ebook img

surface hardening of austenitic fe–cr–ni alloys for accident-tolerant nuclear fuel cladding PDF

155 Pages·2017·3.92 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview surface hardening of austenitic fe–cr–ni alloys for accident-tolerant nuclear fuel cladding

SURFACEHARDENINGOFAUSTENITICFE–CR–NIALLOYSFOR ACCIDENT-TOLERANTNUCLEARFUELCLADDING by ZHENLI Submittedinpartialfulfillmentoftherequirements ForthedegreeofDoctorofPhilosophy DepartmentofMaterialsScienceandEngineering CASEWESTERNRESERVEUNIVERSITY January,2018 SurfaceHardeningofAusteniticFe–Cr–NiAlloysForAccident-Tolerant NuclearFuelCladding CaseWesternReserveUniversity CaseSchoolofGraduateStudies Weherebyapprovethethesis1of ZHENLI forthedegreeof DoctorofPhilosophy Dr.FrankErnst 04/26/2017 CommitteeChair,Adviser Date DepartmentofMaterialsScienceandEngineering,CWRU Dr.ArthurHeuer 04/26/2017 CommitteeMember Date DepartmentofMaterialsScienceandEngineering,CWRU Dr.JohnLewandowski 04/26/2017 CommitteeMember Date DepartmentofMaterialsScienceandEngineering,CWRU Dr.SunnivaCollins 04/26/2017 CommitteeMember Date DepartmentofMechanicalandAerospaceEngineering,CWRU Dr.ScottLillard 04/26/2017 CommitteeMember Date DepartmentofChemicalandBiomolecularEngineering,TheUniversityofAkron 1Wecertifythatwrittenapprovalhasbeenobtainedforanyproprietarymaterialcontainedtherein. DedicatedtomywifeXunZhan,mydaughtersMacieLi,JoannaLi,my parentsLimingLi,YingnanFanandparentsinlawZhijunZhan,Liping Gaowithlove Table of Contents ListofTables vi ListofFigures vii Acknowledgements xv Acknowledgements xv Abstract xvi Abstract xvi Chapter1. Introduction 1 Motivation 1 MaterialsCandidate 2 ColossalSuper-saturationEngineering 8 Approach 15 Chapter2. Experimental 19 AAA(aqueousacidactivation) 20 GasPhaseProcessing 21 Characterization of CSS (colossal super-saturation)-Engineered Near-surface Region 25 PropertiesofCSS-engineeredNear-surfaceDiffusionZone 27 OxidizedandIrradiatedLTC/LTNCNear-surfaceRegionCharacterization 31 Chapter3. Results 33 LTC/LTNCNear-surfaceRegionCharacterization 33 iv PropertiesofLTC(low-temperaturecarburization)andLTNC(low-temperature nitro-carburization)Layers 53 Chapter4. Discussion 86 PossibleMechanismsofPassivationbyEthanol 86 CSS-engineeringofAISI-316L,AL-6XNandIN-718 89 OxidationTests 104 SCC(stresscorrosioncracking) 110 IrradiationTest 115 Chapter5. Conclusions 117 Chapter6. Futurework 120 AppendixA. AqueousAcidActivation 122 AppendixB. LongtermannealingofcarburizedAISI-316L 126 AppendixC. LTC(low-temperaturecarburization)ofnanostructuredAISI-316L 129 Appendix. CompleteReferences 132 v List of Tables 1.1 Mainchemicalcompositions(>1.0at%)ofAISI-316LSS,AL-6XN,and IN-718. Theunitofatomicconcentrationisat.%. 16 2.1 AISI-316LsamplespreparationparametersbeforeXPS. 21 2.2 ShapesanddimensionsofAISI-316L,AL-6XN,andIN-718samples. 22 2.3 Gasflowratesduringactivationandcarburizationprocess. 24 2.4 Gasflowratesduringnitro-carburizationofIN-718. 25 2.5 PostCSS-engineeringheatexposure 30 B.1 Carbonprofileintegrationratiobetweenas-carburized,air-annealed andvacuum-annealedAISI-316Lspecimens. 127 vi List of Figures 1.1 Optical micrographs of cross sections of Zircaloy-2 and AISI-317L after 28.8ks exposure to 1MPa steam at 1070K, 1270K, 1470K, respectively. (a)-(c)Zircaloy-2. (d)-(f)AISI-317L. 3 1.2 (a)Vickershardness(triangles)andcarbonconcentration(circles) depthprofiles. (b)Residualstressprofileofcarburized316Lstainless steel. 5 1.3 Potentiodynamicpolarizationcurvesofcarburizedandas-received AISI-316L, recorded in sea-water-like electrolyte (0.6M NaCl solution). 6 1.4 TTTdiagramsofanAISI-316austeniticSSwithtwodifferentatom fractionsX ofcarbon. 7 C 1.5 (a)J4915furnace. (b)MainchamberofJ4915furnace. 10 1.6 GasphaseLTCorLTNCprocess. 11 1.7 Metallographicimageofgasphase(C H )LTCofelectro-polished 2 2 AISI-316L. 12 1.8 Schematicstructureofaplasmaunit. 13 1.9 Schematicprocessofampoulemethodfornitro-carburization. 14 2.1 LTC(low-temperaturecarburization)recipesofAISI-316L,AL-6XN, andIN-718. 23 2.2 Typical nano-indentation setting for hardness depth profile of CSS-engineeredFe–Cr–Nialloys. Theblacktrianglesareindentations. 27 vii 2.3 SchematicdiagramofpininsertedintotheendsofAISI-316Ltube. 28 2.4 Dpadepthprofileof1.5MeVprotonsintoironsimulatedbySRIM. 31 3.1 XRD patterns of non-treated and carburized AISI-316L tubes and coupons. 33 3.2 XRDpatternsofnon-treatedandcarburizedAL-6XN. 34 3.3 XRD patterns of non-treated, carburized, and nitro-carburized IN-718. 35 3.4 Metallographic cross-sections of (a) carburized AISI-316L, (b) carburized AL-6XN, (c) carburized IN-718, and (d) nitro- carburizedcoupons,respectively. 37 3.5 Metallographic cross-sections of carburized AL-6XN for different surfacefinishingandactivation: (a), (c), (e), (g)are polishingwith P180,P800,P4000,andelectro-polishing,respectively. (b),(d),(f),(h) arepolishingwiththecorrespondingSiCgritpapersandactivating withaqueousHClatroomtemperaturefor300s,respectively. 38 3.6 Metallographiccross-sectionsofLTC(low-temperaturecarburization) AND LTNC (low-temperature nitro-carburization) Fe–Cr–Ni alloy tubes. (a)RegionsawayfromthetwoendsoftheLTCAISI-316Ltube. (b)AtypicalimageoftwoendsoftheLTCAISI-316Ltube. (c)Regions awayfromthetwoendsoftheLTCIN-718tube. (d)Atypicalimage oftwoendsoftheLTCIN-718tube. (e)Regionsawayfromthetwo endsoftheLTNCAISI-316Ltube. (f)Atypicalimageoftwoendsof theLTNCAISI-316Ltube. 40 viii 3.7 (a)SchematicdiagramofgasflowthroughtheAISI-316Ltube. (b) PartofCVDfurnacewithdiameter2RandlengthL.(Prof. F.Ernst, unpublished) 42 3.8 (a) Increasing gas-flow through the tube by usinga funnel. (b) An optical image of a cross-section of a carburized AISI-316L tube by usingthefunnel. 45 3.9 Metallographiccross-sectionofIN-718tubeafterroom-temperature aqueous HCl activation and LTNC (low-temperature nitro- carburization). 46 3.10 MetallicsignalsacquiredbyXPS(X-rayphotoelectronspectroscopy). 48 3.11 XPS (X-ray photoelectron spectroscopy) data collected from the activatedsurfaceofAISI-316L:(a)immersedinethanolfor300safter AAA(aqueousacidactivation)and(b)immersedindeionizedwater for300safterAAA. 49 3.12 SAM(scanningAugermicroprobe)elementalconcentrationdepth profilesof(a)AISI-316LafterLTC,(b)AL-6XNafterLTC,(C)IN-718 afterLTC,and(d)IN-718afterLTNC,respectively. 50 3.13 SAM(scanningAugermicroprobe)Crconcentrationdepthprofiles ofIN-718afterLTC,LTNC,andannealingatcarburizationornitro- carburizationtemperatureunder0.1MPaN condition,respectively. 51 2 3.14 Nano-hardnessdepthprofilesof(a)AISI-316LafterLTC,(b)IN-718 afterLTC,and(c)IN-718afterLTNC,respectively. 54 ix 3.15 Tensile tests of (a) Non-treated, annealed at carburization temperature (720K) for 72ks (20h), and carburized AISI-316L tubes, (b) Non-treated, annealed at carburization temperature for 100.8ks(28h),carburizedandnitro-carburizedIN-718tubes. 55 3.16 Weartrenchprofilesof(a)non-treatedand(b)carburizedAISI-316L coupons. 57 3.17 MFM (magnetic force microscopy) data of (a) and (b) carburized IN-718,(c)and(d)nitro-carburizedIN-718. 58 3.18 X-ray diffractograms of (a) carburized AISI-316L, (b) carburized AL-6XN, (c) carburized IN-718, and (d) nitro-carburized IN-718, respectively,beforeandafterPCHE-A-Air. 60 3.19 Metallographic cross-sections of (a) carburized AISI-316L, (b) carburized AL-6XN, (c) carburized IN-718, and (d) nitro- carburizedIN-718,respectively,beforeandafterPCHE-A-Air. 61 3.20 SAM (scanning Auger microprobe) elemental concentration depth profiles of (a) carburized AISI-316L, (b) carburized AL-6XN, (c)carburizedIN-718,and(d)nitro-carburizedIN-718,respectively, beforeandafterPCHE-A-Air. 63 3.21 Nano-hardness depth profiles of (a) carburized AISI-316L, (b) carburized AL-6XN, and (c) carburized IN-718, respectively, beforeandafterPCHE-A-Air. 64 x

Description:
Properties of LTC (low-temperature carburization) and LTNC (low-temperature through the AISI-316L tube is ≈ 1/160,000 of the gas flow through the furnace cham- ber. Therefore, the HCl and et al. found that carburized AISI-316L ferrule annealed at 650 K for 21 Ms (8 months) has. 50% more
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.