ebook img

Surface Phenomena in Fusion Welding Processes PDF

395 Pages·2005·19.776 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Surface Phenomena in Fusion Welding Processes

Surface Phenomena in Fusion Welding Processes © 2006 by Taylor & Francis Group, LLC Surface Phenomena in Fusion Welding Processes German Deyev Dmitriy Deyev © 2006 by Taylor & Francis Group, LLC 9883_Discl.fm Page 1 Tuesday, October 11, 2005 10:06 AM Published in 2006 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-9883-5 (Hardcover) International Standard Book Number-13: 978-0-8493-9883-4 (Hardcover) Library of Congress Card Number 2005052851 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Deyev, German F. Surface phenomena in fusion welding processes / by German F. Deyev and Dmitriy G. Deyev p. cm. Includes bibliographical refrences and index. ISBN 0-8493-9883-5 (alk. paper) 1. Welding. 2. Surfaces (Technology) I. Deyev, Dmitriy G. II. Title. TS227.D49 2005 671.5'2--dc22 2005052851 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com Taylor & Francis Group and the CRC Press Web site at is the Academic Division of Informa plc. http://www.crcpress.com © 2006 by Taylor & Francis Group, LLC Preface Theindustryiscurrentlyapplying highly diverse welding processes.However,the maintechnologicalprocessappliedinmanufactureofweldmentsisfusionwelding. Fusion welding is used to join practically all metals and alloys of similar and dissimilar materials of any thickness. In the application of fusion welding, the partsarejoined eitherbymeltingoftheparts’edges orasaresultofsimultaneous melting of the base and additional (electrode) metal. A weld pool forms from the metalmelt,itssubsequentsolidification,proceedingwithoutapplicationofexternal pressure, leads to the formation ofthe weld. Dependingonthekindoftheappliedheatsource,adistinctionismadebetween the following fusion welding processes: electric arc, electron beam, electroslag, laser, and gas welding. Irrespective of the actual welding process applied, the main aim of any process is producing a sound welded joint. This is only possible if a sufficiently comprehensive allowance is made for the main physicochemical processes proceedingin the welding zone. Heating, melting, evaporation, solidification, and subsequent cooling of solid metal, the transition of a substance from one phase into another, initiation of new phases, substance distribution inside a phase, interaction of the contacting phases — all these and many other processes are characteristic of fusion welding. Since all or part of the above processes proceed simultaneously in different regions of the weld pool and welded joint, and their occurrence and progress is determined by a large number of factors, studying the process as a whole is a real challenge. On the other hand, there is no doubt that many of the above processes are related, to varying degrees, to the surface phenomena and surface properties ofthe applied materials. Forinstance,formationofvariousdefects(pores,non-metallicinclusions,lack- of-penetration,solidificationcracks,etc.),hydrodynamicprocessesintheweldpool, formationofdepositedmetalandweldroot,electrode-metaltransfer,interactionof moltenmetalwiththegasandslag,andanumberofotherprocessesare,toacertain extent, related to surface phenomena. Surface phenomena largely determine the strengthofthebondsjoiningthedissimilarmetals.Theroleofsurfacephenomena is particularly high in welding in space, when the influence of gravity forces becomes minor. Therefore, in the development of welding technologies, as well as welding consumables, it is necessary to know and take into account both the surface properties (surface and interphase tension) of the applied materials, and surface phenomena (wettability, electrocapillary phenomena, adsorption, etc.), that affect the boundaries ofcontacting phases. © 2006 by Taylor & Francis Group, LLC Authors German Deyev earned a B.S. degree in civil engineering from Cheljabinsk State Polytechnical Institute (Cheljabinsk, Russia, 1963), an M.S. degree in engineering of welding technology and production from the Cheljabinsk State Polytechnical Institute (Cheljabinsk, Russia, 1965), and a Ph.D. degree in civil engineering with specialization in ‘the role of surface properties and phenomena in the formation of welds and deposited metal’ from Cheljabinsk State Polytechnical Institute (Cheljabinsk, Russia,1971). Professor Deyev served as the chairman of the Department of Welding at the University of Lipetsk from 1976 until 1999. In December 1993, he was appointed dean of the Metallurgical Faculty of the University of the Lipetsk. During his academic career, Professor Deyev has received 24 awards. He is a member of the American Welding Society. Professor Deyev has to his credit 6 books and over 120 publicationsand articlesin professionaljournals. Dmitriy Deyev earned a B.S. degree in civil engineering in 1994, an M.S. degree in engineering of welding technology and production from the Lipetsk State Polytechnical Institute (Lipetsk, Russia, 1995), and a Ph.D. degree in Civil Engineering from Voronezh State University (Voronezh, Russia, 1998). He served as the leading specialist at the Department of Transportation of the Lipetsk State Government from 1995 until 1999. Dmitriy Deyev has written many publi- cations and articlesin professionaljournals. © 2006 by Taylor & Francis Group, LLC Contents Chapter1 Characterizationofthe Fusion Welding Process .............. 1 1.1 Some Features ofFusion Welding ............................. 1 1.1.1 The Basics ofWeldFormation .......................... 1 1.1.2 The Influenceof Gases ................................ 2 1.1.3 The Influenceof Slag ................................. 3 1.2 Welding Heat Sources ...................................... 4 1.2.1 The D.C.vs. A.C. Welding ............................ 4 1.2.2 ElectronBeam Welding ............................... 7 1.2.3 Laser Welding ....................................... 8 1.3 FusionWelding Processes ................................... 9 1.3.1 Electric Arc Welding ................................. 9 1.3.1.1 Gas Shielding ................................ 10 1.3.2 Electroslag Welding .................................. 11 1.3.3 ElectronBeam andLaser Welding ....................... 12 1.4 Physicochemical Processes of Welded JointFormation ............ 13 1.4.1 Direct Interaction ofTheMetal andTheGas .............. 14 1.4.1.1 Theoretical Models ............................ 14 1.4.1.2 TheDrawback of the Theoretical Models .......... 16 1.4.2 Influenceof Surfactants ............................... 17 1.4.3 The Gas-Adsorption Ability ............................ 18 1.4.4 The Influenceof Vacuum .............................. 19 1.4.5 The Influenceof Fluxes ............................... 20 1.4.6 The Role of the Slag .................................. 21 1.4.7 The Physiochemical Processes at the Solid–Molten Metal Boundary ...................................... 23 1.4.7.1 TheNucleation Process ........................ 23 1.4.7.2 MeltOvercooling ............................. 24 1.4.7.3 Presence of RefractoryImpurities ................ 24 1.4.7.4 Shape ofthe Interface ......................... 25 1.4.7.5 Effect ofMetal Stirring ........................ 25 1.4.8 Calculation ofs Values ........................... 26 sol21 1.4.9 The Crystallization Phenomena ......................... 28 1.4.9.1 Electromagnetic Stirring and Ultrasonic Oscillations .................................. 29 1.4.9.2 Segregation Processes ......................... 30 © 2006 by Taylor & Francis Group, LLC Chapter2 Surface Properties and Phenomena ........................... 35 2.1 SurfaceProperties and Phenomena on the Boundaries of Contacting Phases .......................................... 35 2.1.1 The Concept ofSurface Energy ......................... 35 2.1.2 SurfaceEnergy vs.Surface Tension ...................... 37 2.1.3 Interphase Tension .................................... 37 2.1.4 The Adsorption Process ................................ 40 2.1.5 The Electrochemical Phenomena ........................ 42 2.2 Determination ofSurface Properties ofMelts .................... 44 2.2.1 Pendant Drop Method ................................. 44 2.2.2 Drop WeightMethod .................................. 44 2.2.3 Sessile Drop Method .................................. 45 2.2.4 Methodof MaximumPressure inthe Bubble ............... 46 2.2.5 Large Drop Method ................................... 48 2.2.6 Methodof Metal Melting in the Pendant State ............. 49 2.2.7 Methodto Determine the Surface Tension of aMetal in the Zoneof the Arc Active Spot ......................... 49 2.3 Methodsof Measurementof the Surface Tension of SolidsMetals ... 51 2.3.1 Methodof Multiphase Equilibrium ....................... 51 2.3.2 Methodof “Zero Creep” ............................... 52 2.3.3 Methodof Groove Smoothing .......................... 53 2.3.4 Methodof AutoelectronicEmission ...................... 54 2.3.5 Methodof Thermal Etching of Grain Boundaries ........... 54 2.4 MethodstoDetermine the Surface Energy of the Interphases ....... 56 2.4.1 The Sessile DropMethod .............................. 56 2.4.2 The Drop Weighing Method ............................ 57 2.4.3 Turned CapillaryMethod .............................. 57 2.4.4 DropsContact Method ................................ 58 2.4.5 X-ray Photography ofa Sessile Drop ..................... 58 2.5 Wettability, Spreading, andElectrocapillary Phenomena ........... 59 2.5.1 General Considerations ................................ 59 2.5.2 AModern Unit for Studyingthe Welding Phenomena ....... 59 2.5.3 Studyingthe Electrocapillary Phenomena ................. 61 2.5.4 AComparison of the DifferentMethods .................. 64 Chapter3 Results of Studying the Surface Properties and Phenomena ............................................. 65 3.1 SurfaceTensionof Molten and Solid Metals .................... 65 3.1.1 Influence ofAlloy Composition ......................... 65 3.1.2 The Influenceof Gases ................................ 67 3.1.2.1 Hydrogen, Nitrogen, andOxygen ................ 67 3.1.2.2 TheBehavior ofCO ........................... 69 3.1.2.3 TheBehavior ofCO /Air ...................... 70 2 3.1.2.4 TheBehavior ofBinary Gas Mixtures ............. 76 © 2006 by Taylor & Francis Group, LLC 3.1.2.4.1 Armco-Ironand Steels ................ 76 3.1.2.4.2 Aluminumand its Alloys .............. 76 3.1.2.4.3 Copper andits Alloys ................ 77 3.1.2.4.4 Titaniumand itsAlloys ............... 79 3.1.2.4.5 Nickel and itsAlloys ................. 80 3.1.2.4.6 The Role of Metal Temperature ........ 81 3.2 Interphase SurfaceEnergies inMetal–Slag and Solid Metal–Melt Systems .................................. 82 3.2.1 Composition of the System ............................. 83 3.2.1.1 Carbon ..................................... 84 3.2.1.2 Sulfur ...................................... 84 3.2.1.3 Phosphorus .................................. 84 3.2.1.4 Oxygen ..................................... 84 3.2.1.5 Cr, Mo, W,and Si ............................ 85 3.2.1.6 Individual Slag Components .................... 85 3.2.2 Temperature ofthe System ............................. 86 3.2.3 Experimental Determination ofInterphase Tension ......... 86 3.2.3.1 TheAvailable Informationon Welding Processes .................................... 87 3.2.3.2 Solidification Processes ........................ 88 3.3 Wettabilityand Spreading of Metal Melts over the Surface ofSolids .......................................... 88 3.3.1 Influenceof Material Composition ....................... 90 3.3.2 Influenceof Surface Roughness ......................... 92 3.3.3 Influenceof External Fields ............................ 92 3.3.4 IsothermalConditions ................................. 95 3.3.4.1 Steel/Copper and Copper-Based alloys ........... 95 3.3.4.2 SteelAluminum .............................. 96 3.3.4.3 Copper/Aluminum ............................ 98 3.3.4.4 Titanium and TitaniumAlloys/Aluminum ......... 99 3.3.5 Behaviorunder Non-IsothermalProcess .................. 100 3.3.5.1 Influence ofArc Parameters .................... 101 3.3.5.2 Gas-Shielded Welding ......................... 102 3.3.5.3 TheFluoc Effect .............................. 102 3.3.5.4 TheRole ofPreheading ........................ 103 3.4 Influenceof WeldingHeatSourceson Wettability and Spreading ............................................. 105 3.4.1 Influenceof Arc Discharge ............................. 105 3.4.1.1 DirectArc ................................... 107 3.4.1.2 Indirect Arc ................................. 107 3.4.1.3 TheRole ofSubstrate Composition .............. 109 3.4.1.4 Composite Materials .......................... 110 3.4.2 GeneralMechanistic Considerations ..................... 113 3.4.2.1 Experimental DeterminationofD ............... 117 m 3.4.2.2 TheNatureof the Gas Flame ................... 118 © 2006 by Taylor & Francis Group, LLC 3.5 Wettability ofthe SolidMetal by Nonmetal Melts .............. 119 3.5.1 The Influenceof Sulfur/Sulfides ........................ 119 3.5.2 Influence ofChlorides/Fluoridesof Fluxes ................ 122 3.5.2.1 TheExperimental Procedure .................... 123 3.6 Electrocapillary Phenomena ina Metal–Slag System ........... 123 3.6.1 Electrochemical Nature ofInteractions ................... 124 3.6.2 The Approach ....................................... 124 3.6.3 Experimental Methods ................................. 125 3.6.4 The Influenceof Cell Dimensions ....................... 128 3.6.5 Influence ofan External Electric Field .................... 131 Chapter4 Electrode-Metal Transfer andSurface Phenomena ............ 135 4.1 ForcesInfluencing Electrode-Metal Transfer ..................... 135 4.1.1 The Natureof Electrode-Metal Transfer .................. 135 4.1.2 The Processof Drop Formation ......................... 136 4.1.3 The Electromagnetic Force ............................. 137 4.1.4 The Reactive Forces .................................. 138 4.1.5 Other Forces ........................................ 138 4.2 Transfer andSpatter ofElectrode Metal inWelding ina Gaseous Medium ........................................... 138 4.2.1 Stagesin Drop Transfer ............................... 138 4.2.2 Drop Detachment ..................................... 140 4.2.3 Formationof Metal Spatter ............................. 141 4.2.4 The Role ofPart Preheating ............................ 142 4.2.5 Wettability andWelding Current ........................ 145 4.2.6 The Role ofOxidizing Gases ........................... 146 4.2.7 Influence ofElectrodeWire Composition ................. 148 4.2.8 Flux-Cored Wiresand Filler Metal ....................... 149 4.3 Transfer ofthe Electrode Metal Contacting the Slag .............. 150 4.3.1 The Underlying Factors ................................ 150 4.3.2 The Impact of Interphase Tension ....................... 150 4.3.2.1 Basic-Type Coating ........................... 150 4.3.2.2 Acidic Coating ............................... 152 4.3.3 The Influenceof WeldingPolarity ....................... 153 4.3.3.1 Polarity andSingle-ComponentCoatings .......... 153 4.3.3.2 Polarity Effect with Flux ....................... 155 4.3.3.2.1 Submerged-ArcWelding with a Flux .... 155 4.3.3.2.2 Electroslag Welding .................. 155 Chapter5 Formation ofWeld and Deposited Metal ..................... 157 5.1 Weldand Serviceability ofa Welded Structure .................. 157 5.1.1 Causes ofStrength Deterioration ........................ 157 5.1.1.1 Cracks and Crack-LikeDefects .................. 160 5.1.1.2 Undercuts ................................... 161 © 2006 by Taylor & Francis Group, LLC 5.1.1.3 Craters ...................................... 162 5.1.1.4 Rolls ....................................... 163 5.2 Formationof the Penetration Zone ............................ 164 5.2.1 Shape andDimensions ofthe Penetration Zone ............ 164 5.2.1.1 Penetration Depth ............................. 165 5.2.2 The Influenceof Base-Metal Surface Properties ............ 166 5.2.3 The Action ofSurfactants .............................. 168 5.2.4 ThermocapillaryPhenomena ........................... 169 5.2.4.1 Evidence from Laser Welding and ArcWelding .... 171 5.2.4.2 ConsumableElectrode Welding ................. 172 5.2.5 Effect ofCurrentPolarity .............................. 173 5.2.6 Experimental Findings ................................ 177 5.2.6.1 Influence ofWelding Current ................... 178 5.2.6.2 Durationof Arc Discharge Action ............... 178 5.2.6.3 Dimensions andSpacing ofthe SteelPlates ........ 179 5.2.6.4 Calculations ................................. 181 5.3 Formationof the Weld Bead andRoot ......................... 182 5.3.1 Issues inthe Formationof Butt Welds .................... 182 5.3.2 The Graphical Method ................................ 182 5.3.3 The Role of Temperature Fields and InclinationAngles ..... 184 5.3.3.1 Angle ofInclination ........................... 185 5.3.4 Surface Tension vs. Gravitational Force .................. 187 5.3.4.1 Angle ofTransition ........................... 188 5.4 Formationof the Deposited Metal ............................. 189 5.4.1 Wetting Angle ....................................... 189 5.4.2 Experiments with Electron Beam Surfacing ............... 191 5.4.2.1 TheCritical Rate ofDeposition .................. 191 5.4.2.2 Electron Beam Oscillations ..................... 194 5.4.3 Temperature Gradient andthe Speed of Displacement ....... 194 5.5 Defects ofWeldShape and Surface Phenomena ................. 198 5.5.1 Groove Filling and Unfilling ........................... 198 5.5.1.1 Extending the Timeof Weld-PoolExistence ....... 199 5.5.1.2 Surface Roughness ............................ 199 5.5.2 Multilayer Welding ................................... 200 5.5.2.1 Formation of Burns-Through .................... 201 5.5.2.2 Formation of Craters .......................... 201 5.5.2.3 Formation of Rolls ............................ 202 Chapter6 Non-Metallic Inclusions ..................................... 205 6.1 Non-Metallic Inclusions inthe Welds .......................... 205 6.1.1 Types ofNon-Metallic Inclusions ....................... 205 6.1.2 The Influenceof Non-Metallic Inclusions ................. 208 6.1.2.1 Thermal–Structural Factors ..................... 208 6.1.2.2 Strength ofWeldedJoints ...................... 208 © 2006 by Taylor & Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.