ebook img

Surface Hydrologic Modeling and Analyzing Watershed Hydrologic Response to Landcover Change PDF

154 Pages·2017·3.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Surface Hydrologic Modeling and Analyzing Watershed Hydrologic Response to Landcover Change

UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1-2017 SSuurrffaaccee HHyyddrroollooggiicc MMooddeelliinngg aanndd AAnnaallyyzziinngg WWaatteerrsshheedd HHyyddrroollooggiicc RReessppoonnssee ttoo LLaannddccoovveerr CChhaannggee Roshan Poudel University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Civil Engineering Commons RReeppoossiittoorryy CCiittaattiioonn Poudel, Roshan, "Surface Hydrologic Modeling and Analyzing Watershed Hydrologic Response to Landcover Change" (2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3160. http://dx.doi.org/10.34917/11889737 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. SURFACE HYDROLOGIC MODELING AND ANALYZING WATERSHED HYDROLOGIC RESPONSE TO LANDCOVER CHANGE By Roshan Poudel Bachelor of Science in Civil Engineering (Specialization: Hydropower) Kathmandu University 2013 A thesis submitted in partial fulfillment of the requirement for the Master of Science in Engineering – Civil and Environmental Engineering Department of Civil and Environmental Engineering and Construction Howard R. Hughes College of Engineering The Graduate College University of Nevada, Las Vegas December 2017 Thesis Approval The Graduate College The University of Nevada, Las Vegas August 18, 2017 This thesis prepared by Roshan Poudel entitled Surface Hydrologic Modeling and Analyzing Watershed Hydrologic Response to Landcover Change is approved in partial fulfillment of the requirements for the degree of Master of Science in Engineering – Civil and Environmental Engineering Department of Civil and Environmental Engineering and Construction Haroon Stephen, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Chair Graduate College Interim Dean Sajjad Ahmad, Ph.D. Examination Committee Member Jacimaria Batista, Ph.D. Examination Committee Member Ashok Singh, Ph.D. Graduate College Faculty Representative ii ABSTRACT Urban flooding is the most frequently occurring disaster in rapidly urbanizing cities. Rapid urbanization in general, is characterized by an increase in the total impervious surface area, which means less soil cover for the stormwater to infiltrate and a greater volume of runoff from the area in case of a storm event. This increased volume of surface runoff, if not drained, results in urban flooding. Urban flooding can cause serious economic and environmental damages by disrupting transportation and spreading pollution. It is therefore, essential to understand the cause, behavior and effects of urban flooding so as to minimize the risks and costs associated with urban floods. Hydrologic models are useful tools for understanding hydrologic processes and for designing urban stormwater drainage infrastructure to reduce the risks of floodings. This research aims to study urban hydrology by estimating surface runoff from an urban area using an event based distributed parameter hydrologic model. In this research, an event-based distributed parameter hydrologic model is developed, which uses Green-Ampt infiltration model to estimate the surface runoff from a given catchment. The developed model is tested on two small catchments. The ‘rainfall-runoff modeling’ part of the developed model is calibrated for the rainfall events of May 22, 2017 and, May 24, 2017 over the Moores Run study area, and, validated for the rainfall event of April 17, 2017. The ‘flood-modeling’ part of the developed model is validated for the rainfall event of Sep 11, 2012 over the Parking-lots area at UNLV. The results of the rainfall- runoff simulation and flood depth and extent estimation for different land-cover change scenarios over the Parking-lots catchment is also provided. iii The testing on Moores Run study area resulted in calibration at 30-m resolution DEM and a hydraulic conductivity value of 0.19 cm/hr. for soil group D. The error in the model’s estimation of the catchment area is 7.75%. The model over-predicted the runoff volume from the catchment for the first rainfall event while under-predicted the runoff volume from the catchment for the second rainfall event. The average error in estimation of the runoff volume is 1.8%. The model also over-predicts the ‘time-to-peak’ and under-predicts ‘peak runoff’ in both cases. The average of RMSE between the predicted hydrograph and actual hydrograph for the two rainfall events is 0.0071 m3/s in calibration, and, 0.011 m3/s in validation. The testing on UNLV Parking-lots area resulted in calibration at 10-m resolution DEM. For the rainfall event of Sep 11, 2012, the model predicts over predicts the peak flood depth and under-predicts the maximum extent of flooding. The error in flood depth estimation is found be 12.9%. From watershed hydrologic response to landcover change analysis, it is observed that Manning’s roughness coefficient doesn’t affect the total volume of runoff, however, the time to peak is significantly delayed for landcover with higher values of Manning’s roughness co-efficient. This research provides an insight into surface hydrologic modeling. It also provides an overview of calibration against DEM resolution and hydraulic conductivity values. Finally, it provides an understanding of watershed hydrologic response to different landcovers with various Manning’s roughness values. iv DEDICATION I would like to thank Dr. Haroon Stephen for guiding me throughout my research and for helping me to write this thesis. I also express my appreciation towards Dr. Sajjad Ahmad, Dr. Jacimaria Batista, and, Dr. Ashok Singh. I want to express my gratitude to Masih Edalat for his continuous help in my research. I also want to express my gratitude to Cabel Shrestha for his guidance and support throughout my graduate studies. Further, I would also like to thank my family and friends. I wouldn’t be where I am without their help. v TABLE OF CONTENTS ABSTRACT--------------------------------------------------------------------------------------------------- III DEDICATION ------------------------------------------------------------------------------------------------- V TABLE OF CONTENTS ----------------------------------------------------------------------------------- VI LIST OF TABLES ------------------------------------------------------------------------------------------- IX LIST OF FIGURES ------------------------------------------------------------------------------------------- X CHAPTER 1: INTRODUCTION --------------------------------------------------------------------------- 1 1.1) Research Motivation: ----------------------------------------------------------------------- 3 1.2) Research Objectives: ----------------------------------------------------------------------- 4 1.3) Research Approach: ------------------------------------------------------------------------ 5 1.4) Thesis Outline: ------------------------------------------------------------------------------- 6 CHAPTER 2: LITERATURE REVIEW ------------------------------------------------------------------ 8 2.1) Urban hydrologic modeling --------------------------------------------------------------- 8 2.1.1) Historical and Current practices --------------------------------------------------------- 10 2.1.2) Classification of contemporary hydrologic models ----------------------------------- 13 2.1.2.1) Process based classification -------------------------------------------------------------- 14 2.1.2.2) Time-scale based classification ---------------------------------------------------------- 16 2.1.2.3) Land-use based classification ------------------------------------------------------------ 17 2.1.2.4) Model-use based classification----------------------------------------------------------- 17 2.1.2.5) Solution-technique based classification ------------------------------------------------ 17 2.1.3) Shortcomings of contemporary hydrologic models and modeling practices ------ 18 2.2) Green-Ampt infiltration model and disadvantages of SCS CN model. ------------ 21 2.3) Causes of urban flash flooding ----------------------------------------------------------- 25 2.4) Flooding in Baltimore --------------------------------------------------------------------- 27 2.5) Flooding in Las Vegas --------------------------------------------------------------------- 29 2.6) Summary of Literature review ----------------------------------------------------------- 33 CHAPTER 3: STUDY AREA AND DATA ------------------------------------------------------------- 35 3.1) Study Area ---------------------------------------------------------------------------------- 35 3.2) Data ------------------------------------------------------------------------------------------ 41 3.2.1) Remote Sensing Data ---------------------------------------------------------------------- 41 3.2.1.1) ‘10-m DEM’ for UNLV Parking-lots area. --------------------------------------------- 41 vi 3.2.1.2) ‘30-m DEM’ of Moores Run Study area. ----------------------------------------------- 41 3.2.1.3) ‘2015 version NAIP imagery (1m resolution)’ ----------------------------------------- 42 3.2.2.1) Rainfall Data -------------------------------------------------------------------------------- 43 3.2.2.2) Soil group data ------------------------------------------------------------------------------ 47 CHAPTER 4: METHODOLOGY ------------------------------------------------------------------------- 52 4.1) Hydrologic modeling ---------------------------------------------------------------------- 52 4.1.1) Data preparation: --------------------------------------------------------------------------- 52 4.1.1.1) Elevation data ------------------------------------------------------------------------------ 53 4.1.1.2) Flow-direction and watershed delineation. --------------------------------------------- 53 4.1.1.3) Hydrological slope ------------------------------------------------------------------------- 54 4.1.2) Modeling: ----------------------------------------------------------------------------------- 55 4.2) Description of the Matlab code for the developed hydrologic model -------------- 57 4.4) Image classification ------------------------------------------------------------------------ 58 4.5) Model calibration and validation -------------------------------------------------------- 58 4.6) Model Implementation/Simulation ------------------------------------------------------ 60 4.7) Error analysis ------------------------------------------------------------------------------- 61 4.8) Landcover change analysis --------------------------------------------------------------- 61 4.9) Summary of methodology ---------------------------------------------------------------- 62 CHAPTER 5: RESULTS------------------------------------------------------------------------------------ 63 5.1) Moores Run study area -------------------------------------------------------------------- 63 5.1.1) Results for DEM resampling and watershed delineation ----------------------------- 63 5.1.2) Results for Image classification ---------------------------------------------------------- 66 5.1.3) Calibration and error analysis. ----------------------------------------------------------- 67 5.1.4) Hydrographs and validation. ------------------------------------------------------------- 71 5.1.5) Discussion ----------------------------------------------------------------------------------- 73 5.2) UNLV Parking-lots area:------------------------------------------------------------------ 76 5.2.1) Results for DEM filtering and watershed delineation -------------------------------- 76 5.2.2) Hydrographs -------------------------------------------------------------------------------- 80 5.2.3) Inundation mapping and Estimation ---------------------------------------------------- 82 5.2.4) Validation of the model ------------------------------------------------------------------- 85 5.2.4.1) Validation for flood depth estimation --------------------------------------------------- 85 5.2.4.2) Validation for flood extent estimation -------------------------------------------------- 86 5.2.5) Discussion ----------------------------------------------------------------------------------- 87 5.3) Landcover change scenarios -------------------------------------------------------------- 89 vii 5.3.1) Discussion ----------------------------------------------------------------------------------- 95 5.4) Landcover treatment scenarios ----------------------------------------------------------- 97 5.5) Summary of all results --------------------------------------------------------------------- 99 CHAPTER 6 – SUMMARY AND CONCLUSION -------------------------------------------------- 101 6.1) Summary ---------------------------------------------------------------------------------- 101 6.2) Conclusion -------------------------------------------------------------------------------- 102 6.3) Limitations -------------------------------------------------------------------------------- 103 6.4) Recommendations ------------------------------------------------------------------------ 103 APPENDIX - I ---------------------------------------------------------------------------------------------- 107 APPENDIX - II --------------------------------------------------------------------------------------------- 121 REFERENCES --------------------------------------------------------------------------------------------- 129 CURRICULUM VITAE ---------------------------------------------------------------------------------- 141 viii LIST OF TABLES Table 3.2.2-1: Values of hydraulic conductivity for different soil textures -------------------------- 49 Table 3.2.2-2: Manning’s roughness coefficient (n) ---------------------------------------------------- 50 Table 3.2.2-3: Soil properties ------------------------------------------------------------------------------- 51 Table 5.1-2: Summary of outputs for ‘rainfall-runoff’ analysis --------------------------------------- 74 Table 5.3-1: Summary of the landcover change scenarios --------------------------------------------- 96 ix

Description:
parameter hydrologic model is developed, which uses Green-Ampt infiltration model to estimate runoff simulation and flood depth and extent estimation for different land-cover change scenarios provides an understanding of watershed hydrologic response to different landcovers with various.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.