ebook img

Surface and Colloid Science PDF

418 Pages·2001·10.718 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Surface and Colloid Science

SURFACE AND COLLOID SCIENCE Volume 16 A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher. SURFACE AND COLLOID SCIENCE Volume 16 Edited by EGON MATIJEVIC Center for Advanced Materials Processing Clarkson University Potsdam, New York Springer Science+Business Media, LLC ISBN 978-1-4613-5448-2 ISBN 978-1-4615-1223-3 (eBook) DOI 10.1007/978-1-4615-1223-3 ©2001 Springer Science+Business Media New York Originally published by Kluwer Academic/Plenum Publishers, New York in 2001 Softcover reprint ofthe hardcover lst edition 2001 http://www.wkap.nl 10987654321 A C.l.P. record for this book is available from the Library of Congress AII rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Preface to the Series A need for a comprehensive treatise on suiface and colloid science has been felt for a long time. This series endeavors to fill this need. Its format has been shaped by the features of this widely roaming science. Since the subjects to be discussed represent such a broad spectrum, no single person could write a critical review on more than a very limited number of topics. Thus, the volumes will consist of chapters written by specialists. We expect the series to represent a treatise that will describe theories, systems, and processes in a comprehensive manner, and indicate solved problems and problems which still require further research. Purely descrip tive colloid chemistry will be limited to a minimum. Qualitative observations of poorly defined systems, which in the past have been so much in evidence, will be avoided. Thus, the chapters are neither supposed to possess the character of advances, nor to represent reviews of authors' own studies. Instead, it is hoped that each contribution will treat a subject critically, giving the historic development as well as a digest of the newest results. Every effort will be made to include chapters on novel systems and phenomena. It is impossible to publish a work of this magnitude with all chapters in a logical order. Rather, the contributions will appear as they arrive, as soon as the editor receives sufficient material for a volume. A certain amount of overlap is unavoidable and uniform treatment and style cannot be expected in a publication that represents the effort of so many. Notwithstanding these anticipated difficulties, the series as described appears to be the only practical way to accomplish the task of a high-level and modem treatise on surface and colloid science. Some general remarks may be in order. In modem times, few disciplines have fluctuated in "popularity" as much as colloid and surface science. However, it seems that these sporadic declines in interest in the science of "neglected dimensions" have been only apparent. In reality, there has been a steady increase in research through the years, especially in industrial laboratories. The fluctuations have been most noticeable in academic institutions especially with regard to teaching of specialized courses. It is natural that university professors with surface and colloid science as their abiding interest have expressed frequent concern for and have repeatedly warned of the need for better and more intensive education, especially on the graduate level. v vi Preface to the Series There are several reasons for the discrepancy between the need of industrial and academic research laboratories for well-trained surface and colloid scientists and the efforts of the academic institutions to provide specialization in these disciplines. Many instructors believe that a good background in basic principles of chemistry, physics, and mathematics will enable a professional person to engage in research in surface and colloid science. This may be true, but only after much additional professional growth. Indeed, many people active in this area are self-edu cated. Furthermore, this science deals with an unusually wide range of systems and principles, this makes a uniform treatment of problems in surface and colloid science not only challenging but also a very difficult task. As a matter of fact, certain branches of colloid science have grown into separate, independent disciplines which only in a broad sense are now considered a part of the "parent" science. Finally, there is often a stigma associated with the name "colloids." To many, the term symbolizes empirically and poorly described, irreproducible, etc., systems to which exact science cannot as yet be applied. The latter is in part based on the fact that a considerable number of papers were and are published that leave much to be desired with regard to the rigorousness of the approach. Yet, during the fIrst half of the last century some of the most acclaimed scientists have occupied themselves with colloid and surface science problems. One needs to mention only a few, such as Einstein, von Smoluchowski, Debye, Perrin, Loeb, Freundlich, Zsigmondy, Pauli, Langmuir, McBain, Harkins, Donnan, Kruyt, Svedberg, Tiselius, Frumkin, Adam, and Rideal, who have made substantial con tributions to the classical foundations of colloid and surface science. This work has led to many fundamental theoretical advances and to a tremendous number of practical applications in a variety of systems such as natural and synthetic polymers, proteins and nucleic acids, ceramics, textiles, coatings, detergents, lubricants, paints, catalysts, fuels, foams, emulsions, membranes, pharmaceuticals, ores, com posites, soils, air and water pollutants, and many others. It is therefore our hope that this treatise will be of value to scientists of all descriptions, and that it will provide a stimulating reference work for those who do not need to be convinced of the importance of colloid and surface science in nature and in application. EGON MATIJEVIC Preface to Volume 16 The preceding "Preface to the Series," written in 1969, contains statements which are even more appropriate now in view of the present status of the science of colloids and interfaces. Therefore the continuation of this pUblication is fully justified. Indeed, this series is the only surviving such endeavor in the literature. As with previous works in this series, Volume 16 contains contributions on three diverse topics of interest to readers in both industry and academia, with extensive literature citations, including the most recent publications on the relevant sUbjects. Although there has been some delay in the appearance of the present volume, it is expected that future books in this series will be issued more frequently as a part of the Kluwer AcademiclPlenum Publishers program. EGON MATIJEVIC vii Contents 1. Physical Chemistry of Cetyl Alcohol: Occurrence and Function of Liquid Crystals in OIW Creams Shoji Fukushima and Michihiro Yamaguchi Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Cetyl Alcohol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Description of Cetyl Alcohol .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Short History of Cetyl Alcohol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Definitions in Official Books. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Physical Properties of Cetyl Alcohols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1. Polymorphism of Higher Alcohols. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Crystal Structure of Higher Alcohols. . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3. Melting Point and Transition Point of Higher Alcohols. . . . . . . . . . . 12 2.4. Transition Point and Infrared Absorption. . . . . . . . . . . . . . . . . . . . . . 14 3. Specific Interaction between 1-Hexadecanol and 1-0ctadecanol. . . . . . .. 20 3.1. Composition of Commercially Available Cetyl Alcohol . . . . . . . . . . 20 3.2. Transition Point ofl-Hexadecanol. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4. Interaction between Higher Alcohols and Water. . . . . . . . . . . . . . . . . . . . . 24 4.1. Experimental Facts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2. Formation of Hemihydrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3. Structure of Hydrated Alcohols. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 4.4. Phase Diagram of the 1-Hexadecano1l1-0ctadecanollWater Ternary System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5. Studies on Higher AlcohollSurfactantlWater Systems. . . . . . . . . . . . . . . . 35 5.1. The 1-DecanollSodium CaprylatelWater System. . . . . . . . . . . . . . . . 35 5.2. The I-HexadecanollOTAClWater System. . . . . . . . . . . . . . . . . . . . . . 35 5.3. Rheology of Ternary Systems Containing 1-Hexadecanol or a Homologous Alcohol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 5.3.1. Influence ofthe Amount of 1-Hexadecanol. . . . . . . . . . . . . . . 38 5.3.2. Influence of the Nature of Surfactant and of Higher Alcohol. .. 40 5.3.3. Influence of Alkyl Chain Length of Surfactant. . . . . . . . . . .. 41 5.3.4. Conclusion........................................ 43 ix x Contents 6. Nature of Ternary Systems Prepared with Hexaoctadecanols . . . . . . . . . . 43 6.1. Stability and Rheological Properties of Ternary Systems as a Function of Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.1.1. Variations in External Appearance . . . . . . . . . . . . . . . . . . . . . 44 6.1.2. Variations in Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.1.3. Microscopic Observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.1.4. X-Ray Diffraction Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.5. Low-Angle X-Ray Diffraction Analysis. . . . . . . . . . . . . . . . . 50 6.1.6. Thermal Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2. Polymorphism of Hexaoctadecanol (3:2) and Stability of a Ternary Cream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7. Liquid Crystalline Phases in Hexaoctadecanol (3:2)/Surfactant/Water Ternary Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.1. Phase Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.2. D2 Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.3. M Region.... .... .. .. . .. .. ... ... ...... ... ... .. .. ... ... . 60 7.4. The Location and State of the D2 Phase and M Particles in a Ternary Cream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8. Temperature and the Process Yielding the Liquid Crystalline Phase. . . . . 65 8.1. Temperature of the Formation of the Liquid Crystalline Phase. . . . . 65 8.1.1. Method of Phase Separation Experiments . . . . . . . . . . . . . . . 65 8.1.2. Results of the Phase Separation Experiment. . . . . . . . . . . . . 66 8.2. G Phase and S Phase ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.2.1. Microscopic Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.2.2. X-Ray Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.2.3. Differential Scanning Calorimetry. . . . . . . . . . . . . . . . . . . . . 69 8.2.4. Temperature at which the LC Phase is Formed . . . . . . . . . . . 69 8.3. In situ Formation of G and M Phases. . . . . . . . . . . . . . . . . . . . . . . . . 71 9. The Function of Liquid Crystalline Phases in OIW Creams . . . . . . . . . . . 74 9.1. Studies on OIW Creams. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 74 9.2. The Difference in the Viscosity-Increasing Effects due to the Nature of Higher Alcohols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.3. The Difference in the Viscosity-Increasing Effect due to the Nature of Surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.4. The Viscosity Change due to the Ratio of Cetostearyl Alcohol to Surfactant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.5. The Effect of Mixing 1-Hexadecanol with 1-0ctadecanol . . . . . . . . 81 9.6. Crystallization of Cetyl Alcohol in Cosmetic Creams. . . . . . . . . . . . 83 10. Internal Structure and Stability of OIW C Creams .. . . . . . . . . . . . . . . . . 84 10.1. Internal Structure of OIW Creams. . . . . . . . . . . . . . . . . . . . . . . . . . 84 10.2. A Novel Theory for the Stabilization of OIW Creams . . . . . . . . . . 86 Appendix 1: Additional References on Cetyl and Homologous Alcohols . . . 88 Appendix 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Contents xi 2. Ionization Processes and Proton Binding in Polyprotic Systems: Small Molecules, Proteins, Interfaces, and Polyelectrolytes Michal Borkovec, Bo Jonsson, and Ger J. M. Koper 1. Introduction................................................. 99 2. Experimental Techniques ...................................... 107 2.1. Macroscopic Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 107 2.1.1. Definition and Measurement of pH . . . . . . . . . . . . . . . . . . . .. 107 2.1.2. Potentiometric Titration Techniques. . . . . . . . . . . . . . . . . . .. 110 2.1.3. Other Macroscopic Techniques. . . . . . . . . . . . . . . . . . . . . . .. 114 2.2. Spectroscopic Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 116 2.2.1. Nuclear Magnetic Resonance (NMR) Techniques . . . . . . . .. 116 2.2.2. Optical and Other Spectroscopic Methods . . . . . . . . . . . . . .. 127 3. Modeling oflonizable Systems .................................. 131 3.1. General Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131 3.2. Computer Simulation Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . .. 134 3.3. Simple Electrolyte Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135 3.3.1. Poisson-Boltzmann (PB) and Debye-Htickel (DH) Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 136 3.3.2. An Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 138 3.3.3. Beyond the Poisson-Boltzmann (PB) Approximation ...... 142 3.4. Charged Molecules and Macromolecules in Water. . . . . . . . . . . . .. 144 3.4.1. Debye-Htickel (DH) and Poisson-Boltzmann (PB) Treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144 3.4.2. High-Salt versus Low-Salt Regime. . . . . . . . . . . . . . . . . . . .. 145 3.4.3. Toward Detailed Molecular Models .................... 148 3.5. Treatment of Ionization Equilibria. . . . . . . . . . . . . . . . . . . . . . . . . .. 152 3.5.1. Single Ionizable Site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 152 3.5.2. Localized versus Delocalized Binding .................. 155 3.5.3. Macroscopic Description. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 155 3.5.4. Microscopic Description. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157 3.5.5. Adding Internal Degrees of Freedom. . . . . . . . . . . . . . . . . .. 162 4. Small Molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 163 4.1. Monoprotic Acids and Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 163 4.1.1. Equilibrium Constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 163 4.1.2. Titration Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 4.1.3. Experimental Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167 4.2. Diprotic Acids and Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 169 4.2.1. Macroscopic Description. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 169 4.2.2. Microscopic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 170 4.2.3. Conformational Degrees of Freedom .. . . . . . . . . . . . . . . . .. 176 4.2.4. Equivalent Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 177 4.3. Oligoprotic Acids and Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 178 4.3.1. Macroscopic Description. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 178

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.