1. EvolutionaryAnnealing-Simplex surrogate modeling techniques in water resource systems, also classifyingtheexistingmeta-modelingframeworks. EAS1isaheuristic,population-basedglobaloptimizationtech- It is important to remark that in the context of combined nique, originally developed by Efstratiadis and Koutsoyiannis simulation-optimization schemes, surrogate models play the role (2002),thatcouplesthestrengthofsimulatedannealinginrough ofblack-boxapproachesthataimestablishingadata-drivenrela- search spaces along with the efficiency of the downhill simplex tionshipbetweenthecontrolvariablesofthesimulationmodel(i.e., method(NelderandMead,1965)insmootherspaces.Itskeyideais explanatoryvariables)andtheobjectivefunctionoftheoptimiza- theintroductionofanexternalvariableT,whichplaysarolesimilar tionmodel(i.e.,responsevariable).Therefore,theyclearlydonot totemperatureinareal-worldannealingprocess,anddetermines intendtoreproducethedynamicbehavioroftheoriginalsimula- the degree of randomness of the search procedure. This is tionmodel(Razavietal.,2012b).Infact,thetaskofreproducingthe expressedthroughastochastictermthatisrelativetotemperature dynamicbehaviorofthesimulationmodelisperformedbyaquite and is added to the initial objective function f(x), thus getting a different surrogate modeling approach, generally referred to as modifiedfunctiong(x)¼f(x)±uT(whereuisavectorofuniformly model reduction or reduced-order modeling. This yields a low- distributed random numbers). Search is based on an evolving order, dynamic “equivalent” of the simulation model, by preser- populationoffeasiblepoints,wherecriticaldecisionsaredrivenby ving,tosomeextent,thestate-spacerepresentationoftheoriginal the modified function. The genetic operators are either quasi- model and allowing a physical interpretation of its structure stochastic geometric transformations, inspired by the downhill (Castellettietal.,2012a,2012b). simplex method, or fully-probabilistic transitions (mutations). As This paper introduces the Surrogate-Enhanced Evolutionary searchproceeds,thesystemtemperaturereducesaccordingtoan Simplex-Annealing approach (SEEAS), which is a novel global adaptive annealing cooling schedule, and all transitions become optimizationalgorithm,focusedontime-expensivefunctions.Our moredeterministic. motivationarisesfromchallengingsimulation-optimizationprob- EAS has been successfully employed in several hydrological lemsthatarecommonlyfoundinwaterresources,andtheyimpose, applications(e.g.,Rozosetal.,2004;Nalbantisetal.,2011;Kossieris intheeverydaypractice,verylimitedcomputationalbudgets,e.g., etal.,2013;Efstratiadisetal.,2015).Ithasbeenalsoincorporated offewhundredfunctionevaluations.SEEAShasbeendesignedfor within advanced modeling tools, i.e., Hydronomeas (Efstratiadis bothtypesofsuchproblems,i.e.,decision-makingandcalibration, et al., 2004), Hydrogeios (Efstratiadis et al., 2008) and HyetosR sufferingfromdifferentpeculiaritiesandcomplexities,whicharein (Kossierisetal.,2012)tosolvechallengingsimulation-optimization turnreflectedinthedifferentgeometryoftheassociatedresponse problems.Theoriginalalgorithmhasbeenalsoadaptedtohandle surfaces. multiobjectiveproblems(EfstratiadisandKoutsoyiannis,2008)and SEEASisbuiltupontheEvolutionaryAnnealing-Simplex(EAS) stochastic (i.e., noisy) objective functions (Kossieris et al., 2013). method (Efstratiadis and Koutsoyiannis, 2002), which is a hybrid HereweintroduceanimprovedversionofEAS,calledSurrogate- schemecombiningglobalandlocalsearchstrategiesandassisted Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm, by a RBF surrogate model. SEEAS uses an external archive to whichispresentedindetailherein. maintain all visited solutions in order to formulate, update and exploit the surrogate model during search. There are also some 2.2. Surrogate-EnhancedEvolutionaryAnnealing-Simplex improvementsinthekeycoreofEAS,regardingthesimplextran- sitionsandthemutationoperator.SEEASiscomparedandbench- 2.2.1. OverviewofSEEASalgorithm markedagainsttheoriginalversionofEASandthreestate-of-the- Thealgorithmisasurrogate-enhancedextensionofEASinaway art optimization algorithms that are mentioned before, i.e., DDS thatbuilds,maintainsandexploitssurrogatemodeling(SM)tech- (Tolson and Shoemaker, 2007), MLMSRBF (Regis and Shoemaker, niquesthatgenerateapproximatedresponsesurfaces,whichallow 2007b), and DYCORS-LMSRBF (Regis and Shoemaker, 2013). Eval- effectively guiding search towards promising areas of the real uationsaremadeonthebasisof12mathematicalproblems(i.e.,six responsesurface.ThemodelusedistheRBF,whichisawell-known test functions for two alternative dimensions,15-D and 30-D), a interpolationtechnique(Fig.1,left).Duringtheiterativeprocedure, hydrological calibration problem with 11 parameters, configured the algorithm maintains an external archive of all visited points, withbothrealandsyntheticdata,andamulti-reservoirmanage- alreadyevaluatedthroughthe(expensive)objectivefunction.This mentproblemwith20decisionvariables,usingsyntheticinflowsof archive is used to update the SM, in an attempt to progressively 500yearslength.Theuseofsyntheticdataisoneofthenoveltiesof provide more accurate approximations of the current region of our testing framework. Moreover, most of the known surrogate- interest(i.e.theareaaroundthecurrentbestpoint).InSEEAS,the based schemes have been onlyevaluated in calibrationproblems surrogatemodelhasadoublerole.Thefirstisprovidingnewpoints andnotintime-demandingwatermanagementapplications,with thatareaddedtothecurrentpopulation,andthesecondisassisting few exceptions (e.g., Razavi et al., 2012b; Tsoukalas and thegenetic operatorsof thedownhillsimplexschemetoidentify Makropoulos, 2015a). The results of this extended analysis are suitable directions across the search space (e.g., favorable slopes very encouraging, since the proposed method is effective and andnewareasofattraction). efficient, in terms of locating a satisfactory solution as close as In order to balance exploration (i.e., detailed sampling) and possibletotheglobaloptimum,withinreasonablecomputational exploitation(i.e.,blinduseofSM),SEEASusesaweightedmetric, time,andclearlyoutperformstheotherexaminedapproaches,in termed acquisition function (AF), which accounts for the pre- almostalltests. dictionsprovidedbytheSMaswellasthespreadofallpreviously evaluatedpoints(bymeansofadistancequantity).Inoppositeto commonpractices that use a standard expression of the AF with constant weights, in our approach the weights are dynamically adjusted, thus improving the efficiency of the algorithm. Details abouttheacquisitionfunction(AF)aregiveninSection2.2.3. 1 EASandSEEASareavailableonlineat:http://www.itia.ntua.gr/en/softinfo/29/. SEEASfollowsaniterativesearchprocedure.Attheendofeach I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 125 Fig.1. Approximatedsurface(RBF)ina2-Dexample(Ackleyfunction)usingallavailablesamplepoints(leftpanel).Therightpaneldemonstratesarandomlyselectedsimplexand themodifiedsurrogate-enhancedreflectionmovementusingcandidatepointsonthelineformedfromthesimplexcentroidandthemaximumreflectionpoint.Thesimplexis reflectedatthecandidatepointwiththeminimumfunctionvalue. iteration cycle (or generation, according to the terminology of evolutionarytheory),weobtainatleastonenewpointthatenters XNs sðxÞ¼ l 4ðjjx(cid:2)xjjÞþpðxÞ (1) thepopulationandreplacesoneofitsexistingmembers.Atypical i i iterationcycleofSEEASstartsbyfittingthesurrogatemodeltothe i¼1 cthurroreungthpLoaptiunlaHtiyopne(ricnuitbiealSlya,mthpilsinpgo,pLuHlaSt)i.oNneixstr,awnedormunlyagneinnetreartneadl whereli∊R,4isabasisfunctionoftheform4(r)¼r3,jj.jjisthe Euclideandistance(norm)andp(x)isapolynomialtailoftheform gElAoSb)aalcorpotsismtihzeatsiounrraolggaotreitrhemspo(pnasretiscuurlfaarclye,,tuhseinogriagsinoabljveectrisvioenthoef rpa(mx)e¼terbsΤxl,þb,aa,nwdhaearreebde¼te(rbm1,in…e,dbbny)Tsaonlvdinag∊thRe.lTinheeamrsoydsetelmpa:- acquisitionfunction(AF),inordertolocateacandidatesolutionto (cid:2) (cid:3)(cid:2) (cid:3) (cid:2) (cid:3) enterthepopulation(providedthatthissolutionoutperformsthe F P l y currentworstpoint).Thereafter,wefollowasearchprocedurethat PT 0 c ¼ 0 (2) is mostly based on the genetic operators of EAS, enhanced by sinurorTorhdgeaegtree-tnaoesrseainslthiedadenascteiesptthsoeiuntcsiuliimrzreepntlehtxek-ibnnaofsowerdlmedtargtaienonsifnogratmihneaetdisoebnlyesc.tthioenSMof, Nwsh(cid:3)er(enFþis1)anmNatsr(cid:3)ixN,tshmeaitthrixrowwitohfewlehmicehnitss(41,ijx¼Ti)4,(ljj¼xie(l1x,j…jj),,PlNiss)Ta, simplextransitions.Acharacteristicexampleinvolvingthereflec- c¼(b1,…,bn,a)T,andy¼(y1,…,yNs)T.Wementionthatthematrix ofEq.(2)isinvertibleifandonlyifRank(P)¼nþ1(Powell,1992). tionstepisillustratedinFig.1,right(forsimplicity,wedemonstrate the predictions of the surrogate model and not the AF). In the originalversionofEAS,afterspecifyingthedirectionofreflection (definedbythedifferencebetweentheworstvertexofthesimplex 2.2.3. Acquisitionfunction andthecentroidofallrestvertices),thealgorithmemploysablind Acquisition functions (AF) are well-established techniques, trial-and-error procedure, i.e., it generates subsequent random aiming to balance exploration-exploitation in surrogate-based pointsalongthisdirectionandevolvesaccordingtotheirvalues.In optimization algorithms (e.g., Sasena et al., 2002; Forrester and this scheme, the original objective function is called whenever a Keane, 2009). SEEAS implements a novel scheme, in which the newtrialpointisgenerated.Sincetheexpansioncontinuesaslong weights are automatically adjusted during the iterative process, as the function value improves, this procedure may be quite according tothe current number of function evaluations and the expensive,intermsoffunctionevaluations.Inopposite,inSEEAS maximumallowednumberofevaluations. weemployacandidatescreeningprocedureusingtheSM,which ConsiderasetofNspoints,xjs,withknownresponsevalue,f(xjs), allows making multiple trials with negligible computational cost andanothersetofNcpointsxic,withapproximatedresponsevalues andguidingsearchusingallpriorinformation.Similarscreeningis s(xi).Thelatterareconventionallycalledcandidatepoints,inthe c employed within all simplex transformations (except shrinkage), sense that they are used within infilling or internal search pro- thusprovidingsignificantaidtotheassociateddecisions. cedures,e.g.,selectionofthemostappropriatereflectionpointin the graphical example of Fig. 1. The acquisition function is esti- matedasfollows: 2.2.2. Surrogatemodel(RBF) Step A: Standardize the approximated response values of all SEEASimplementstheRadialBasisFunction(RBF)interpolation candidate solutions by setting s*(xi) ¼ [s(xi) e smin]/ c c method(Powell,1992;Buhmann,2003),andmorespecificallythe [smaxesmin],wheresminandsmaxarethecorrespondingmini- RBFwithcubicbasisfunctionsandlinearpolynomialtail.Thisisa mumandmaximumvalues. commonly used surrogate model of proven effectiveness, as re- Step B: Calculate the minimum Euclidean distance of each portedinnumerousstudies(e.g.,Mugunthanetal.,2005;Regisand candidatepointxi fromallpreviouslyevaluatedpoints,xj,i.e., c s Shoemaker, 2007a, b; Shoemaker et al., 2007; Regis and di ¼ d*(xic) ¼ min1 (cid:4) j (cid:4) NSjjxic e xjsjj, and standardize them by Shoemaker,2013;MüllerandShoemaker,2014). settingdi*¼(diedmin)/(dmaxedmin),wheredminanddmaxare ThecomputationalprocedureofRBFisthefollowing.GivenNs thecorrespondingminimumandmaximumdistances. samplesx∊Rnwithresponsey,wegetthepairs(xi,yi).Thepre- StepC:CalculatetheweightedvalueofAFforeverycandidate dictions(x)ofRBFmodelatsamplepointxisgivenby: pointusingtheformula: 126 I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 (cid:4) (cid:5) (cid:4) (cid:5) Step3:AnewpointxpisgeneratedbyminimizingAF,usingthe AF ¼ws* xi þð1(cid:2)wÞd* xi (3) originalversionofEASforinternaloptimization.Thenewpoint i c c is evaluated through f(x) and replaces the worst point of the wherewisadimensionlessweightingcoefficient,ensuringbalance currentpopulation,ifthelatterisworse(higher)thanf(xp). Step 4: A set of n þ 1 points is randomly selected from the between exploitation and exploration. To finalize the infilling currentpopulation,inordertoformulatetheverticesofasim- routine,thecandidatewiththeminimumAFvaluewillbeselected andassessedthroughtheobjectivefunction.Asmentionedbefore, plexinthen-dimensionalsearchspace,symbolizedS¼[x1,x2, the minimization of the AF across the surrogate search space is …,xnþ1].TheelementsofSaresortedsuchasf(x1)corresponds carriedoutthroughtheoriginalEASalgorithm. to the best (lowest) and f(xn þ 1) to the worst value of the objectivefunction. Step5:Fromthesubset[x2,…,xnþ1]weselectacandidatepoint xw to be replaced in the population, based on the modified, quasi-stochasticobjectivefunction: 2.2.4. DetaileddescriptionofSEEAS Let f(x) be anonlinearobjectivefunction in the feasible space gðxÞ¼fðxÞþuT (6) xL (cid:4) x (cid:4) xU, where x is an n-dimensional vector of continuous control variables (in practice, f(x) represents the performance where u is a uniform random number in the interval [0, 1]. By measureofasimulationmodel).Forconvenience,wesearchforthe addingthestochasticcomponentuTtotheobjectivefunctionf(x), globalminimumoff(x),allowingabudgetofMFEfunctionevalu- thealgorithmbehavesasinbetweenrandomanddownhillsearch. ations.Thealgorithmusestwoarchives.Thefirstisthepopulation Attheearlystagesofoptimization,whentemperatureisstillhigh, P[t],whichisevolvedduringthesearchprocedure(wheretdenotes any point except for the best one can be replaced. On the other tehxeteirtnearaltaiorcnhcivyecleA[ot]r, gwehniecrhatcioonn)t,aainnsdatlhlevsiseictoedndpiosinthtsefsroo-mcaltlhede hand,inthelimitingcaseT/0,theactuallyworstpoint,i.e.,xnþ1, isreplaced,asconsideredintheoriginaldownhillsimplexmethod. beginningoftheoptimization(t¼0),includingthemembersofthe cthuerroebnjtecptoivpeulfautnioctni.oWnfh(xe)n,eitveenrtaernsetwhepaoricnhtivxeiAs[et]v(atlhueaatercdhtihvreomugahy Step6:AsetofNrtrialpointsxkcraregeneratedbyreflectingthe simplexaccordingtheformula: beupdatedseveraltimeswithinageneration).Atthebeginningof ceoanchsidneerwinggtehneercautriorenntt,eltehmeesnutrsroogfaAt[et].mThoedseilzeisorfet-heevaploupauteladtiobny xkcr ¼gþð0:5þdkÞðg(cid:2)xwÞ (7) ism(cid:5)nþ1(i.e.,theminimumnumberofpointsrequiredtofita wheregisthecentroidofthesubset[x2,…,xnþ1]anddkisascale RBFwithlinearpolynomialaswellastoformulateasimplexinthe coefficientequallyspreadintheinterval[0,1],thusdk¼(ke1)/ n-dimensionalspace),andremainsconstant,whilethesizeofthe (Nre1),fork¼1,…,Nr.Amongallcandidates,weselecttheone external archive progressively increases, thus ensuring more ac- thatminimizesAF,whichwewillnextcallthereflectionpoint,xr. curateapproximationsoftheresponsesurfaceand,consequently, The reflection point is evaluated on the basis of the objective more reliable predictions. The initial population P[0] is generated functionandenterstheexternalarchive. viatheLatinHypercubeSampling(LHS)technique,whichensures Asaptpisafraecntotlryy,tshpereianditiaaclraorscshtihveeAfe[0a]siisbliedesnptaicceal(tGoiuPn[0t]a. et al., 2003). Step7:Iff(xr)<f(xw),wereplacexwbyxrinthepopulationand move to steps 8a or 8b, according tothe outcome of its com- auxSiliimariylaprlayratomEeAteSr,,tTh[et],scuarlrleodgatteem-epnehraantucreed.Tahlgeocroitnhcmepatlsooriugsineastaens parisonwiththecurrentbestvertex,i.e.,f(xr)<f(x1).Otherwise, wemovetostep9,todecidewhetherxrshouldbeacceptedor from simulated annealing, where the key role of temperature is withdrawn,thusseekinganothercandidate. ensuringbalancebetweenrandomnessanddeterminism.InSEEAS, Step8a:Iff(xr)<f(x1),thevectorxrex1definesadirectionof temperatureisdynamicallyadjusted(i.e.,reduced)usingempirical rules,consideringtheextremevalues,f½t(cid:6) andf½t(cid:6) ,ofthecurrent minimization.Weremarkthatthedetectionofdownhillslopes min max inhigh-dimensionalspacesofcomplexgeometryisnotanoften populationP[t],andadimensionlessprogressindex,definedas case.Thismakesessentialtotakeadvantageinordertoaccel- PI¼logðFEÞ=logðMFEÞ (4) eratethesearchprocedure,byemployingasequenceofNetrial expansionstepsthroughtherecursiveformula: whereFEisthecurrentnumberoffunctionevaluationsandMFEis the maximum allowable number of FE, which is a user-specified xkce¼gþdkðxr(cid:2)gÞ (8) termAitnyaptiicoanlcitreitreartiioonn.cycle ofSEEAS,an outlineofwhichis illus- wheredkisascalecoefficientgivenbydk¼dke1þ(ke1)/(Nee1), tratedinFig.2,comprisesthefollowingsteps(generationindextis fork¼1,…,Ne.TheexpansioncontinuesaslongastheAFvalueis improved(oruntilreachingtheboundsofthefeasiblespace).The omittedforsimplicity): optimal(intermsofAF)trialpoint,xe,iskeptintheexternalarchive Step1:Theinterpolationsurfaces(x)isupdatedusingthecur- andreplacesxrinthecurrentpopulation,providedthatf(xe)<f(xr). Inthatcase,thealgorithmmovestostep12tofinalizethecycle. rentinformationstoredintheexternalarchiveA(i.e.,allpoints evaluatedsofarthroughtheoriginalobjectivefunction). Step2:TheweightingcoefficientoftheAFisupdatedusingthe Step8b:Iff(xr)>f(x1),weattemptdetectingapromisingsolu- empiricalformula: tion in theneighborhoodofx1,byemploying Nc trialcontrac- tionsofthesimplexintheintervalbetweenthecentroidandthe reflectionpoint,accordingtotheformula: w¼max½0:75; minðPI; 0:95Þ(cid:6) (5) The above formula ensures that at the early stages of optimi- xkcc¼gþð0:25þ0:5dkÞðxr(cid:2)gÞ (9) zation,moreweightisgiventoexploration(upto0.25),butgrad- uallyitscontributiondiminishesthusnotexceeding0.05. wheredk¼(ke1)/(Nce1),fork¼1,…,Nc.Theoptimal(intermsof I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 127 Fig.2. OutlineofSEEASalgorithmfollowingthestepsexplainedinSection2.2.4(*denotestheuseofthesurrogatemodelwithintheassociatedsimplextransformations). AF)trialpoint,xc,iskeptintheexternalarchiveandreplacesxrin Thethresholdof0.50prohibitsafastreductionoftemperature thecurrentpopulation,providedthatf(xc)<f(xr).Inthatcase,the and therefore maintains enough randomness within decisions, algorithmmovestostep12tofinalizethegenerationcycle. which in turn prohibits early convergence to local optima. After reducingT,theiterationcycleisfinalized(step12). Step9:Iff(xr)>f(xw),weusethemodifiedobjectivefunction(7) todecidewhetheremployinginsidecontractionofthesimplex, Step 10b: The reflection point xr is accepted although being thus seeking for a potential local optimum, or expanding to- worsethanxw.Next,Nuuphill(i.e.,maximization)movements wards a non-optimal (i.e., uphill) direction, in an attempt to areperformedusingthesameformulawithmultipleexpansion escape from the current area of attraction. In this respect, if (Eq. (9)), in an attempt to pass the hill and discover adjacent g(xr)>g(xw)wemovetostep10a,otherwisewemovetostep regions of attraction. This geometrical transformation was 10b. introduced by Pan and Wu (1998), to facilitate the simplex Step10a:WerejectxrandimplementNctrialinsidecontractions escapingfromlocalminima.Similarlytoprevioussteps,weuse of the simplex in the interval between the centroid and the theAFtodeterminetheoptimumuphillpoint,xu.Iff(xu)<f(xr), worstpoint,accordingtotheformula: thispointiskeptintheexternalarchiveandreplacesxrinthe current population, while the algorithm moves to step 12 to xkcc¼g(cid:2)ð0:25þ0:5dkÞðg(cid:2)xrÞ (10) finalize the generation cycle. Otherwise, none of the simplex transformations results to a better solution than the worst wheredk¼(ke1)/(Nce1),fork¼1,…,Nc.Theoptimal(intermsof vertex xw, thus the last option is to attempt a pure stochastic AF)trialpoint,xc,iskeptintheexternalarchiveandreplacesxwin generator,referredtoasmutation(step11). thecurrentpopulation,providedthatf(xc)<f(xw).Otherwise,the Step11:Weseekarandompointoutofthetypicalrangeofthe simplexshrinkstowardsthebestvertexx1,suchas: current population, defined on the basis of the mean, mP, and standarddeviation,sP,ofallmembersofP.Inthisrespect,we xs;i¼0:5ðx1þxiÞ for i¼2;…;nþ1 (11) [gmePneerastPe,maPnþorsmP]a,lwlyh-dicihstrisibauctceedptpeodiniftf(xxmm)o<utf(oxfr).thOethienrtwerivsael, We remarkthat the above transformation is the sole evolving weaccountforauser-specifiedmutationprobabilitypminorder mechanismofthealgorithmallowingthesimultaneousgeneration toacceptornottherandomlygeneratedpoint,xm,andreplacing of multiple points; particularly, n new points are generated that xr in the current population. Anyway, since xm is evaluated replaceallpreviousverticesinthecurrentpopulation.Thiscanbe throughtheobjectivefunction,itenterstheexternalarchive. consideredasmilestoneofthesearchprocedure,inthesensethata Step 12: Considering the new member (or members, in the local minimum, lying in the neighborhood of x1, has been sur- particularcaseofsimplexshrinkage)ofthepopulation,were- rounded. This is the time to reduce the temperature of the opti- evaluatethecurrentminimum,xmin,andmaximum,xmax,and mizationsystembyareductionfactorj.IncontrasttoEAS,wherej their function values, fmin and fmax. We also re-evaluate the isaconstantparameteroftheannealingcoolingschedule,usually currentnumberoffunctionevaluations,FE,andcheckwhether takingvaluesintotheinterval0.90e0.99,initssurrogate-enhanced thishasn'texceededtheterminationcriterion,MFE.Finally,we versionjisautomaticallyadjustedtoalsoaccountfortheprogress re-evaluate the temperature so that T (cid:4) x(fmax e fmin), where indexPI,usingthefollowingexpression: x(cid:5) 1 is a user-specified parameterof the annealingschedule, usuallysetbetween2and5.ThisrestrictionpreventsTtaking j¼maxð1(cid:2)PI; 0:50Þ (12) 128 I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 Table1 Configurationofbenchmarkingsuite. Problem Algorithms Numberofcontrol Max.Function Independentrunswithrandom Population Surrogatemodel(metamodel) variables,n evaluations(MFE) initialpopulations size Testfunctions All 15 500,1000 30 32 RBFwithcubicbasisfunctionsand Testfunctions All 30 500,1000 30 62 linearpolynomialtail Modelcalibrationwith All 11 500,1000 30 24 realdata Toycalibrationwith All 11 500,1000 30 24 syntheticdata Multireservoir SEEAS,DYCORS, 20 500 10 42 management MLMSRBF problem extremelyhighvalues,whichwoulddeterioratetheefficiencyof dependingonMFE(inparticular,SEEASusestheprogressindexPI, SEEAS,asfarassearchwouldbecometoorandom. definedinEq.(4),withintheannealingcoolingschedule).Finally, forthethreesurrogate-basedmethods(SEEAS,DYCORS,MLMSRBF) Torunthealgorithm,itisessentialprovidingvaluesforallinput weemployedthesamemetamodel(RBFwithcubicbasisfunctions arguments, which are the number of desirables steps within and linear polynomial tail), thus ensuring similar computational different simplex transitions (Nr, Ne, Nc, Nu), the mutationproba- effortforbuilding,updatingandexploitingtheRBF(Razavietal., bility pm, and the adjusting factor x of the annealing cooling 2012a). We remark that in real-world problems the effort of the schedule.Recommendedvalues,alsousedinallnextbenchmarking optimization routines (including metamodel fitting) is much less tests,areNr¼Ne¼Nc¼Nu¼20,pm¼0.10andx¼2.Thesevalues than the effort of simulation, and therefore the runtime of the weredeterminedonthebasisofextendedinvestigationswithinthe overallsearchprocedureispracticallyrelativetoMFE. developmentofSEEAS,andtheyhavebeenalsovalidatedthrough AllcomputationswereimplementedinMATLABmathematical thesensitivityanalysisofSection4.4. environmentusinga3.0GHzIntelCorei5processorwith4GBof RAM, running on Windows 8 OS. For the SEEAS method we 3. Benchmarkingmethodology employedthetypicalinputargumentsgiveninSection2.2.4,while fortheotheralgorithms,i.e.,EAS,DDS,MLMSRBFandDYCORS,we 3.1. Benchmarkingprotocol used the default values suggested in the associated articles (Efstratiadis and Koutsoyiannis, 2002; Regis and Shoemaker, To assess the performance of SEEAS we compared it with the 2007b;TolsonandShoemaker,2007;RegisandShoemaker,2013). originalversionofEASaswellasthreestate-of-the-artoptimiza- tion algorithms, which are synoptically presented in Section 3.3. 3.2. Performanceevaluationapproach Twoofthebenchmarkalgorithms,i.e.,DYCORSandMLMSRBF,are surrogate-assisted, while EAS and DDS do not employ surrogate Following the ideas of Razavi et al. (2012a) and Matott et al. modelsthroughsearch. (2012),afterimplementingallrunsforeachspecificoptimization Avarietyoftestproblemswereexamined,theoreticalaswellas problemsolvedwithaspecificalgorithm,weplottedthecumula- real-world. Briefly, the hereafter called benchmarking “suite” in- tive distribution function (CDF) of the optimal values of f(x) ob- cludessixmathematicaltestfunctions,formulatedwith15and30 tained within the specific budget. In order to quantify the controlvariables,ahydrologicalcalibrationproblemwithrealand probability of attaining an equal or better solution, we used the syntheticdata,andatime-expensivemulti-reservoirmanagement conceptofstochasticdominance(SD),introducedbyLevy(1992),to problem(6(cid:3)2þ1(cid:3)2þ1¼15problems,intotal). comparetheCDFsofthealgorithms.LetFАandFВbetheCDFsof To ensure fair comparison and safely infer about the perfor- algorithmsAandB,respectively.Assumingtheminimizationofa manceofthealgorithmsweattemptedtoensureasmuchassimilar randomquantityq,weassumethatAdominatesBifFА(q)>FB(q) configurations, as summarized in Table 1. In all problems we for all q, and vice versa. On the contrary, if the two CDFs are employed multipleindependent runs, using the same population intersectedatsomepointqu,thenSDisnotapplicable.Inthiscase, size and the same random generation technique, i.e., LHS. The weevaluatedthemedianpoint,i.e.,theonewith50%probabilityof populationsizewassetequaltom¼2(nþ1),asrecommendedby exceedance,andconsideredasbetterthealgorithmwiththebest Regis and Shoemaker (2007a, 2013), where n is the problem performanceatthispoint.Infact,toensurethatthedifferenceof dimension(i.e.,thenumberofcontrolvariables).Weremarkthat thetwoalgorithmsatthepointofinterestisstatisticallysignificant, otherresearchersrelatetheinitialpopulationsize(alsoreferredto we employed the non-parametric ManneWhitney U-test (MWU; as design of experiment, DoE) to the available computational MannandWhitney,1947).ThenullhypothesisoftheMWUtestis budget, quantified in terms of MFE, in order to design a more thatdatainFАandFВaresamplesfromcontinuousdistributions detailedmetamodel;forinstance,Razavietal.(2012b)suggestthat withequalmedians.TheconfidenceleveloftheMWUtestwasset m ¼ max[2(n þ 1), 0.1 MFE]. However, in our tests we avoided to95%. associatingmwithMFE,inordertoinvestigatetheimpactsofthe problem dimension to the performance of the examined algo- 3.3. Briefdescriptionofbenchmarkoptimizationalgorithms rithms.Furthermore,wepreferredsavingresourcesfortheevolu- tionaryprocedure,insteadofspendinganon-negligiblepartofour 3.3.1. DynamicallyDimensionedSearch(DDS) budgettotheinitialDoE. Dynamically Dimension Search2 (DDS), is a stochastic, single- Eachproblembutthelastwassolvedconsideringtwoalterna- solution based algorithm, developed by Tolson and Shoemaker tivecomputationalbudgets,MFE(500and1000).Werunalltests withtwodifferentbudgets(insteadofthemaximumofthem)since all examined algorithms (except EAS) involve parameters 2 https://github.com/akamel001/Dynamic-Dimension-Search. I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 129 (2007)tolocatenear-optimalsolutionswithfewfunctionevalua- 4. Testfunctions tions. DSS is designed to search globally at the early stages and more locally when approaching a user-specified number of 4.1. Setupofoptimizationproblems maximumfunctionevaluations(MFE).Itevolvesbyperturbingthe current best solution in randomly selected dimensions, using an Thefirstsuiteofbenchmarkproblemsinvolvestheoptimization evolutionary operator based on the normal distribution. The of six well-known mathematical problems (test functions), probability of selecting a dimension toperturb is proportional to combining two alternative formulations in terms of number of thecurrentnumberoffunctionevaluationsandMFE.Thetransition variables (n ¼ 15 and 30), and two algorithmic configurations in from global to local search is employed by dynamically reducing termsofMFE(500and1000).Thissettingallowedforassessingthe thenumberofperturbeddimensions.Intheliteraturearereported performanceofthealgorithmsagainstincreasinglevelsofdimen- several successful applications of DDS (e.g., Tolson et al., 2009; sionality and increasing computational budget. Considering two Razavi et al., 2010; Matottetal., 2012; Razavi etal., 2012a; Regis alternative dimensions and two computational budgets, we andShoemaker,2013). configured four different problems for each test function, i.e., 24 optimization problems in total. According to the benchmarking protocolexplainedinSection3.1,forallproblems,weemployed30 independentruns,thusrandomlychangingtheinitialpopulationof 3.3.2. MultistartLocalMetricStochasticRBFalgorithm(MLMSRBF) eachsearchexperiment.Thepopulationsizeofallalgorithmswe Regis and Shoemaker (2007b) developed the Multistart Local set equal to 32 and 62, for the 15-D and 30-D formulations, Metric Stochastic RBF3 (MLMSRBF), which is surrogate-assisted respectively. optimization algorithm that can be considered as extension of Table 2 summarizes the main characteristics of the examined DDS.ThefirststepistheimplementationoftheinitialDoEtofitthe test functions, which represent search spaces of different surrogate model (particularly, RBF), which evolves by perturbing complexity. Two of them (Sphere and Zakharov) are unimodal, thecurrentbestpoint(similartoDDS),usingnormaldistribution whiletherestaremultimodal(Ackley,Griewank,Rastrigin,Levy). withzeromeanandaspecifiedcovariancematrix.Additionally,in Inallcasestheglobalminimumisknownandequaltozero.The ordertolocatepromisingcandidates,thealgorithmusesametric analyticalexpressionofthetestfunctionsandtheboundsoftheir thatbalancestheRBFpredictionandtheminimumdistancefrom variablesaregivenintheAppendix. previously evaluated points (this is similar to the acquisition functionintroducedin2.2.3,butwithconstantweights).Theglobal 4.2. Statisticalevaluationofoptimalsolutions character of the algorithm is further enhanced by implementing multipleDoEs.Thismultistartstrategyisenabledonlyifthealgo- Aninitialassessmentoftheperformanceofthefiveexamined rithmappearstohavebeentrappedtoalocalminimum.Regisand algorithmswasmadeonthegroundsofmeanandstandarddevi- Shoemaker (2007b) demonstrated the efficiency of MLMSRBF in ationofthebestfunctionvaluesobtainedfromeachoptimization several benchmark problems, including 17 multimodal test func- set(i.e.,30independentrunsofthealgorithm).Theclosesttozero tionsanda12-dimensionalgroundwaterbioremediationproblem. is themean and the lowest the standard deviation indicates that Intheliteraturearealsoreportedothersuccessfulapplicationsof thealgorithmreachesthetheoreticaloptimumwithhighaccuracy the method (e.g., Mugunthan et al., 2005; Mugunthan and andreliability. Shoemaker,2006;RegisandShoemaker,2013). The statistical superiorityof SEEAS is exhibited in all problem configurations,asshowninTables3and4,forproblemdimensions n¼15and30,respectively.Specifically,forthe15-Dformulation (Table 3), SEEAS achieves the best performance (i.e., the lowest mean) in three out of six (OF1, OF3, OF6) and four out of six 3.3.3. DYnamicCOordinateSearch-MultistartLocalMetric problems(OF1,OF2, OF3,OF6), forMFE¼ 500 and1000,respec- StochasticRBF(DYCORS-LMSRBF) tively. By doubling the dimensionality of the test functions to The DYCORS framework was recently proposed by Regis and n¼30,thussignificantlyincreasingthecomplexityoftheassoci- Shoemaker (2013) for surrogate-based optimization of high- ated optimization problems, SEEAS outperforms the other algo- dimensionalexpensivefunctions.Theauthorspresentedtwover- sions, DYCORS-LMSRBF and DYCORS-DDSRBF.4 The former is rithmsinfouroutofsix(OF1,OF2,OF3,OF6)andthreeoutofsix problems (OF1, OF3, OF6), for MFE ¼ 500 and 1000, respectively extension of LMSRBF and the latter is a surrogate-assisted DDS (Table 4). Considering all alternative configurations, SEEAS is (hereweuseDYCORS-LMSRBFthatperformedslightlybetterthan optimalfor14outof24problems,DYCORSandEASareoptimalfor DYCORS-DDSRBF). DYCORS employs a strategy similar to DDS by 4outof24,andDDSisoptimalfor3outof24.MLMSRBFdoesnot dynamically and probabilistically reducing the number of per- outperforminnoneofthe24testproblems. turbeddimensionsuntilreachingtheMFE.Inordertogeneratetrial Asexpected,theincreaseofcomputationalbudgetfrom500to candidate points (on the selected/perturbed dimensions) the al- 1000 improves the performance of all algorithms. In general, the gorithmusesanormaldistributionwithzeromeanandstandard deviation sn, but this does not remain constant, since sn is mostsignificantimprovementisachievedbyEASandDDS,whichis reasonablesincethesealgorithmsarenotsurrogate-assisted,thus dynamicallyadjusted tocontrol the range of perturbation. More- theyarebydefinitiondesignedtoproceed slowerthantheother over,DYCORS-LMSRBFiscyclingthroughasetofweightsinorderto schemes. The convergence behavior of the algorithms is further balanceexploration and exploitation of the surrogatemodel. The investigatedinnextsection. authors assessed the performance of the two algorithms against It is also worth mentioning that all algorithms exhibit poor severaloptimizationschemesinavarietyoftestproblems,among performanceagainstfunctionsOF4(Zakharov)andOF5(Rastrigin), whicha14-Dhydrologicalcalibrationproblem. sincetheyfaillocatingsatisfactorysolutionsforthegivenbudgets. Inparticular,theplate-shaped valleyofZakharovfunctionmakes extremely difficult fitting metamodels, which degenerates to hy- 3 https://courses.cit.cornell.edu/jmueller/or http://people.sju.edu/~rregis/pages/ software.html. perplanewithpracticallyzeroslopes.ItisnotsurprisingthatEAS 4 https://courses.cit.cornell.edu/jmueller/. ensures the best solutions, although these are still far from the 130 I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 Table2 Summarycharacteristicsoftestfunctions(theirreferencesaregiveninAppendix). Problem Testfunction Responsesurfaceproperties OF1 Sphere Unimodalandconvex OF2 Ackley Multimodalwithmanylocalminima OF3 Griewank Multimodalwithmanyregularlydistributedlocalminima OF4 Zakharov Unimodalwithaplate-shapedvalley OF5 Rastrigin Multimodalwithmanylocalminima OF6 Levy Multimodalwithmanylocalminimaandparabolicvalleys Table3 Meanandstandarddeviationofbestsolutionsin15-Dtestproblems(optimalresultsarehighlighted). MFE Testfunction EAS DDS SEEAS DYCORS MLMSRBF Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev 500 OF1 1.938 0.978 0.852 0.479 0.002 0.001 0.002 0.001 0.019 0.014 OF2 7.159 1.723 6.025 1.314 0.812 0.233 0.809 0.372 2.231 0.658 OF3 7.682 2.997 2.626 1.269 0.538 0.118 0.885 0.084 1.085 0.052 OF4 39.434 14.894 137.447 52.366 59.144 28.023 158.669 47.788 150.411 49.875 OF5 86.245 14.148 24.887 7.081 46.268 15.359 38.958 12.340 45.920 18.803 OF6 1.905 0.877 0.681 0.314 0.203 0.105 1.208 1.406 1.344 2.129 1000 OF1 0.378 0.177 0.150 0.079 0.001 0.001 0.001 0.000 0.011 0.007 OF2 3.523 0.936 3.847 0.528 0.437 0.208 0.607 0.092 1.862 0.556 OF3 2.444 1.061 1.505 0.299 0.368 0.140 0.809 0.082 1.040 0.037 OF4 26.828 17.895 97.541 38.226 41.290 26.639 121.266 36.925 121.359 37.730 OF5 59.735 17.012 11.233 3.136 29.733 12.838 33.585 13.490 35.784 11.031 OF6 0.767 0.292 0.234 0.104 0.124 0.060 0.536 0.860 0.524 0.863 Table4 Meanandstandarddeviationofbestsolutionsin30-Dtestproblems(optimalresultsarehighlighted). MFE Testfunction EAS DDS SEEAS DYCORS MLMSRBF Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev 500 OF1 4.305 1.163 9.516 2.737 0.019 0.006 0.083 0.034 0.739 0.708 OF2 9.923 1.160 12.872 1.329 1.878 0.301 4.297 3.721 6.193 4.362 OF3 17.866 3.455 38.398 12.050 0.782 0.118 1.265 0.079 3.459 1.927 OF4 117.821 28.757 562.145 113.230 173.240 44.185 472.815 90.897 575.424 174.073 OF5 228.693 18.442 132.149 24.567 122.658 19.427 112.046 23.076 165.437 46.846 OF6 6.338 2.652 15.823 5.481 0.659 0.184 3.407 2.540 7.326 10.944 1000 OF1 2.529 0.933 2.112 0.791 0.006 0.004 0.011 0.004 0.358 0.177 OF2 6.516 0.845 7.670 0.924 1.206 0.297 1.085 0.168 3.643 1.103 OF3 8.836 2.617 8.273 2.679 0.549 0.093 1.020 0.026 2.420 0.713 OF4 94.598 20.317 412.238 118.573 151.472 54.097 403.812 93.081 491.425 146.097 OF5 198.335 16.587 71.598 15.028 98.371 19.505 85.267 22.956 134.864 39.193 OF6 2.683 0.736 3.921 2.215 0.443 0.126 4.213 5.440 2.865 4.583 theoretical optimum. EAS has been designed to also handle flat allow implementing steep downhill transitions. In general, the response surfaces, which are often met in water management greatadvantageofthesimplex-basedtransitionsistheindirectuse optimizationproblems,asfurtherexplainedinSection6.3.Onthe oftheconceptofgradient,whichfavorsquicklocationofregionsof other hand, DDS is the algorithm that generallyensures the best attraction of local optima. This is of particular importance in solutionoftheRastriginproblem.Again,thisisnotsurprising,since computational expensive problems, where the algorithm should thesearchspaceofthisfunctionisextremelyrough,withmultiple quicklydetectpromisingdescentdirections.Infact,SEEASisclearly localminima,thusthemoststochasticofallschemesisexpectedto superior tothe other two surrogate-assisted algorithms (DYCORS bethemostefficient. and MLMSRBF) in all problems, except for Rastrigin. The most impressive case is the Levy problem, whereSEEAS locates avery good solution after the first one hundred of function evaluations 4.3. Evaluationofconvergencebehavior (Fig.9a),whilethemeanbestvaluefoundbyotheralgorithmssofar iseventwoordersofmagnitudehigher.Similararetheresultsfor Inordertofurtherinvestigatetheconvergencebehaviorofthe the Griewank function (Fig. 9b), which could be interpreted as a algorithms, we plotted the average (out of 30 trials) value of the rough, multimodal version of sphere. A plausible explanation for bestpointfoundsofaragainstthenumberoffunctionevaluations thisisthecombinedeffectoftheknowledgegainedbythemeta- (Figs.3e8).Eachfigurereferstoaspecifictestfunctionandcom- model,whicheasilyrecognizesthesphericalstructureofGriewank, prises four charts, for the alternative configurations (two and the simplex-based operators, using approximations of the dimensions(cid:3)twoMFE). gradientofthefunction. Inmostcases,SEEASexhibitsthefasterconvergence,evidently Aninterestingconclusionisthat,regardingSEEAS,theincrease becausetheexpansionmechanismssupportedbythemetamodel ofthecomputationbudgethasmildeffectsintheimprovementof (which provides enhanced overview of the surface geometry), I.Tsoukalasetal./EnvironmentalModelling&Software77(2016)122e142 131 Fig.3. ConvergencecurvesfortestfunctionOF1(Sphere)with15(a,b)and30variables(c,d),withMFE¼500(a,c)andMFE¼1000(b,d). themeanbestsolution.Thisisanotherevidenceofthesuitabilityof occasionally called in order to avoid making search too random. SEEAS for extremely time-demanding optimization problems, in Finally,thesetupwithx¼2providessystematicallybetterresults which the desirable number of function evaluations should be compared to x ¼ 1, while it exhibits either better or similar per- minimal. formance when the annealing cooling parameter increases up to x¼4(Table7).Nevertheless,acommonoutcomeformtheabove 4.4. SensitivityanalysisagainstinputparametersofSEEAS investigationsistherelativelylowsensitivityofSEEASagainstthe examinedconfigurations,formostoftestproblems. As mentioned in Section 2.2.4, SEEAS requires determining severalinputarguments,intermsofstepparametersNr,Ne,Ncand 4.5. Suitabilityassessmentbasedonstochasticdominance Nu,mutationprobabilitypm,andadjustingfactorxoftheannealing cooling schedule. In order to investigate the sensitivity of SEEAS Foreachproblemandeachalgorithmweillustratetheempirical against the default values adopted so far (i.e., CDFs,usingthesampleof30bestsolutionsfoundafterthetermi- Nr ¼ Ne ¼ Nc ¼ Nu ¼ 20, pm ¼ 0.10 and x ¼ 2), weemployed 30 nationofthecorrespondingsearchprocedures.Basedonthem,we independentrunsofthetestsfunctions(forn¼15variablesand calculatedthemediansof theCDFs(Table8),andnextemployed MFE¼500),assigningdifferentvaluestoitsinputparameters.The theMWUtestbetweenthealgorithmsprovidingthebest(lower) configurations and summary statistics, in terms of means and medians,toassesswhethertheobtaineddifferencesaresignificant. standard deviation of the optimal solution of each set of optimi- TheresultsofalltestsaresummarizedinTable9. zations,aregiveninTables5e7. The outcomes of the MWU test are in full accordance with The analysis justifies our recommendations for the input pa- previousconclusions,andclearlyprovethestatisticalsuitabilityof rameters of SEEAS. As shown in Table 5, the performance of the SEEAS.Consideringthefullsetofproblems,SEEASisevaluatedas algorithm is significantly improved by increasing the common “preferred” or “equally good” in 18 out of 24 cases. Next best value of the step parameters from 5 to 20, while it is slightly methodisDYCORS,whichispreferredorequallygoodin6outof24 improvedbyfurtherincreasingthisvalueto50.Actually,thesim- cases.Ifweisolate the lessbeneficialsubset,i.e., the formulation plextransitionsareconsiderablyassistedbyusingtheoutcomesof with30decisionvariablesunderthelowercomputationalbudget thesurrogatemodelwithinlocalsearch;however,itdoesnotmake (lowerleftpanelofTable9),thesuperiorityofSEEASisevenmore sense calling the SM too many times, which introduces unnec- evident. essary computations with marginally only benefit. Regarding the mutation probability (Table 6), the algorithm provides almost 5. Hydrologicalcalibration identical results for pmvalues as lowas 0.05 or 0.10, yet its per- formanceisclearlydeterioratedbyincreasingthisprobabilityupto 5.1. Studyarea,simulationmodelandcalibrationsetup 0.30.Thisisalsoanon-surprisingconclusion,sinceitiswell-known that in evolutionary algorithms the mutation operator should be Hydrological calibration is probably the most typical global

Description:
SEEAS combines three different optimization approaches (evolutionary search, simulated annealing, downhill simplex). Its performance is benchmarked against other surrogate-assisted algorithms in several test functions and two water resources applications (model calibration, reservoir management).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.