Surface Diffusion Metals,MetalAtoms,andClusters For the first time, this book unites the theory, experimental techniques, and computa- tionaltoolsusedtodescribethediffusionofatoms,molecules,andnanoparticlesacross metal surfaces. Starting with an outline of the formalism that describes diffusion on surfaces,theauthorsguidethereaderthroughtheprinciplesofatomicmovement,before moving on to describe diffusion under special circumstances, such as the presence of defects or foreign species. With an initial focus on the behavior of single entities on a surface, later chapters address the movement of clusters of atoms and the interactions betweenadatoms.Whilethereisaspecialemphasisonexperimentalwork,attentionis paid to the increasingly valuable contributions theoretical work has made in this field. This book has wide interdisciplinary appeal and is ideal for researchers in solid state physicsandchemistry,aswellasmaterialsscienceandengineering. Graz·yna Antczak is a Humboldt Fellow in the Solid State Physics Department at Leibniz University, Hannover, Germany. She received her Ph.D. from the Institute of ExperimentalPhysicsattheUniversityofWrocław,Poland,wheresheisnowanadjunct researcher.Dr.AntczakisaMemberoftheAmericanPhysicalSocietyandtheAmerican VacuumSociety,andhashad15publicationsinscientificjournals. GertEhrlichiscurrentlyResearchProfessorintheDepartmentofMaterialsScienceand Engineering at the University of Illinois, Urbana-Champaign. He is internationally recognizedasapioneerintheareaofsurfacediffusion,andhehasreceivednumerous scientifichonoursandawards.Dr.Ehrlichisanactivememberofvarioussocieties,andis aFellowoftheAmericanPhysicalSocietyandtheNewYorkAcademyofSciences.He has written almost 200 journal articles and has served on several editorial advisory boards. Surface Diffusion Metals, Metal Atoms, and Clusters GRAZ˙YNA ANTCZAK LeibnizUniversita¨tHannover,Germany GERT EHRLICH UniversityofIllinois,Urbana-Champaign cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB22RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521899833 ©G.AntczakandG.Ehrlich2010 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2010 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationData Antczak,Grażyna,1973– Surfacediffusion:metals,metalatoms,andclusters/GrażynaAntczak,GertEhrlich. p. cm. ISBN978-0-521-89983-3(hardback) 1. Diffusion. 2. Metals–Surfaces. 3. Surfaces(Physics) I. Ehrlich,Gert. II. Title. QC176.8.D5A58 2010 530.4′15–dc22 2009050502 ISBN978-0-521-89983-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pageix Listofabbreviations xi Listofsymbols xiv 1 Atomicdiffusiononsurfaces 1 1.1 Diffusivities:anintroduction 1 1.2 Distributionofatomicdisplacements 7 1.3 Jumprates 17 2 Determinationofadatommovements 24 2.1 Fieldionmicroscopy 24 2.2 Fieldelectronemissionmicroscopy 29 2.3 Scanningtunnelingmicroscopy 31 2.4 FIMmeasurementofdiffusivity 34 2.5 Displacementdistributions 44 2.6 STMmeasurementsofdiffusion 46 2.7 Othermeasurementtechniques 53 2.8 Theoreticalestimates 56 3 Atomiceventsinsurfacediffusion 64 3.1 Adatombindingsites 64 3.2 Atomicjumpsindiffusion 86 3.3 Longjumpsinsurfacediffusion 116 3.4 Transientdiffusion 146 4 Diffusiononone-dimensionalsurfaces 183 4.1 Aluminum:Al(110),(311),(331) 184 4.2 Nickel:Ni(110) 186 4.3 Nickel:Ni(311)andNi(331) 193 4.4 Copper:Cu(110),Cu(311),Cu(331) 194 4.5 Molybdenum:Mo(211) 200 vi Contents 4.6 Rhodium:Rh(110),(311),(331) 202 4.7 Palladium:Pd(110),(311),(331) 204 4.8 Silver:Ag(110),(311),(331) 207 4.9 Tungsten:W(211) 211 4.10 Tungsten:W(321) 225 4.11 Iridium:Ir(110),(311),(331) 227 4.12 Platinum:Pt(110),(311),(331) 230 4.13 Gold:Au(110),(311),(331) 235 4.14 Lead:Pb(110) 238 4.15 Tablesfor1DDiffusion 238 5 Diffusionontwo-dimensionalsurfaces 261 5.1 Aluminum:Al(100) 261 5.2 Aluminum:Al(111) 265 5.3 Potassium 269 5.4 Iron:Fe(100),(111),(110) 269 5.5 Nickel:Ni(111) 274 5.6 Nickel:Ni(100) 277 5.7 Copper:Cu(100) 283 5.8 Copper:Cu(111) 295 5.9 Molybdenum:Mo(110),(111),(100) 301 5.10 Ruthenium:Ru(0001) 304 5.11 Rhodium:Rh(111),(100) 304 5.12 Palladium:Pd(100) 309 5.13 Palladium:Pd(111) 312 5.14 Silver:Ag(111) 315 5.15 Silver:Ag(100) 322 5.16 Tantalum:Ta(110) 328 5.17 Tungsten:W(110) 329 5.18 Tungsten:W(100) 341 5.19 Tungsten:W(111) 344 5.20 Rhenium:Re(0001) 347 5.21 Iridium:Ir(111) 348 5.22 Iridium:Ir(100) 353 5.23 Platinum:Pt(111) 355 5.24 Platinum:Pt(100) 361 5.25 Gold:Au(100) 365 5.26 Gold:Au(111) 368 5.27 Lead:Pb(111) 372 5.28 Bismuth:Bi(111) 372 5.29 Tablesfor2Ddiffusion 373 5.30 Predictionsandcomparisons 402 Contents vii 6 Diffusioninspecialenvironments 423 6.1 Nearimpurities 423 6.2 Todescendingstepedges 430 6.3 Atomlifetimeversusthestep-edgebarrier 479 6.4 Comparisons 485 6.5 Atomdescentovermany-layeredstepsandbetweenfacets 487 6.6 Toascendingstepedges 498 6.7 Diffusionneardislocations 506 7 Mechanismofclusterdiffusion 517 7.1 Viasingleatomjumps 520 7.2 Concerteddisplacements 536 7.3 Mechanismofdimerdiffusionversusbondlength 546 7.4 Kineticmechanismsoflargerclusters 547 7.5 Derivationofthemechanismoflargeclustermovements 550 8 Diffusivitiesofsmallclusters 556 8.1 Earlyinvestigations 556 8.2 Clustersonaluminumsurfaces 561 8.3 Clustersonironsurfaces 567 8.4 Clustersonnickelsurfaces 569 8.5 Clustersoncoppersurfaces 575 8.6 Clustersonrhodiumsurfaces 593 8.7 Clustersonpalladiumsurfaces 596 8.8 Clustersonsilversurfaces 598 8.9 Clustersontantalumsurfaces 601 8.10 Clustersontungstensurfaces 602 8.11 Clustersonrheniumsurfaces 618 8.12 Clustersoniridiumsurfaces 619 8.13 Clustersonplatinumsurfaces 634 8.14 Clustersongoldsurfaces 647 8.15 Comparisons 651 9 Diffusionoflargeclusters 664 9.1 Largeclustersonfcc(100)surfaces 664 9.2 Largeclustersonfcc(111)surfaces 676 9.3 Largeclustersonfcc(110)surfaces 692 9.4 Commentsandcomparisons 693 viii Contents 10 Atomicpairinteractions 696 10.1 Earlymeasurements 698 10.2 Morerecentstudies 704 10.3 Summary 730 Appendix:Preparationofsamplesforfieldionmicroscopy 735 Index 743 Thecolorplatesaresituatedbetweenpages298and299. Preface Surface diffusion on metals has been a subject of scientific interest for roughly ninety years.Duringthefirstfortyyearsofthisperioditwasveryhardtodomeaningfulwork because of technical problems – the difficulty of establishing good enough vacuum conditions to maintain a surface clean for measurements. In a few laboratories,mostly industrial,ultrahighvacuumtechniqueswerealreadypracticedatthattime,butthiswas not the normal course of events. All of this changed after World War II, first with the general adoption of good vacuum practices, and then with the development of more capabletechniquesforexaminingkineticprocessesthatareimportantonasurface.The first ofthesetechniqueswas field ionmicroscopy,invented byErwinMüller[1,2],the first method to provide a direct view of single atoms on a surface. The next important developmentwasthescanningtunnelingmicroscope,devisedbyBinnigandRohrer[3], whichestablishedthecapabilityofprobingalargescalesurfacewithhighresolution.The lastmajorcontributionwastheprogressintheoreticaltechniquesandcomputertechnol- ogy,whichtowardtheendofthetwentiethcenturyledtotherapidgrowthoftheoretical calculations. Thelastfortyyearshavethereforebeenatimeofgreatprogressinourunderstanding of surface diffusion, especially of metal atoms on metals. These advances have been spread over the scientific literature, and there has been no overview of the entire field, which is what we are trying to provide here. Our primary emphasis will be on experi- mentalworktodefinetheprocessesparticipatinginsurfacediffusion.However,theore- ticalworkcannowbedonesoexpeditiouslythatithasprovidedvaluableguidance,and is now being intensively pursued. As such these contributions will also be carefully noted.1Surfacediffusionhas,ofcourse,alonghistory,datingbacktotheinitiatingwork ofHamburger[5]in1918.Theseearlystudieshave,however,alreadybeenreviewed[6], so here we will be concerned with work on surface diffusion under ultra high vacuum (UHV)conditionsandonanatomicscale,whichbeganinthe1960s,andhasledtothe currentstateofunderstanding. Thebeginningsofmodernstudiesofsurfacediffusionweregreatlyinfluencedbythe insightsandinspirationofDavidTurnbull,aswellasbythetraditionsandexpertiseat General Electric. We have also benefited from the encouragement and suggestions of Ryszard Błaszczyszyn, and were able to draw on the expertise at the Institute of ExperimentalPhysicsoftheUniversityofWrocław.Here,attheUniversityofIllinois, 1 Forareviewoftheoreticalefforts,seeT.Ala-Nissilaetal.[4].