ebook img

Surface Science: Foundations of Catalysis and Nanoscience, Third Edition PDF

561 Pages·2012·12.884 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Surface Science: Foundations of Catalysis and Nanoscience, Third Edition

Surface Science Surface Science Foundations of Catalysis and Nanoscience Third Edition KURT W. KOLASINSKI Department of Chemistry, West Chester University, West Chester, PA, USA A John Wiley & Sons, Ltd., Publication Thiseditionfirstpublished2012 (cid:2)c 2012JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreusethecopyrightmaterial inthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthe priorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproductnamesusedinthisbook aretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductor vendormentionedinthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmattercovered. Itissoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceis required,theservicesofacompetentprofessionalshouldbesought. Thepublisherandtheauthormakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesoffitnessforaparticularpurpose.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitablefor everysituation.Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformation relatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthe packageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.ThefactthatanorganizationorWebsiteisreferredtointhisworkasacitationand/ora potentialsourceoffurtherinformationdoesnotmeanthattheauthororthepublisherendorsestheinformationtheorganizationorWebsitemay provideorrecommendationsitmaymake.Further,readersshouldbeawarethatInternetWebsiteslistedinthisworkmayhavechangedor disappearedbetweenwhenthisworkwaswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyanypromotionalstatementsforthis work.Neitherthepublishernortheauthorshallbeliableforanydamagesarisingherefrom. LibraryofCongressCataloging-in-PublicationData Kolasinski,KurtW. Surfacescience[electronicresource]:foundationsofcatalysisandnanoscience/KurtW.Kolasinski.–3rded. 1onlineresource. Includesbibliographicalreferencesandindex. DescriptionbasedonprintversionrecordandCIPdataprovidedbypublisher;resourcenotviewed. ISBN978-1-118-30860-8(MobiPocket)–ISBN978-1-118-30861-5(ePub)–ISBN978-1-119-94178-1 (AdobePDF)–ISBN978-0-470-66556-5(hardback)(print) 1.Surfacechemistry.2.Surfaces(Physics)3.Catalysis.4.Nanoscience.I.Title. QD506 541(cid:3).33–dc23 2012001518 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. HBISBN:9781119990369 PBISBN:9781119990352 Setin10/12ptTimes-RomanbyLaserwordsPrivateLimited,Chennai,India InstructorscanaccessPowerPointfilesoftheillustrationspresentedwithinthistext,forteaching,at:http://booksupport.wiley.com To Kirsti and Annika Contents Acknowledgements xv Introduction 1 I.1 Heterogeneous catalysis 2 I.2 Why surfaces? 3 I.3 Where are heterogeneous reactions important? 3 I.3.1 Haber-Bosch process 3 I.3.2 Fischer-Tropsch chemistry 4 I.3.3 Three-way catalyst 4 I.4 Semiconductor processing and nanotechnology 4 I.5 Other areas of relevance 5 I.6 Structure of the book 5 References 7 1 Surface and Adsorbate Structure 9 1.1 Clean surface structure 10 1.1.1 Ideal flat surfaces 10 1.1.2 High index and vicinal planes 13 1.1.3 Faceted surfaces 14 1.1.4 Bimetallic surfaces 14 1.1.5 Oxide and compound semiconductor surfaces 15 1.1.6 The carbon family: Diamond, graphite, graphene, fullerenes and carbon nanotubes 18 1.1.7 Porous solids 21 1.2 Reconstruction and adsorbate structure 22 1.2.1 Implications of surface heterogeneity for adsorbates 22 1.2.2 Clean surface reconstructions 23 1.2.3 Adsorbate induced reconstructions 24 1.2.4 Islands 27 1.2.5 Chiral surfaces 28 1.3 Band structure of solids 30 1.3.1 Bulk electronic states 30 1.3.2 Metals, semiconductors and insulators 30 1.3.3 Energy levels at metal interfaces 34 1.3.4 Energy levels at metal-semiconductor interfaces 36 1.3.5 Surface electronic states 38 1.3.6 Size effects in nanoscale systems 39 1.4 The vibrations of solids 41 1.4.1 Bulk systems 41 1.4.2 Nanoscale systems 43 viii Contents 1.5 Summary of important concepts 43 1.6 Frontiers and challenges 44 1.7 Further reading 44 1.8 Exercises 44 References 47 2 Experimental Probes and Techniques 51 2.1 Ultrahigh vacuum 51 2.1.1 The need for UHV 51 2.1.2 Attaining UHV 52 2.2 Light and electron sources 53 2.2.1 Types of lasers 54 2.2.2 Atomic lamps 54 2.2.3 Synchrotrons 56 2.2.4 Free electron laser (FEL) 56 2.2.5 Electron guns 57 2.3 Molecular beams 57 2.3.1 Knudsen molecular beams 57 2.3.2 Free Jets 58 2.3.3 Comparison of Knudsen and supersonic beams 60 2.4 Scanning probe techniques 63 2.4.1 Scanning tunnelling microscopy (STM) 63 2.4.2 Scanning tunnelling spectroscopy (STS) 67 2.4.3 Atomic force microscopy (AFM) 67 2.4.4 Near-field scanning optical microscopy (NSOM) 70 2.5 Low energy electron diffraction (LEED) 73 Advanced Topic: LEED structure determination 77 2.6 Electron spectroscopy 80 2.6.1 X-ray photoelectron spectroscopy (XPS) 80 2.6.2 Ultraviolet photoelectron spectroscopy (UPS) 85 Advanced Topic: Multiphoton photoemission (MPPE) 89 2.6.3 Auger electron spectroscopy (AES) 90 2.6.4 Photoelectron microscopy 94 2.7 Vibrational spectroscopy 95 2.7.1 IR spectroscopy 97 2.7.2 Electron energy loss spectroscopy (EELS) 101 2.8 Second harmonic and sum frequency generation 103 2.9 Other surface analytical techniques 105 2.10 Summary of important concepts 106 2.11 Frontiers and challenges 106 2.12 Further reading 107 2.13 Exercises 107 References 111 3 Chemisorption, Physisorption and Dynamics 115 3.1 Types of interactions 115 3.2 Binding sites and diffusion 116 Contents ix 3.3 Physisorption 120 Advanced Topic: Theoretical Description of Physisorption 120 3.4 Non-dissociative chemisorption 121 3.4.1 Theoretical treatment of chemisorption 121 3.4.2 The Blyholder model of CO chemisorption on a metal 124 3.4.3 Molecular oxygen chemisorption 127 3.4.4 The binding of ethene 128 3.5 Dissociative chemisorption: H on a simple metal 129 2 3.6 What determines the reactivity of metals? 130 3.7 Atoms and molecules incident on a surface 133 3.7.1 Scattering channels 133 3.7.2 Non-activated adsorption 135 3.7.3 Hard cube model 137 3.7.4 Activated adsorption 139 3.7.5 Direct versus precursor mediated adsorption 140 3.8 Microscopic reversibility in Ad/Desorption phenomena 144 3.9 The influence of individual degrees of freedom on adsorption and desorption 148 3.9.1 Energy exchange 148 3.9.2 PES topography and the relative efficacy of energetic components 149 3.10 Translations, corrugation, surface atom motions 150 3.10.1 Effects on adsorption 150 3.10.2 Connecting adsorption and desorption with microscopic reversibility 153 3.10.3 Normal energy scaling 154 3.11 Rotations and adsorption 156 3.11.1 Non-activated adsorption 156 3.11.2 Activated adsorption 157 3.12 Vibrations and adsorption 158 3.13 Competitive adsorption and collision induced processes 158 Advanced Topic: High Energy Collisions 161 3.14 Classification of reaction mechanisms 161 3.14.1 Langmuir-Hinshelwood mechanism 162 3.14.2 Eley-Rideal mechanism 164 3.14.3 Hot atom mechanism 164 3.15 Measurement of sticking coefficients 165 3.16 Summary of important concepts 168 3.17 Frontiers and challenges 169 3.18 Further reading 170 3.19 Exercises 170 References 177 4 Thermodynamics and Kinetics of Adsorption and Desorption 185 4.1 Thermodynamics of Ad/Desorption 185 4.1.1 Binding energies and activation barriers 185 4.1.2 Thermodynamic quantities 187 4.1.3 Some definitions 187 4.1.4 The heat of adsorption 188 4.2 Adsorption isotherms from thermodynamics 190 x Contents 4.3 Lateral interactions 193 4.4 Rate of desorption 194 4.4.1 First-order desorption 195 4.4.2 Transition state theory treatment of first-order desorption 196 4.4.3 Thermodynamic treatment of first-order desorption 199 4.4.4 Non-first-order desorption 201 4.5 Kinetics of adsorption 202 4.5.1 CTST approach to adsorption kinetics 202 4.5.2 Langmuirian adsorption: Non-dissociative adsorption 203 4.5.3 Langmuirian adsorption: Dissociative adsorption 205 4.5.4 Dissociative Langmuirian adsorption with lateral interactions 207 4.5.5 Precursor mediated adsorption 207 4.6 Adsorption isotherms from kinetics 210 4.6.1 Langmuir isotherm 210 4.6.2 Classification of adsorption isotherms 211 4.6.3 Thermodynamic measurements via isotherms 213 4.7 Temperature programmed desorption (TPD) 213 4.7.1 The basis of TPD 213 4.7.2 Qualitative analysis of TPD spectra 215 4.7.3 Quantitative analysis of TPD spectra 217 4.8 Summary of important concepts 221 4.9 Frontiers and challenges 222 4.10 Further reading 222 4.11 Exercises 222 References 227 5 Liquid Interfaces 229 5.1 Structure of the liquid/solid interface 229 5.1.1 The structure of the water/solid interface 230 5.2 Surface energy and surface tension 234 5.2.1 Liquid surfaces 234 5.2.2 Curved interfaces 236 5.2.3 Capillary waves 238 5.3 Liquid films 239 5.3.1 Liquid-on-solid films 239 5.4 Langmuir films 241 5.5 Langmuir-Blodgett films 243 5.5.1 Capillary condensation and meniscus formation 243 5.5.2 Vertical deposition 246 5.5.3 Horizontal lifting (Shaefer’s method) 247 5.6 Self assembled monolayers (SAMs) 248 5.6.1 Thermodynamics of self-assembly 249 5.6.2 Amphiphiles and bonding interactions 250 5.6.3 Mechanism of SAM formation 250 Advanced Topic: Chemistry with Self Assembled Monolayers 253 Contents xi 5.7 Thermodynamics of liquid interfaces 254 5.7.1 The Gibbs model 254 5.7.2 Surface excess 254 5.7.3 Interfacial enthalpy and internal, Helmholtz and Gibbs surface energies 256 5.7.4 Gibbs adsorption isotherm 257 5.8 Electrified and charged interfaces 257 5.8.1 Surface charge and potential 257 5.8.2 Relating work functions to the electrochemical series 259 5.9 Summary of important concepts 261 5.10 Frontiers and challenges 262 5.11 Further reading 262 5.12 Exercises 263 References 265 6 Heterogeneous Catalysis 267 6.1 The prominence of heterogeneous reactions 267 6.2 Measurement of surface kinetics and reaction mechanisms 269 6.3 Haber-Bosch process 273 6.4 From microscopic kinetics to catalysis 277 6.4.1 Reaction kinetics 277 6.4.2 Kinetic analysis using De Donder relations 278 6.4.3 Definition of the rate determining step (RDS) 279 6.4.4 Microkinetic analysis of ammonia synthesis 280 6.5 Fischer-Tropsch synthesis and related chemistry 283 6.6 The three-way automotive catalyst 286 6.7 Promoters 288 6.8 Poisons 290 6.9 Bimetallic and bifunctional catalysts 291 6.10 Rate oscillations and spatiotemporal pattern formation 292 Advanced Topic: Cluster assembled catalysts 294 6.11 Sabatier analysis and optimal catalyst selection 295 6.12 Summary of important concepts 296 6.13 Frontiers and challenges 297 6.14 Further reading 298 6.15 Exercises 298 References 300 7 Growth and Epitaxy 305 7.1 Stress and strain 305 7.2 Types of interfaces 308 7.2.1 Strain relief 309 7.3 Surface energy, surface tension and strain energy 310 7.4 Growth modes 311 7.4.1 Solid-on-solid growth 311 7.4.2 Strain in solid-on-solid growth 313 xii Contents 7.4.3 Ostwald ripening 314 7.4.4 Equilibrium overlayer structure and growth mode 315 7.5 Nucleation theory 317 7.6 Growth away from equilibrium 319 7.6.1 Thermodynamics versus dynamics 319 7.6.2 Non-equilibrium growth modes 320 7.7 Techniques for growing layers 322 7.7.1 Molecular beam epitaxy (MBE) 323 7.7.2 Chemical vapour deposition (CVD) 326 7.7.3 Ablation techniques 327 7.8 Catalytic growth of nanotubes and nanowires 327 7.9 Etching 332 7.9.1 Classification of etching 332 7.9.2 Etch morphologies 335 7.9.3 Porous solid formation 336 7.9.4 Silicon etching in aqueous fluoride solutions 337 7.9.5 Coal gasification and graphite etching 340 7.9.6 Selective area growth and etching 341 Advanced Topic: Si Pillar Formation 343 7.10 Summary of important concepts 344 7.11 Frontiers and challenges 344 7.12 Further reading 345 7.13 Exercises 345 References 347 8 Laser and Non-Thermal Chemistry: Photon and Electron Stimulated Chemistry and Atom Manipulation 353 8.1 Photon excitation of surfaces 354 8.1.1 Light absorption by condensed matter 354 8.1.2 Lattice heating 355 Advanced Topic: Temporal evolution of electronic excitations 359 8.1.3 Summary of laser excitations 365 8.2 Mechanisms of electron and photon stimulated processes 366 8.2.1 Direct versus substrate mediated processes 366 8.2.2 Gas phase photochemistry 367 8.2.3 Gas phase electron stimulated chemistry 369 8.2.4 MGR and Antoniewicz models of DIET 369 8.2.5 Desorption induced by ultrafast excitation 373 8.3 Photon and electron induced chemistry at surfaces 374 8.3.1 Thermal desorption, reaction and diffusion 374 8.3.2 Stimulated desorption/reaction 375 8.3.3 Ablation 381 8.4 Charge transfer and electrochemistry 384 8.4.1 Homogeneous electron transfer 385 8.4.2 Corrections to and improvements on Marcus theory 387

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.