REVIEW published:19March2015 doi:10.3389/fmicb.2015.00212 Surfactants tailored by the class Actinobacteria JohannesH.Kügler1*,MarilizeLeRoes-Hill2,ChristophSyldatk1andRudolfHausmann3 1TechnicalBiology,InstituteofProcessEngineeringinLifeSciences,KarlsruheInstituteofTechnology,Karlsruhe,Germany, 2BiocatalysisandTechnicalBiologyResearchGroup,InstituteofBiomedicalandMicrobialBiotechnology,CapePeninsula UniversityofTechnology,Bellville,SouthAfrica,3BioprocessEngineering,InstituteofFoodScienceandBiotechnology, UniversityofHohenheim,Stuttgart,Germany Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, Editedby: PattanathuK.S.M.Rahman, as well as the identity of the biosurfactant-producing strains. Producer strains of TeessideUniversity,UK not yet elucidated compounds are discussed, as well as the original habitats of Reviewedby: all the producer strains, which seems to indicate that biosurfactant production ToruMatsui, is environmentally driven. Methodology applied in the isolation, purification and UniversityoftheRyukyus,Japan WaelIsmail, structural elucidation of the different types of surface active compounds, as well as ArabianGulfUniversity,Bahrain surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can *Correspondence: be summarized to include the dominantly occurring trehalose-comprising surfactants, JohannesH.Kügler, SectionII:TechnicalBiology,Institute othernon-trehalosecontainingglycolipids,lipopeptidesandthemorerareactinobacterial ofProcessEngineeringinLife surfactants. The lack of structural information on a large proportion of actinobacterial Sciences,KarlsruheInstituteof surfactants should be considered as a driving force to further explore the abundance Technology,Engler-Bunte-Ring1, 76131Karlsruhe,Germany and diversity of these compounds. This would allow for a better understanding [email protected] of actinobacterial surface active compounds and their potential for biotechnological application. Specialtysection: Thisarticlewassubmittedto Keywords:biosurfactant,emulsifier,glycolipid,lipopeptide,trehaloselipid,Rhodococcus,rhamnolipid Microbiotechnology,Ecotoxicology andBioremediation,asectionofthe journalFrontiersinMicrobiology Microbial Surfactants and their Applications Received:23January2015 Accepted:02March2015 Microbially derived compounds that share hydrophilic and hydrophobic moieties, and that Published:19March2015 are surface active, are commonly referred to as biosurfactants. Many have been detected and Citation: described, and the majorityare molecules of low molecular weight. Within this group of low KüglerJH,LeRoes-HillM,SyldatkC molecular weight microbial surfactants, the classes of lipopeptides or glycolipids, where fatty andHausmannR (2015)Surfactants acid or hydroxy fatty acid chains are linked to either peptides or carbohydrates, have been tailoredbytheclassActinobacteria. Front.Microbiol.6:212. extensively studied (Hausmann and Syldatk, 2014). The combinations of different types of doi:10.3389/fmicb.2015.00212 hydrophilicandhydrophobicmoietieswithinsurfactantsareinnumerableandhighlybiodiverse. FrontiersinMicrobiology|www.frontiersin.org 1 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria Duetotheiramphiphillicstructures,surfactantsactasemulsify- Other promising studies for the potential application of acti- ingagents,resultinginlowsurfacetensionsofinterphases.Often, nobacterialbiosurfactantsareinenvironmentalapplicationssuch microorganisms produce them when growing on hydrophobic asbioremediation:Oilspillsweresuccessfullydispersedbybio- carbonsourcesorwhenexposedtogrowthlimitingconditions. surfactants produced by a Gordonia sp. (Saeki et al., 2009), a It is hypothesized, that biosurfactants play a role in the uptake Dietziasp.(Wangetal.,2014)andaRhodococcussp.(Kuyukina of various hydrophobic carbon sources thus making nutrients and Ivshina, 2010); and trehalose lipids were applied in micro- bioavailable, as well as the protection of bacteria from harsh bialenhancedoilrecoveryandthecleaningofoilstoragetanks environmentalconditions(RistauandWagner,1983;Vollbrecht (Franzetti et al., 2010). In medical applications, the production etal.,1998;Philpetal.,2002).Somebiosurfactantsshowantimi- ofbiosurfactantsaregenerallyconsideredsaferthansynthetically crobial effects and the distinction of secondary metabolites as produced compounds due to high enzymatic precision during antibioticsorbiosurfactantsisoftennotstrict. synthesis.Antiproliferationactivitiesofcancerogeniccellscould Biosurfactants, compared to chemically derived surfactants, be induced by application of various glycolipids (Isoda et al., are independent of mineral oil as a feedstock, they are read- 1997;Sudoetal.,2000).Incosmeticapplications,theuseoftre- ily biodegradable and can be produced at low temperatures. haloselipidsisfavoredabovethatofsodiumdodecylsulfateasit Furthermore,theyaredescribedtobelesstoxic,effectiveatlow causeslessirritation(Marquesetal.,2009). concentrations and show effects in bioremediation. Industrial Different types of biosurfactants or bioemulsifiers have been interestinbiosurfactantsisnotsolelybasedonthebio-acitivityof described to be produced as secondary metabolites within the thesemolecules,butisalsoduetothebroaderecologicalaware- class Actinobacteria, and to the best of our knowledge, all nesslinkedtotheirapplication,whichinturnisdrivenbysus- of the producing species belong to the order Actinomycetales tainability initiatives and green agendas (Marchant and Banat, (Figure1). The following section of the review will focus on 2012).Biosurfactantscanbeappliedinvariousareassuchasthe the different types of actinobacterial biosurfactants reported in nutrient-,cosmetic-,textile-,varnish-,pharmaceutical-,mining-, literatureaswellastheirkeystructuralfeaturesandbio-activities. and oil recovery industries (Henkeletal.,2012; Marchant and Banat,2012;Mülleretal.,2012). An example of an actinobacterial biosurfactant that has Metabolite Production within the Class already entered the market and found industrial application, is Actinobacteria thelipopeptideantibioticdaptomycin.Thisantibioticisusedin the treatment of diseases caused by Gram positive pathogens Overthepastfewdecades,therehasbeenanincreasedinterest andhasbeenmarketedasCubicin(cid:13)R byCubistPharmaceuticals. in the discovery of bioactive metabolites with novel bioactive FIGURE1|Systematic classification of the class Actinobacteria compounds are displayed in numbers. Thirty six surfactant-producing including subclasses and orders. Suborder, families and genera genera are reported, all belonging to the largest order within the examined for the production of biosurfactants and bioemulsifying Actinobacteria: Actinomycetales. FrontiersinMicrobiology|www.frontiersin.org 2 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria properties and their potential for application in medical- or recently identified order Gaiellales has been included (Euzéby, industrial-based processes. Microbial products are still consid- 2012). Overall, the class Actinobacteria contains five subclasses eredtobethemostpromisingsourceforthediscoveryofnovel andnineorderswithatotalof54families(Figure1).Thelargest chemicalsortherapeuticagents(Berdy,2005).Inaddition,vast order, Actinomycetales, is divided into 14 suborders and con- microbialgeneticresourcesremainsuntappedandcanleadtothe tainsbyfarthehighestdiversitywithintheclassActinobacteria. developmentofnovelbioactivemetabolites. Itisthereforenotsurprisingthatbiosurfactantsreportedinlit- In contrast to primary metabolites, secondary metabolites erature focuses on members of this order. The next few para- often accumulate and have miscellaneous chemical composi- graphs will go into more detail around the different types of tionsthatarespecies-specific.Thesesecondarymetabolitesoften biosurfactantsthathavebeenidentifiedtobeproducedbyacti- exhibit bioactivity and are therefore of great interest to vari- nobacterialstrains,theirproduction,purificationandstructural ousindustries.Themostdominantsourceofmicrobiallyderived elucidation, as well as the clear influence of the environment bioactivecompoundsisagroupofbacteriaknowntohaverela- the producer organism is found in and their ability to produce tivelylargegenomesandconstitutesoneofthemainphylawithin biosurfactants. the Prokaryotes: The class Actinobacteria (Ludwig and Klenk, 2001).TheclassActinobacteriaplayimportantrolesintheenvi- Trehalose-Comprising Glycolipids ronment,e.g.,nutrientcycling,butalsoincludemajorplant,ani- malandhumanpathogens(EmbleyandStackebrandt,1994),well The best described biosurfactants amongst the actinobacteria known examples are the causative agents of leprosy and tuber- areglucose-basedglycolipids,mostofwhichhaveahydrophilic culosis. Baltz (2008) assumed 5–10% of their genome coding backbone consisting of two α,α-1,1 glycosidic linked glucose capacity to be used for the production of secondary metabo- units forming a trehalose moiety. Different types of trehalose- lites and indeed more than 35% of all known bioactive micro- containing glycolipids and their producers have been exten- bial metabolites and more than 63% of all known prokaryotic sivelyreviewed(AsselineauandAsselineau,1978;Asselineauand bioactive metabolites arise from actinobacteria (Bérdy, 2012). Lanéelle,1998;Franzettietal.,2010;KuyukinaandIvshina,2010; Mostsecondarymetaboliteproducersdescribedbelongtofam- Shao,2011;Khanetal.,2012).ThoseoftheclassActinobacteria iliesoftheActinomycetales,butitisestimatedthatonly∼1%of aremainlyfoundwithinthegeneraRhodococcus,Mycobacterium, themareculturable(Bérdy,2012).Manyoftheseactinobacterial Nocardia,ArthrobacterandCorynebacterium,andlessfrequently secondary metabolites exhibit antibacterial, antifungal, antitu- within the genera Tsukamurella, Brevibacterium, and Micrococ- mor,anticancerand/orcytotoxicproperties(Manivasaganetal., cus (Tables1, 2). Different structures of trehalose lipid com- 2013). Antibiotics, with around 10,000 compounds described prising amphiphilic molecules have been reported: Acyl chains (Bérdy, 2012) is by far the largest group of metabolites isolated withglycosidiclinkagestoglucoseortrehaloseunitshavebeen from actinobacteria. Depending on their chemical nature, the reported to vary in number of occurrence, length and type, as huge number of antibiotic compounds can roughly be classi- well as the position (and number) of their linkage to the sugar fied into peptides, aminoglycosides, polyketides, alkaloids, fatty ringsandexhibitdifferentcellularfunctions. acids, and terpenes (Manivasagan et al., 2013; Abdelmohsen For the hydrophobic moiety of trehalose-comprising glycol- etal.,2014).Besidesantibiotics,otheractinobacterialcompounds ipids, the structures of two main types of trehalose lipids have describedarebioactivecompoundswithpharmacologicalactivity been elucidated: those carrying a mycolic fatty acid ester and (pheromones,toxins,enzymeinhibitors,receptorsandimmuno- thosecarryingafattyacidester. logicalmodulators),withagriculturalactivity(pesticides,herbi- Thesmallest hydrophilicbackbone in glycolipids constitutes cidesandinsecticides)andotherindustriallyrelevantproperties glucose, the building block of the sugar dimer trehalose. Com- (pigments and surfactants). Most compounds are derived from pletestructuresofacylglucosescarryingmycolicacidestershave members of the genus Streptomyces, however, other so-called beenelucidatedandreportedtobeproducedbyisolatesbelong- “rare”actinomycetesareincreasinglyplayingamoreimportant ingtothegeneraCorynebacteriumandMycobacterium(Brennan roleintheproductionofbiocompounds(Berdy,2005;Kurtboke, et al., 1970) (Table1), whereas acylglucoses carrying fatty acid 2010). estershavebeendescribedforBrevibacteriumspp.(Okazakietal., To fully understand the taxonomic distribution of the acti- 1969)(Table2). nobacterial strains identified to produce biosurfactants and bioemulsifying compounds, taxonomic data of the class Acti- TrehaloseLipidMycolicAcidEsters nobacteria was evaluated. Information were retrieved from the Mycolic acids are long-chain fatty acids and a major compo- taxonomy browser of the National Center for Biotechnology nentofthecellwallinvariousactinobacteria.Species-dependent, Information1considering16SrRNAgenesequencebasedreclas- its lengths varies from 22 to 92 carbon atoms; they possess sifications according to Zhi et al. (2009) and Goodfellow and longβ-hydroxy-α-branchedacylchains,includingcyclopropane Fiedler(2010).TheorderThermoleophilalesthathasbeenreclas- patterns and oxygenic groups. The synthesis of mycolic acids sifiedintoanewclass(Euzéby,2013)hasbeenexcludedandthe includescondensationreactions,andtheyarealsoreferredtoas eumycolicacid,corynemycolicacidandnocardio-mycolicacid, 1National Center for Biotechnology Information (NCBI) Taxonomy dependingontheirpresenceinMycobacteriumspp.,Corynebac- Browser. Available online at: http://www.ncbi.nlm.nih.gov/Taxonomy/ terium spp., and Nocardia spp., respectively (Asselineau and Browser/wwwtax.cgi?mode=Undef&id=201174&lvl=5&lin(accessed01.07.2014- 07.01.2015). Lanéelle,1998). FrontiersinMicrobiology|www.frontiersin.org 3 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria TABLE1|Mycolicandcorynemycoliccontainingtrehaloselipidsthatareofactinobacterialorigin. Species Strain TLmycolicacidester References Arthrobacterparaffineus KY4303 TLmycolic(C32–C36) Suzukietal.,1969 Brevibacteriumsp. KY4304/4305 TLmycolic(C32–36) Suzukietal.,1969 Brevibacteriumvitarumen 12143 TLdimycolic(C28–C38) LanéelleandAsselineau,1977 Corynebacteriumdiphtheriae n.a. Glucosemycolic(C32) Brennanetal.,1970 Corynebacteriumspp. KY3543 TLmycolic(C32–36) Suzukietal.,1969 (fasciens,pseudodiphtheriae) KY3541 Corynebacteriummatruchotii ATCC14266 TLdimycolic(C28–C38) DattaandTakayama,1993 Mycobacteriumspp. BCG,n.a. Glucosemycolic(C32) Brennanetal.,1970 (smegmatis,tuberculosis) Mycobacteriumspp.* Various TLmycolic,dimycolic, Reviewedin:AsselineauandAsselineau,1978;Gautier (bovis,fortuitum,kansaii,malmoense,phlei, etal.,1992;AsselineauandLanéelle,1998;Vergneand tuberculosis,smegmatis,szulgai,etc.) Daffé,1998;Dembitsky,2004;Ishikawaetal.,2009; Shao,2011 Nocardiaspp. n.a. TLmycolic(C32–36) Suzukietal.,1969 Rhodococcusspp.* Various TLmycolic,dimycolic, Reviewedin:AsselineauandAsselineau,1978;Lang (erythropolis,opacus,ruber,etc.) andPhilp,1998;KuyukinaandIvshina,2010;Shao, 2011;Khanetal.,2012 EXAMPLESOFMYCOLICACIDCONTAININGTREHALOSELIPIDS 1 TrehalosedimycolateproducedbyMycobacteriumtuberculosis 2 TrehalosedicorynemycolateproducedbyRhodococcuserythropolis *Severalproducingspeciesarereported;TL,trehaloselipid;n.a.,informationnotavailable. Mycolicacidcomprisingtrehaloselipids(Table1)canbedis- organism hence facilitating the uptake of hydrophobic carbon tinguished into two different types, the trehalose mycolic lipids sources. The other type, trehalose lipids containing corynemy- andthetrehalosecorynemycoliclipids.Thesemycobacterialtre- colic acid also carry β-hydroxy-α-branched fatty acid moieties halosemycolatesordimycolatesarebyfarthemosthydrophobic andhavebeendescribedtooccurwithinthegenusRhodococcus glycolipids.LinkedtoC6(andC6′)ofthesugarrings,theyvary (2,Table1),carrying30–56carbonatomsandwithinthegenus amongspeciesinlengthandbranching.Theyareshapedtoform Corynebacterium, carrying 22–36 carbon atoms. They are also bilayers,implementedintheoutercellwallandusuallynotfound described to occur in mycobacteria (Brennan et al., 1970) and onthebacterialcellsurface(VergneandDaffé,1998).Trehalose foundintrehaloselipidsofBrevibacteriumvitarumen(Lanéelle dimycolates (1, Table1), also referred to as “cord factor,” serve and Asselineau, 1977), Arthrobacter paraffineus and a Nocar- a particular function for the cell. They act as virulence factors dia sp. (Suzuki et al., 1969). Corynemycolic acids are much and have immuno-modulating activity (Shao, 2011). They may shorter than their mycobacterial counterparts: they lack func- furtherbeimportanttomaintainahydrophobiccellwallofthe tionalgroupsandareoftenunsaturated.Withinvirulentstrains FrontiersinMicrobiology|www.frontiersin.org 4 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria TABLE2|Trehaloselipidesterofactinobacterialorigin. Species Strain TLester References Arthrobactersp. EK1 TLtetraester(C12–C18) Passerietal.,1990 Brevibacteriumthiogenitalis No.653 Glucosediester(C18) Okazakietal.,1969 Micrococcusluteus BN56 TLtetraester(C9–C14) Tulevaetal.,2009 Mycobacteriumspp.* Various TLester Reviewedin:VergneandDaffé,1998; (africanum,bovis,fortuitum,tuberculosis,etc.) Dembitsky,2004;Shao,2011 Mycobacteriumtuberculosis H37Rv TLsulfolipid Goren,1970;Gilleronetal.,2004 Nocardiafarcinica BN26 TLsuccinictetraester(C7-12) Christovaetal.,2014 Rhodococcusspp.*(erythropolis,longus, Various TLester,TLsuccinicester Reviewedin:AsselineauandAsselineau,1978; wratislavensis,etc.) LangandPhilp,1998;KuyukinaandIvshina, 2010;Shao,2011;Khanetal.,2012 Tsukamurellapulmonis PCM2578T TLdiester(C18–20/C4–5) Pasciaketal.,2010a Tsukamurellaspumae DSM44113, TLdiester(C16–18/C4–6) Kügleretal.,2014 Tsukamurellapseudospumae DSM44114 DSM44117 Tsukamurellatyrosinosolvens DSM44370 TLdiester(C16–18/C2–6) Vollbrechtetal.,1998 EXAMPLESOFTREHALOSELIPIDESTERS 3 4 TrehalosediesterproducedbyTsukamurellaspumae SuccinictrehalosetetraesterproducedbyNocardiafarcinia 5 DiacetylatedtrehalosesulfolipidproducedbyMycobacteriumtuberculosis *Severalproducingspeciesarereported;TL,trehaloselipid. ofmycobacteria,fivedifferentsulfonatedformsoftrehaloseesters the producing strain. These glycolipid-linked medium chain havebeenfound,varyingintheiracylationpattern(Khanetal., lengthfattyacidsarefoundwithinthefollowingactinobacterial 2012). genera: Arthrobacter, Brevibacterium, Caseobacter, Micrococcus, Mycobacterium, Nocardia, Rhodococcus, and Tsukamurella TrehaloseLipidEsters (Table2). Actinobacterial trehalose lipid esters are mainly acylated at Anexceptionamongthetrehaloselipidestersdescribed,issul- C6/C6′oratC2/C3andaresummarizedinTable2.Theamount folipid 1 (Goren, 1970) (5, Table2), a sulfonated and acylated of hydrophobic chains linked to the trehalose unit varies from trehalose lipid carrying phtio- and hydroxyphtioceranic com- one to four, forming trehalose mono-, di-, tri- and tetraesters, partments.Theyareknowntocontributetothepathogenesisand but also octaesters (Singer et al., 1990) (3, Table2). The acyl virulence of Mycobacterium tuberculosis, the causative agent of chains varies in lengths from C8 to C20, show an unsaturated tuberculosis. Diacyltrehalose sulfate, the biosynthetic precursor pattern or form short succinoyl acids, giving the trehalose for sulfolipid 1, has recently been isolated from M. tuberculo- lipid an anionic character (Lang and Philp, 1998; Tokumoto sis (Domenech et al., 2004) and has been used as a target for et al., 2009) (4, Table2). They are reported to be linked to T-cellmediatedrecognizationandeliminationofM.tuberculosis the chain length present in hydrophobic carbon source fed to infectedcells(Gilleronetal.,2004). FrontiersinMicrobiology|www.frontiersin.org 5 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria OligosaccharideLipids units,bothcarryingaC6fattyacidmoietyatthethirdsugarunit Aglycosylatedbackboneoftrehaloseisfoundinoligosaccharide andsuccinicacidatthefirstsugarunit.Somethingthatisrather lipids (Table3) carrying two to five sugar units. Trisaccharide exceptionalistheacylationpatternatthetrehalosebackbonethat, lipidsthathavebeenreportedfortheclassActinobacteriaalldif- in its hydrophobic moieties, carries at each unit an acyloxyacyl ferwithrespecttotheacylationpatternofthethirdglucoseunit. structureintheO-esterlinkagetothecarbohydratewherethe3- Onesugarofthe1-1′linkeddi-glucosebackboneisfurtherlinked hydroxyC8orC10fattyacidmoietyisfurtheracylatedwithaC6 toathirdsugarunitatC2inthehydrophilicmoeityofoligosac- fattyacid(6,Table3).TheTsukamurellasp.trisaccharidelipids charidesproducedbyMycobacteriumleprae(Brennan,1989)and areacylatedattwosugarunits,eachcarryingtwoordinaryC8– Tsukamurellatyrosinosolvens(Vollbrechtetal.,1998).Thethird C10 fatty acid units. Furthermore, a tetrasaccharide lipid form sugarunitislinkedatC3inaterrestrialactinomycetereported ofthisglycolipidhasalsobeenfoundtooccur(Vollbrechtetal., by Esch et al. (1999) and at C4 in a Rhodococcus sp. (Konishi 1998)(7,Table3). et al., 2014) (6, Table3). They also differ with respect to their Non-trehalose based oligosaccharide lipids are found within hydrophobicnature.Thelattertwoareacylatedatallthreesugar phenol-phtiocerol glycosides in various mycobacteria. These TABLE3|Actinobacterialoligosaccharidelipids. Species Strain Oligosaccharidlipids References Mycobacteriumspp.* Various oligosaccharideester,phenolic Reviewedin:SaadatandBallou, (avium,kansaii,leprae,linda,malmoense,smegmatis,szulgai, glycolipids 1983;Brennan,1989; tuberculosis) Dembitsky,2005b Nocardiacorynebacteroides SM1 Pentasaccharidesuccinicoctaester Powallaetal.,1989 (C2–C8) Rhodococcussp. NBRC1097287 Trisaccharidsuccinictetraester Konishietal.,2014 Rhodococcusfascians NBRC12155 (C8-O-C6/C6) Tsukamurellatyrosinosolvens DSM44370 Tri/tetrasaccharideester(C8-10) Vollbrechtetal.,1998 EXAMPLESOFOLIGOSACCHARIDELIPIDS 6 7 SuccinictrisaccharidelipidproducedbyRhodococcusfascians TetrasaccharidelipidproducedbyTsukamurellatyrosinosolvens 8 Methylateddirhamnose/glucosephenolphtiocerolnamedphenolicglycolipidIofMycobacteriumlepraeBrennan,1989 *Severalproducingstrainsarereported. FrontiersinMicrobiology|www.frontiersin.org 6 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria oligosaccharidelipids,alsotermedphenolicglycolipids,contain salonariumChristovaetal.,2004,andaNocardioidessp.Vasileva- tri-andtetraglycosylunitscomposedofvariousmethylatedsug- TonkovaandGesheva,2005)(Table11). ars that are mainly based on rhamnose and partly on fucose, A different group of glycolipids are lipidic structures based glucoseandarabinose(Brennan,1989).Therarelydescribedphe- on dimannose. Typically they are linked via a glycerol unit nolicacylationpatternisboundtodimycocerosylphtiocerolacyl to different numbers of fatty acid chains. They have been groups.ThephenolicglycolipidIofM.lepraecarriesthreemyco- reviewed in Shaw (1970) and structures have been identified cerosylacylgroupseachinlengthofC30–C34(Brennan,1989) forcompoundsproducedbyspeciesbelongingtotheactinobac- (8,Table3). terial genera Micrococcus (Lennarz and Talamo, 1966), Curto- Inindustrialandenvironmentalprocessesthepotentialoftre- bacterium(Mordarskaetal.,1992),Saccharopolyspora(Gamian haloselipidscouldbecomevaluableastheyhaveshowninterest- et al., 1996), Rothia (Pasciak et al., 2002, 2004), Nocardiop- ing properties in several studies that focus on the remediation sis (Pasciak et al., 2004), Arthrobacter (Pasciak et al., 2010b) of hydrocarbon contaminated soils, the removal of suspended as well as the strain Sinomonas atrocyaneus (Niepel et al., solidsfromwastewater(Franzettietal.,2010)andinenhancedoil 1997),formerlyclassifiedasArthrobacteratrocyaneus.Thesedi- recovery(Christofi andIvshina,2002).However,mostresearch mannose based glycolipids are composed of hydrophilic α-D- arecenteredaroundthebio-activityoftrehaloselipidmolecules mannopyranosedimerslinkedwithtwoC14–C16isooranteiso thatexhibitbiomedicalpropertiessuchasantimicrobial,antiviral fatty acid chains. One chain is directly esterified to the C6 (Azumaetal.,1987;Watanabeetal.,1999;Shao,2011)andanti- hydroxyl group of one sugar unit, while the second fatty acid tumoractivities(Sudoetal.,2000;Franzettietal.,2010;Gudiña chain is linked via a glycerol moiety to the C3 of the same etal.,2013).Duetotheirfunctionsincellmembraneinteractions sugar unit. The glycerol moiety is monoacylated at either the they can act as therapeutic agents (Zaragoza et al., 2009; Shao, primary or secondary methylene position (9, Table4) and its 2011)orhaveanimpactonthepathogenesisofcausativeagents acylation site can be used to distinguish taxonomic proper- ofinfections,suchasthosecausedbypathogenicM.tuberculo- ties of the different producer strains. These compounds have sis,Corynebacteriumdiphteriae,andtheopportunisticpathogens, been isolated intracellularly and they act as precursors and cell Mycobacterium avium, Mycobacterium intracellulare, Nocardia membrane anchors for the synthesis of lipoarabinomannan, a asteroides, Corynebacterium matruchotii, and Corynebacterium polymeric surfactant and actinobacterial cell wall component xerosis (Kuyukina and Ivshina, 2010). Trehalose lipids can be (PakkiriandWaechter,2005)(seesectiononpolymericbiosur- excretedintothecultivationsupernatantorcanbeproducedas factants). non-covalently linked lipids bound to the cell wall or they can The coexistence of galactosyl diglycerides (10, Table4) in becellwallintegratedthusposinglimitstoquantitiesproduced Arthrobacter scleromae and Arthrobacter globiformis (Pasciak bytheorganisms,adisadvantageforitspotentialexploitationin et al., 2010b) have been described and can be used as a gly- largescaleproductionprocesses. comarker to distinguish these strains from the opportunistic pathogens,RothiamucilaginosaandRothiadentocariosa(Pasciak Non-Trehalose Glyolipids etal.,2002,2004). Hexose-ComprisingGlycolipids MacrocyclicGlycosides Besides the trehalose-containing biosurfactants and its con- Among the biosurfactants produced by actinobacteria, macro- geners,severalglycolipidshavebeenelucidatedthatareproduced cyclicglycosides(Table5)andmacrocylcicdilactones(Table6) byactinobacteriaandshareotherhydrophilicmoieties.Bysimply canbedistinguishedandareoftenknowntoexhibitbio-activity varyingthecarbonsourceinthegrowthmediafromn-alkanesto againstarangeoforganisms.Thealiphaticmacrolideantibiotic, eithersucroseorfructose,thehydrophilicpartofthesurfactant brasilinolide, is produced by Nocardia brasiliensis and exhibits producedwasreportedtobeswitchedfromtrehalosetofructose both antifungal and antibacterial activity. Three different vari- bymembersofthegenusArthrobacter,Corynebacterium,Nocar- ants havebeen described by Tanaka et al.(1997),Mikami et al. dia,Brevibacterium,andMycobacterium(ItohandSuzuki,1974) (2000)andKomatsuetal.(2004).AllconsistofaC32-membered andsucroseinthecaseofthesamegeneraexceptMycobacterium macrolidewithasugarmoietybutdifferwithregardstotheacy- (Suzukietal.,1974).Compoundsforwhichstructureshavebeen lation site of a malonic acid ester side chain (11, Table5). The elucidatedarelistedinTable4. C16-membered dimeric macrolide elaiophylin and its variants Besides the rhamnose-containing phenolic glycolipids men- havebeenisolatedfromvariousStreptomycesspp.includinghigh tioned in the oligosaccharide lipid section, the occurrence of producerstrains.Itexhibitsbio-activepropertiesagainstintesti- other rhamnose-based lipids have recently been detected in a nalwormsaswellasantimicrobial,antitumorandimmunosup- deep sea isolate identified as Dietzia maris (Wang et al., 2014) pressantactivities.Aputative95kbpbiosyntheticgeneclusterof andhasbeenidentifiedasaC10:C10di-rhamnolipid.Thisrepre- elaiophylinhasbeenproposed(Haydocketal.,2004).Dembitsky sentsauniqueoccurrencewithintheclassActinobacteria.Other (2005a,c)reviewedthedifferenttypesofC14-memberedlactam rhamnolipid producing actinobacteria are admittedly declared ringsthatareattachedtoanaminosugar(12,Table5).Fluvirucin as producing strains in literature, however the surface active hasbeenisolatedfromvariousActinomaduraspp.,Streptomyces compounds produced have either not been elucidated or iden- spp., Microtetraspora spp., and Saccharotrix mutabilis. The dif- tified as rhamnolipids with debatable structural characteriza- ferent fluvirucins share a common lactam ring unit but differ tions(RhodoccocusfasciansGeshevaetal.,2010,Renibacterium in terms of glycosylation. All of them act as potent antifungal FrontiersinMicrobiology|www.frontiersin.org 7 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria TABLE4|Non-trehalosecomprisingglycolipidsproducedbyactinobacteria. Species Strain Hexoselipids References Arthrobacterparaffineus KY4303 Sucrosemycolic(C32–C36)* Suzukietal.,1974 Arthrobacterparaffineus KY4303 Fructosecoryne-anddicorynemycolic* ItohandSuzuki,1974 Arthrobacterspp. ATCC8010T Dimannosylacyl(C15–C17)monoglyceride(C15–C17) Pasciaketal.,2010b (globiformis,scleromae) YH2001T Galactosyldiglyceride(C15–C17) Brevibacteriumbutanicum KY4332 Fructosecoryne-anddicorynemycolic* ItohandSuzuki,1974 Brevibacteriumspp. n.a. Sucrosemycolic(C32–C36)* Suzukietal.,1974 Corynebacteriumspp. n.a. Sucrosemycolic(C32–C36)* Suzukietal.,1974 Corynebacteriumspp. n.a. Fructosecoryne-anddicorynemycolic* ItohandSuzuki,1974 Curtobacteriumflaccumfaciens ATCC13437 Di-andtrimannosylglyceride(C18–C19cyclopropane) Mordarskaetal.,1992 Dietziamaris MCCC1A00160 Rhamnolipid(C10/C10) Wangetal.,2014 Micrococcuslysodeikticus ATCC4698 Dimannosylglyceride(C14) LennarzandTalamo,1966 Mycobacteriumavium KY3844 Fructosecoryne-anddicorynemycolic* ItohandSuzuki,1974 Mycobacteriumkoda KY3852 Nocardiabutanica KY4333 Sucrosemycolic(C32–C36)* Suzukietal.,1974 Nocardiaconvulutus KY3907 Nocardiarubra KY3844 Fructosecoryne-anddicorynemycolic* ItohandSuzuki,1974 Nocardiabutanica KY4333 Nocardiaconvulutus KY3907 Nocardiopsisdassonvillei PCM2492T(ATCC23218) Dimannosylacyl(C15)monoglyceride(C16) Pasciaketal.,2004 Rothiadentocariosa PCM2249T(ATCC17931) Dimannosylacylmonoglyceride(C16–C19) Mordarskaetal.,1992; Pasciaketal.,2002 Rothiamucilaginosa PCM2415T(ATCC25296T) Dimannosylacyl(C15)monoglyceride(C16) Pasciaketal.,2004 Saccharopolysporaspp. ATCC27875T Dimannosylacyl(C15–C16)monoglyceride(C16) Gamianetal.,1996; (erythraea,hirsuta,rectivirgula,sp.) ATCC11635T Pasciaketal.,2002,2004 IMRU1258 LL-100-46) Sinomonasartrocyaneus LMG3814T Dimannoseylacyl(C14)monoglyceride(C16) Niepeletal.,1997 EXAMPLESOFNON-TREHALOSECOMPRISINGHEXOSELIPIDS 9 10 DimannosylacylmonoglycerideproducedbyRothiamucilaginosa GalactosyldiglycerideproducedbyArthorbacterglobiformisandArthrobacterscleromae n.a.,noinformationavailable;*Sucroseandfructosebasedsurfactantsarevariantsoftrehaloselipids. agentsagainstCandidaspp.andshowantiviralpropertiesagainst Table6).GlucolypsinvariantswithC18andC17fattyacidchains influenzaAvirus(Dembitsky,2005c). ofthesametypealsooccur.Glycolypsinisreportedtoincrease Among the macrocyclic dilactones, glucolypsin, an acylglu- the activity of glucokinases by relieving its inhibition via long cosedimerhasbeenisolatedfromStreptomycespurpurogeniscle- chainfattyacylCoAesters(Qian-Cutroneetal.,1999).Derivates roticusandNocardiavacciniibyQian-Cutroneetal.(1999).This ofglucolypsinthatshareacommonbackbone,havebeenshown extraordinaryglycolipidisformedoutoftwoglucoseunitslinked toexhibitantiviralandantibioticproperties.Incontrasttoglu- toidenticaliso-branchedC18acylchainsthateachcarryamethyl colypsin, the acylglucose dimer of fattiviracins (C24/C26) and groupatC2andahydroxylgroupatC3oftheacylchain.Bycon- cycloviracins (C24/C33) are built up out of trihydroxy fatty nectingtheC6′oftheglucosemoleculetothecarboxy-C1ofthe acids, each of them glycosidic linked to a further glucose unit fatty acid chain, a rotationally symmetric dimer is formed (13, at the third hydroxyl group. Cycloviracins are characterized by FrontiersinMicrobiology|www.frontiersin.org 8 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria TABLE5|Macrocyclicglycosidesproducedbyactinobacteria. Species Strain Macrocyclicglycoside References Actinomaduraspp.* Various Fluvirucin(14Cmacrolide) Reviewedin:Dembitsky, (roseorufaroseorura,vulgaris,yumaensis) 2005a,c Microtetrasporapusilla R359-5 FluvirucinB1(14Cmacrolide) Dembitsky,2005a Microtetrasporatyrrheni Q464-31 Fluvirucins(14Cmacrolide) Dembitsky,2005a,c Nocardiabrasiliensis IFM0406 BrasilinolideA,B,C Tanakaetal.,1997;Mikamietal., (32Cmacrolide) 2000;Komatsuetal.,2004 Saccharothrixmutabilis R869-9 FluvirucinA2(14Cmacrolide) Dembitsky,2005a Streptomycesspp.* various Elaiophylinandderivates Reviewedin:Dembitsky,2005a (antibioticus,erythreus,felleus,hygroscopicus,melanosporus, (16Cmacrolide) narbonensis,spinichromogenes,violaceoniger) Fluvirucin(14Cmacrolide) EXAMPLESOFMACROCYCLICGLYCOSIDES 11 12 BrasilinoideAproducedbyNocardiabrasiliensis FluvirucinB1producedbyActinomaduravulgarissubsp.lanata *Severalproducingstrainsarereported. afifthglucoseunitboundtotheC26fattyacidchain,thethree et al., 2010) (Table7). Most of them share a backbone of a non-cyclic sugar units are methoxylated at C2, and the methyl C50 atom carotenoid. They can either be linked to one or branchesatC2ofthefattyacidmoietiesaremissing.Congeners two hydroxyl groups at the terminal ends (decaprenoxanthin of fattiviracin are divided into five families according to the and sarcinaxanthin) or one hydroxyl group and one glycosidic lengthoftheirfattyacidmoietywitheachfamilyshowingsimilar moiety (corynexanthin, decaprenoxanthin monoglycoside and antiviralactivityagainstherpes,influenzaandhumanimmunod- sarcinaxanthinmonoglycoside).Di-glycosylatedformsarefound eficiency viruses (Uyeda, 2003). No alterations in the fatty acid within Arthrobacter and Micrococcus (decaprenoxanthin diglu- chain length of cycloviracins have been reported. Fattiviracins cosideandsarcinaxanthindiglucoside)(17,Table7)andfurther (14, Table6) have been shown to be produced by Streptomyces exist as an acetylated form at all hydroxyl groups. The terpene microflavus (Uyeda et al., 1998) and cycloviracins (15, Table6) glycosidesproducedbyRhodococcusrhodochrous,differfromthe byKibdelosporangiumalbatum(Tsunakawaetal.,1992b). onementionedabove,astheycontainamonocycliccarotenoid backbone linked to a glucopyranosyl residue at the non-cyclic end (18, Table7). The glucose unit is further acylated at C6 to TerpenoidsandTerpeneGlycosides aC36–C50mycolicacidmoietyleadingtocarotenoidglucoside Actinobacterialterpenoidandterpeneglycosidesaresummarized mycolicacidesters.Theseterpeneglycosidesaremainlyfoundin inTable7.VancoresmycinisaC65highlyoxygenatedterpenoid pigmentedbacteriaanditishypothesizedthattheyactasantiox- glycosideproducedbyanAmycolatopsissp.Itcontainsatetramic idantstoprotectorganismsfrominjuriescausedbyfreeradicals acid unit and is glycosidic linked to a methylated carbohydrate (Osawaetal.,2010). moietycontainingoneaminogroup(16,Table7).Antimicrobial effect against various bacteria was reported by Hopmann et al. Polymeric Biosurfactants (2002), most notably against species resistant to the antibiotic vancomycin(oftenconsideredtobetheantibioticoflastresort The most common polymeric surfactants produced by forthetreatmentofresistantbacteria).Besidestheterpenoidgly- actinobacteria are macro-amphiphilic lipoglycans such as coside,severaldifferenttypesofterpeneglycosidesareproduced lipoarabinomannan and its precursors, lipomannan and phos- byactinobacterialstrains.Theyaresurfactantsthatmostlycarry phatidylinositol mannosides. In contrast to the core of the terminalhydrophilicgroupslinkedbyahydrophobiccarotenoid actinobacterial cell wall, arabinogalactan and peptidoglycan, moiety. these polymeric lipoglycans are non-covalently attached to the Terpeneglycosideshavebeenelucidatedasproductsobtained cell membrane although phosphatidylinositol mannides are from members of the following genera: Corynebacterium structurally related to lipomannan and lipoarabinomannan (WeeksandAndrewes,1970),Arthrobacter (Arpinetal.,1972), anchor units. These polymeric glycolipids have been isolated Rhodococcus (Takaichi et al., 1997), and Micrococcus (Osawa from Mycobacterium spp., Gordonia spp., Rhodococcus spp., FrontiersinMicrobiology|www.frontiersin.org 9 March2015|Volume6|Article212 Kügleretal. SurfactantstailoredbytheclassActinobacteria TABLE6|Macrocyclicdilactonesproducedbyactinobacteria. Species Strain Macrocyclicdilactones References Kibdelosporangiumalbatum ATCC55061 CycloviracinB1andB2(C23/C26) Tsunakawaetal.,1992a,b Nocardiavaccinii WC65712 GlucolypsinAandB(C19/C19) Qian-Cutroneetal.,1999 Streptomycesmicroflavus No.2445 Fattiviracina1(C22–28/C22–24) Uyedaetal.,1998;Yokomizoetal.,1998 Streptomycespurpurogeniscleroticus WC71634 GlucolypsinAandB(C19/C19) Qian-Cutroneetal.,1999 EXAMPLESOFMACROCYCLICDILACTONES 13 GlucolypsinAproducedbyNocardiavacciniiandStreptomycespurpurogeniscleroticus 14 FattiviracinproducedbyStreptomycesmicroflavus 15 CycloviracinB1producedbyKibdelosporangiumalbatum Dietzia maris, Tsukamurella paurometabolus, Turicella otitidis, (Briken et al., 2004). Lipoarabinomannans show structural andAmycolatopsissulphurea(Table8).ExceptforA.sulphurea, similaritytoitsprecursorslipomannanandphosphatidylinositol allofthesestrainsbelongtothesuborderCorynebacteridaethat mannoside and consist of an α-1,6 linked mannan core with areknowntocontainmycolicacidsintheircellwall.Itcomprises frequentα-1,2mannosebranchesleadingtoamannanbackbone thepresenceofmycolicacidsandcontainlipidrichcellenvelope of approximately 20–25 mannose residues substituted with structures (Sutcliffe, 1997) forming an extremely robust and arabinofuran residues that carry terminal extension motifs, impermeablecellenvelope(Bergetal.,2007).Lipoarabinoman- whichvaryamongtheproducerspecies(Bergetal.,2007).The nans are well known to cause immunorepressive functions in lipophilicpartconsistsmainlyofC16glyceridesthatarelinked diseasessuchastuberculosisandleprosythatarecausedbythe tothemannancorebyaphosphategroup(19,Table8). pathogenicmycobacterialstrainsM.tuberculosisandM.leprae. However,non-pathogenicspecieshavealsobeenshowntopro- Lipopeptides ducelipoarabinomannansandarereportedtohaveanopposite effectthusstimulatingpro-inflammatoryresponses(Brikenetal., Cyclicandlinearlipopeptidesareproducedbyvariousactinobac- 2004).Themannancoreoflipoarabinomannanandthenumber terialstrainsandaresummarizedinTable9. of branching units is species dependent. Further differences in its structure is traced back to capping motifs present at the CyclicLipopeptides non-reducing termini of the arabinosyl side chains. Mannan Cyclic lipopeptides are the most common type of lipopeptides caps are mainly present in pathogenic strains, whereas inositol and consist of a peptide chain of various types and numbers phosphate caps are present in non-pathogenic mycobacteria of amino acids circularized and linked to mainly one fatty acid FrontiersinMicrobiology|www.frontiersin.org 10 March2015|Volume6|Article212
Description: