ebook img

Suppression of the large-scale Lorentz force by turbulence PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Suppression of the large-scale Lorentz force by turbulence

Astron. Nachr./AN000,No.00,1–8(0000)/DOIpleasesetDOI! Suppression of the large-scale Lorentz force by turbulence G.Ru¨diger1,⋆,L.L.Kitchatinov2,3,andM.Schultz1 1 Leibniz-Institutfu¨rAstrophysikPotsdam,AnderSternwarte16,D-14482Potsdam,Germany 2 InstituteforSolar-TerrestrialPhysics,P.O.Box291,Irkutsk664033,Russia 3 PulkovoAstronomicalObservatory,St.Petersburg196140,Russia Received2011Nov17,accepted2011Dec5 Publishedonline2012Jan23 Keywords magnetohydrodynamics(MHD)–magneticfields–turbulence 2 The components of the total stress tensor (Reynolds stress plus Maxwell stress) are computed within the quasilinear 1 approximation foradriven turbulenceinfluencedbyalarge-scalemagneticbackground field.Theconducting fluidhas 0 anarbitrarymagneticPrandtlnumber andtheturbulencewithoutthebackground fieldisassumedashomogeneous and 2 isotropicwithafreeStrouhalnumberSt.Thetotallarge-scalemagnetictensionisalwaysreducedbytheturbulencewith n thepossibilityofa‘catastrophicquenching’forlargemagneticReynoldsnumberRmsothatevenitssignisreversed.The a totalmagneticpressureisenhancedbyturbulenceinthehigh-conductivitylimitbutitisreducedinthelow-conductivity J limit.Alsointhiscasethesignofthetotalpressuremayreversebutonlyforspecialturbulenceswithsufficientlylarge St>1.Theturbulence-inducedtermsofthestresstensoraresuppressedbystrongmagneticfields.Forthetensionterm 3 thisquenchinggrowswiththesquareoftheHartmannnumberofthemagneticfield.Formicroscopic(i.e.small)diffu- sivityvaluesthemagnetictensiontermbecomesthushighlyquenchedevenforfieldamplitudesmuchsmallerthantheir ] R equipartitionvalue.Intheoppositecaseoflarge-eddysimulationsthemagneticquenchingisonlymildbutthenalsothe turbulence-inducedMaxwelltensorcomponentsforweakfieldsremainrathersmall. S . h (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim p - o 1 Introduction notedbyuandthefluctuatingfieldcomponentsaredenoted r t byb.ThestandardMaxwelltensor s a Differential rotation and fossil fields do not coexist. A 1 1 [ nonuniformrotationlawinducesazimuthalfieldsδBφfrom Mij = µ0BiBj − 2µ0B2δij (2) 2 an original poloidal field BR which together transport an- forthe consideredMHD turbulenceturnsintothe general- v gular momentumin radialdirectionreducingthe shear δΩ izedstresstensor 5 viathelarge-scaleLorentzforceJ B,i.e. 4 × Mtot =M ρQ +MT, (3) 3 RδΩ BRδBφ. (1) wiitjhtheoniej-p−ointcijorrelatiijontensor 3 δt ≃ µ ρ∆R 0 9. Qij = ui(x,t)uj(x,t) (4) AstheinducedB resultsasδB ∆ΩB δttheduration h i 0 φ φ ≃ R oftheflowandtheturbulence-inducedMaxwelltensor 1 ofthecompletedecayoftheshear(i.e.δΩ = ∆Ω)isδt ≃ 1 1 v:1 f√osµs0ilρRfie/lBdRof. 1ThGisauisssacsohmoprtartiemdewoitfhotrhdeertim10e0s0c0alyeroffotrhea MiTj = µ0hbi(x,t)bj(x,t)i− 2µ0hb2(x,t)iδij. (5) i starformation.Allprotostarsshouldthusrotaterigidly. ThegeneralizedLorentzforceF isthen X Equation(1)isalsousedfortheexplanationoftheob- F =Mtot. (6) r i ij,j servedtorsionaloscillationsoftheSun.WithB 5Gauss a R ≃ If the onlypreferreddirectionin the turbulenceis the uni- and B 10000Gaussthe estimationforRδΩ is10 m/s whichφis≃closetotheobservedvalueof5ms−1.Theresult formbackgroundfieldBboththetensorsQijandMiTj have the same form as the Maxwelltensor (2) butwith two un- isthat–ifEq.(1)iscorrect–themaximalfieldstrengthof knownscalarparameters.Itmakesthussensetowrite theinvisibletoroidalfieldsshouldnotbemuchhigherthan 1 1 10000Gauss.However,thesolarconvectionzoneisturbu- Mtot = (1 κ)B B (1 κ )B2δ (7) lent and it is not yet clear whether Eq. (1) is also true for ij µ0 − i j − 2µ0 − p ij conductingfluidswithfluctuatingflowsandfields. forthetotalstresstensor(3).ThefirsttermoftheRHSde- In this paper the total Maxwell stress is thus derived scribes a tension along the magnetic field lines while the fora turbulentfluidunderthe presenceofa uniformback- second term is the sum of the magnetic-inducedpressures ground field B. The fluctuating flow components are de- transverse to the lines of force. The main role of the first term in stellar physics is an outward-directedangular mo- ⋆ Correspondingauthor:[email protected] mentum transport if BRBφ <0. If its coefficient 1 κ − (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 2 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence wouldchangeitssignunderthepresenceofturbulencethen and the same for the velocity field. The influence of mean for the same magnetic geometry the angular momentum magneticfieldonturbulenceisdescribedbytherelation transportwouldbeinwardlydirected.TheLorentzforce(6) uˆ(0)(k,ω) with(7)becomes uˆ(k,ω)= , (11) 1+ (k·V)2 1 (−iω+ηk2)(−iω+νk2) F =(1−κ)J ×B− 2µ0(κ−κp)∇B2, (8) where V = B/√µ0ρ is the Alfve´n velocity of the large- scale backgroundfield, η is the microscopicmagnetic dif- sothatthe‘laminar’LorentzforceJ B hastobemulti- × fusivity, and ν is the microscopic viscosity. In Eq. (11) uˆ plied with the factor1 κ andan extramagneticpressure − is the (Fourier-transformed)velocity field modified by the appearsif theκ’sareunequal(andtheyare)duetotheac- meanmagneticfieldanduˆ(0) standsforthevelocityofthe tion of the turbulence. If the κ is positive then its ampli- ‘original’turbulencewhichisassumedtoexistforB = 0. tude should not exceed unity as otherwise the direction of Theoriginalturbulenceisassumedasstatisticallyhomoge- the Lorentzforcereversed.Roberts& Soward(1975)con- neousandisotropic,i.e. sideringonlythetermsoftheMaxwellstressfound(large) pthoesiwtivelel-κknaonwdnneedgdatyivdeifκfups,iiv.iet.yκ(s=ee−Eqκ.p(4=2)η,Tbe/lηoww)i.thηT huˆ(i0)(k,ω)uˆ(j0)(k′,ω′)i= E1(6kπ,kω2) δij − kkik2j (cid:18) (cid:19) Ru¨diger et al. (1986) found κ also as positive and as δ(k+k′)δ(ω+ω′), (12) × runningwiththemagneticReynoldsnumberRmofthetur- whereE(k,ω)isthepositive-definitespectrumfunctionof bulence even for Rm > 1. Kleeorin et al. (1989) suggest theturbulence.Here thatκp >0andevenlargerthanunitysothatthetotalmag- ∞ ∞ netic pressure changesits sign and becomesnegative.The u2 = E(k,ω)dkdω (13) resultinginstabilitymayproducestructuresofconcentrated Z Z magneticfieldandmaybeimportantforsunspotformation 0 0 definesthermsvelocityuoftheoriginalturbulence.Equa- (Kleeorinetal.1990;Brandenburgetal.2010,2011). tions(9)to(12)sufficetoderivethevaluesoftheκ’s. Hence,the κ’s haveanimportantphysicalmeaning.In the simplest case they both wouldresult as negative.Then the effective pressure is increased by the magnetic terms 3 Weakfield and also the tension term 1 κ remains positive so that − the Lorentz force in turbulent media is simply amplified. We proceed by considering special cases. For weak mean Many more serious consequences would result from posi- magnetic field one finds from the expressions given by tive κ and κ if exceeding unity. In this case the Lorentz Ru¨diger&Kitchatinov(1990)therelation p force changes its sign with dramatic consequencesfor the ∞∞ 1 Ek2(ν(2η+ν)k4 ω2) theoryoftorsionaloscillationsandsolaroscillations(Klee- κ= − dkdω, orin&Rogachevskii1994:Kleeorinetal.1996). 15 (ν2k4+ω2)(η2k4+ω2) ZZ 0 0 The turbulence-induced modification of the Maxwell ∞∞ stress can also be important in other constellations where 1 Ek2(ν(8η ν)k4 9ω2) κ = − − dkdω. (14) large-scale fields and turbulence simultaneously exist. p 15 (ν2k4+ω2)(η2k4+ω2) ZZ Tachocline theory, jet theory, the structure of magnetized 0 0 Theexpressionsdonothavedefinitesignssothatitremains galactic disks (Battaner & Florido 1995)or oscillations of unclearwhetherthelarge-scaleMaxwellstressisincreased convectivestarswithmagneticfieldscouldbementioned. ordecreasedbytheturbulence.Eventhesignsofκandκ p maydependonthespectrumoftheturbulence. 2 Equations The simplest case is a turbulence with a white-noise spectrum containing all frequencies with the same ampli- We applythequasilinearapproximationknownalso asthe tude. Here and in the following we shall use the Strouhal second order correlation approximation (SOCA). All pre- numberStandthenormalizedcharacteristicfrequencyw∗ liminary steps to derive main equationsfor the problemat u wl2 St= τ , w∗ = c (15) handweredescribedbyRu¨diger&Kitchatinov(1990).The l c η c fluctuating magnetic and velocity fields are related by the (l correlation length, τ correlation time). The turbulence c c equation frequencyw∗ measures the characteristic frequencyof the i(k B) turbulencespectruminrelationtothediffusionfrequency.It bˆ(k,ω)= · uˆ(k,ω), (9) iω+ηk2 islargeforflatspectrasuchaswhitenoiseanditissmallfor − verysteepspectralikeδ functions.Ontheotherhand,itis wherethehatnotationmarksFourieramplitudes,e.g. largeinthehigh-conductivitylimitanditissmallinthelow- b(r,t)= ei(kx−ωt)bˆ(k,ω)dkdω, (10) conductivity limit. E.g., it is much larger than unity if the microscopic(Spitzer)diffusivityisused(high-conductivity Z (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(0000) 3 ∞∞ limit).Itshouldbeunityif–asitisusedinlarge-eddysim- 1 ωk2 ∂E ulations – η = η wl2. In the numerical integrations dkdω, (20) presented below tThe≃limitcw∗ 0 (i.e. low-conductivity − 15Z0 Z0 ω2+η2k4 ∂ω → limit) applies to the case of the frequency spectrum as a fromwhichκ provestobepositive-definiteforallspectral Diracdeltafunctionδ(ω). functions E which do not increase for increasing ω. We TheproductofStandw∗givingthemagneticReynolds shall see that the positivity of κ which reduces the effec- number tivityoftheangularmomentumtransportisageneralresult Rm= ulc, (16) oftheSOCAtheory. η Furthersimplificationscanbeachievedbyapplyingthe wherewehaveusedtherelationτ =1/wasadefinitionof modelspectrum c thecorrelationtime.Thenitisw∗ =Rm/St. 2w E(k,ω)=q(k) (21) In the high-conductivitylimit (‘whitenoise’)one finds π(w2+ω2) thesimpleresults with 1 1 ∞ κ= RmSt, κ = RmSt, (17) p 15 −15 q(k)dk =u2, (22) so that the κ is positive and runs with RmSt = u2τ /η c Z 0 whichisthe(large)ratiooftheeddydiffusivityandthemi- wherewisacharacteristicfrequencyoftheturbulencespec- croscopic diffusivityhence the magnetic tension is always trum.For w 0 (21) representsa Dirac δ-functionwhile (strongly) reduced. On the other hand, the magnetic pres- → w gives‘whitenoise’.Theresultsare sureisincreased(seeEq.7).Thenegativesignofthevalue →∞ ∞ of κp excludes the possibility that the effective pressure 1 w+3ηk2 term in Eq. (7) changes its sign so that the total magnetic κ= qdk (23) 15η (w+ηk2)2 pressure becomes negative. This is formally possible after Z 0 (17)forthemagnetictensionparameter1 κ. and − Thewhite-noiseapproximation,however,isnotperfect. ∞ If,forexample,theoppositefrequencyprofileforverylong 1 7ηk2 w κ = − qdk. (24) correlation times, i.e. E δ(ω), is applied to (14) then p 15η (w+ηk2)2 again the κ is positive bu∝t the sign of κ depends on the Z0 p Againthe κ is positive-definite.Note thatfor w the magneticPrandtlnumber → ∞ high-conductivityresults (17) are reproduced. In this case ν Pm= . (18) the κ’s are running with 1/η while for w 0 the κ’s η → are runningwith 1/η2. This is a basic result: for low con- Itis thusnecessaryto discusstheintegralsin (14) in more ductivity and for high conductivity the dependence of the detail. κ’sonthemagneticReynoldsnumberRmdiffers.Forhigh conductivity(whitenoise)theκ’sareproportionatetoRm 3.1 Pm≥ 1 while for low conductivity (steep spectra) the factor Rm2 appears.Notethatforδ-likespectralfunctionsthenumeri- For Pm > 8 one finds that κ is negative-definite for all p calcoefficientforκ is 0.2while forκ thisfactoris about possible spectral functions. The coefficient 1 κ of the p − p 0.5.OnecanalsofindthesevaluesattheordinateofFig.2. magnetic pressure is thus positive-definite and cannot be- Abasicdifferenceexistsforκandκ ,too.Whiletheκ comenegative.Thisisnottrueforκ.Weshallshowthatthe p ispositive-definite,theκ canchangeitssign.Generallyit κwill‘almostalways’bepositivesothattheLorentzforce p willbepositiveonlyforsmallw∗ butitshouldbenegative terminthegeneralizedLorentzforceexpression(8)is‘al- for large w∗. Already from these arguments one finds the mostalways’quenchedbytheexistenceoftheturbulence. maincomplicationoftheproblem.Theshapeoftheturbu- Forν =ηtheexpressions(14)turninto lencespectrumhasafundamentalmeaningfortheresults. ∞∞ 1 Ek2(3η2k4 ω2) Toprobetheseresultsindetailaspectralfunctionq(k) κ= − dkdω, 15 (ω2+η2k4)2 2l u2 Z0 Z0 q c (25) ∞∞ ≃ π 1+k2l2 1 Ek2(7η2k4 9ω2) c κ = − dkdω, (19) isused.Theintegrationyields p 15 (ω2+η2k4)2 Z0 Z0 1 StRm√w∗(2+√w∗) κ= , (26) whichagaindonothavedefinitesigns.Onecanwrite,how- 15 (1+√w∗)2 ever,theexpressionforκas sothat ∞∞ κ= 115Z0 Z0 (ω22η+2kη62Ek4)2dkdω κ≃( 125R115mRmSt√Stw∗ ) for w∗(cid:26) ><41. (27) www.an-journal.org (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 4 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence spectrawithfinitecorrelationtime.Stationarypatternswith E δ(ω)areexcluded.In thelimitofverysmallPmthe ∝ Eqs.(14)reduceto ∞ ∞∞ π 1 E(k,ω)k2 κ= E(k,0)dk dkdω, 15η − 15 ω2+η2k4 Z ZZ 0 0 0 ∞ ∞∞ 4π 9 E(k,ω)k2 κ = E(k,0)dk dkdω. (30) p 15η − 15 ω2+η2k4 Z ZZ 0 0 0 Thespectrum(21)leadsto ∞ 1 2ηk2+w κ= q(k)dk, 15ηw ηk2+w Z 0 Fig.1 Theκ vs.RmafterEq.(28).Fromtoptobottom: ∞ p 1 8ηk2 w St = 7,St = 4,andSt = 1.Allcurveshaveamaximum. κ = − q(k)dk. (31) Notethatallκ becomenegativeforsufficientlylargeRm; p 15ηw ηk2+w p Z 0 Pm=1. Again κ is positive-definite. If the wave number spectrum hasonlyasinglevaluethen Hence, for small w∗ (low conductivity) the κ runs with 1 Rm22+w∗ St0.5Rm1.5whileforhighconductivitytherelationissim- κ= , plyStRm.Onefindsagainthedifferencesbetweenthetwo 15 w∗ 1+w∗ limits.Inlarge-eddysimulationsfortheeffectivediffusivity 1 Rm28 w∗ κ = − . (32) therelationη ul isusedsothatRm Pm 1.Asin p 15 w∗ 1+w∗ c ≃ ≃ ≃ themajorityoftheapplicationsalsotheStrouhalnumberSt Thelimitw∗ 0isherenotallowed.Againtheκ ispos- p isofthesameorderthecoefficient(27)isasmallnumber. itive(negative→)forsmall(large)w∗.Formally,theStrouhal If for direct numerical simulations the numerical value of numberStdoesnotappear.Replacingthew∗ byRm/Stin Rmbecomeslargethenthereisnoreasonthat(26)remains bothlimitsthe κ runslinearlywithStRm,i.e.with1/η. p smallerthanunity. | | Theκalsorunswith1/ηinthehigh-conductivitylimit, Forκpthereisanothersituation.Oneobtains i.e. 1 RmSt√w∗(3 √w∗) 1 κ = − , (28) κ StRm, (33) p 15 (1+√w∗)2 ≃ 15 whileforlowconductivitythevalueisκ (2/15)StRm. hence, Forlargew∗,i.e.forRm > St,andPm <≃1thereisprac- κ 51Rm1.5 St0.5 for w∗ <9 (29) ticallynoinfluenceofthenumericalvalu∼eofthemagnetic p ≃( −115RmSt ) (cid:26) >9. Prandtl number (see Eq. 27). Below we shall also demon- strate by numericalsolutions of the integrals that Eq. (33) For w∗ > 9 the κ is negativeso thatthe total pressureis p forms the main result of the presentanalysis. Whether the alwayspositive.Forw∗ <9,however,theκ becomespos- p κ-coefficientmaybecomelargerthanunityonlydependson itive. In this case for largeStrouhalnumberthe total mag- thenumericalvaluesofStandRm.Forlarge-eddysimula- netic pressure 1 κ becomes negative. Figure 1 demon- − p tionswithSt = Rm = Pm = 1theκisbasicallyonlyof strates that κ exceeds unity for St>4. For St>4 one p order0.1. findsκ >1forRm=14,i.e.w∗ =3.5.Wehavetostress, p Withthespectralfunction(25)theresultsareverysim- however, that the SOCA approximation only holds if not ilar,i.e. boththequantitiesStandRmsimultaneouslyexceedunity. For turbulences in liquid metals in the MHD laboratory 1 Rm28 √w∗ κ = − . (34) Rm 1isatypicalvalue.Kemeletal.(2012)reportanin- p 15 w∗ 1+√w∗ ≃ creaseofκ withRm2 (theirFig.9,bottom).Thenegative p ThisexpressiononlyexceedunityforSt 1.ForsmallSt branchof(29)doesnotexistinthesimulations(Pm=0.5). ≫ the sum 1 κ is thusalways positive independentof the p − actualvalueofRmcontribution. 3.2 Pm≪ 1 ThesituationismoreclearforsmallmagneticPrandtlnum- 4 Strong fields bers, which exist, e.g., in stellar interiors, protoplanetary disksandalsointheMHDlaboratory.Itispossibletocon- Sofaronlytheinfluenceofweakmagneticfieldshasbeen siderthelimitν 0intheEqs.(14)butonlyforturbulence considered.The influenceof strong magneticfields is also → (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(0000) 5 Fig.3 ThesameasinFig.2forPm = 0.1.From topto bottom:S=0.01,S=1,andS=10.Thequantitiesvanish as1/w∗ forw∗ . →∞ the frequency integration so that the turbulence quantities κ/Rm2andκ /Rm2onlydependontheLundquistnumber p Bl S= c (36) √µ0ρη Fig.2 The κ/Rm2 (top) and κp/Rm2 (middle, bottom) of the magnetic field, the frequency w∗ and the magnetic vs.w∗fortheone-modemodel(35).Thecurvesintheplots PrandtlnumberPm. (from top to bottom) are for S = 0.01, S = 1, S = 3, Intheweak-fieldlimit,S 1,onefindstheoverallre- and S = 10. At the left vertical axis the values are valid sult that κ/Rm2 runs as 1/1≪5w∗ (Figs. 2 and 3, top) so forthe deltafunctionspectra(low-conductivitylimit).The that again the general result (33) is reproduced. For very quantitiesvanishas1/w∗ forw∗ → ∞(high-conductivity smallw∗,i.e.fordeltafunctionfrequencyspectra(or,what limit,rightverticalaxis)leadingtotheresult(33).Bottom: isthesame,forverylongcorrelationtimes),theκ’srunwith detailsforκ /Rm2;Pm=1. p 1/Rm2–asalreadyshownabove. Whenthefieldisnotweak,thestressparametersrapidly decreasewith S. Figures2 and3 also demonstratethatthe importanttoknow.TherathercomplexresultsoftheSOCA magneticquenchingcanbewrittenas theory with arbitrary magnetic field amplitudes and with κ free valuesofbothdiffusivitiesare givenin theAppendix. κ 0 (37) ≃ 1+ǫS2 Theseexpressionscanbediscussedbyapplyingthesingle- (see Fig. 4), in confirmation to Brandenburg et al. (2010) scalewavenumberspectrum whofoundthemagneticquenchingintermsof1/B2.From q(k)=2u2δ(k l−1) (35) theFiguresonefindsthatǫ<∼1forPm < 1.ForlargePm − c the ǫ is even smaller. The magnetic quenching of the κ- and the frequency spectrum (21). Such an approximation parameteristhusstrongerforsmallmagneticPrandtlnum- allows to solve the Eqs. (A1)...(A4)numericallyincluding ber than for largePm. While a magneticfield with S = 1 www.an-journal.org (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 6 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence reduces the κ remarkablyif Pm < 1 in the opposite case Pm > 1 the κ is almost uninfluenced by S = 1. Figure 5demonstratestheinversedependenceoftheǫonthemag- neticPrandtlnumber.Onefindsǫ 0.75/Pm.Thequench- ≃ ingexpression,therefore,turnsforPm=1into 6 κ κ 0 , (38) ≃ 1+0.75Ha2 with the Hartmann number Ha=S/√Pm instead of the LundquistnumberS.Forthemagneticquenchingitisthus notimportantwhichofthediffusivitiesislargeandwhichis small.Thequenchingisverystrongifoneofthemissmall (see Roberts & Soward 1975). For the high-conductivity limit(η 0)orforinviscidfluids(ν 0)the Hartmann → → numberHa takesverylargevaluesso thatevenveryweak Fig.4 The verification of the relation (38) for the func- fieldsstronglysuppresstheκ-effect. tions w∗κ marked by their Lundquist numbers S. The re- Notethat sultingvalueforǫisabout0.75;Pm=1. B S=Rm , (39) B eq with B = µ ρ u2 as the equilibrium field strength. eq 0 h i The magnetic quenching of the κ-term thus grows with p Rm2(Brandenburg&Subramanian2005)sothatforgrow- ingRmtheκbecomessmallerandsmaller: 1 StB2 κ eq . (40) ≃ 15ǫRmB2 Itbecomesthusclearthatinthehigh-conductivitylimiteven forrathersmallfieldstheκ-terminEq.(7)takesverysmall valueswhichdonotplayanimportantroleinthemean-field magnetohydrodynamics. Ontheotherhand,forRm=1thewell-knownstandard expression κ κ= 1+ǫ0BBe22q (41) Fthieg.m5agnTethiceP(wraenadkt)lnduepmebnedrePncme.of the quantityPm·ǫ on for magneticquenchingappearswith ǫ of orderunityonly slightlydifferingforsmallandlargew∗. Because of St=Rm=1 in this case the κ’s always themodifiedmagnetictensiontermiswrittenas1 κ.The − remain smaller than unity in accordance to (33). Hence in quantities κ and κ have been computedwithin the quasi- p both the possible concepts, i.e. the use of the microscopic linearapproximation(SOCA)whichcanbeusedifthemin- diffusivitiesandtheuseofthelarge-eddysimulationswith imum of both the numbers St and Rm is (much) smaller subgrid diffusivities, the values of the turbulence-induced than unity. As almost all turbulences fulfill the condition Maxwelltensorcoefficientsremainsmall. St 1, the validity of SOCA requires Rm=ul /η <1. c The numerical simulations by Kemel et al. (2012) in- Und≃er this restriction the resulting κ′s are always smaller deed yield a magnetic quenching of the pressure term in thanunity.ForallmagneticPrandtlnumbersPmwefound termsofRm2butonlyforRm<10. κ as positive so that the non-pressure force term (B )B ∇ isreducedundertheinfluenceofturbulence.Thisisinpar- ticular true for the coefficients of the angular momentum 5 Catastrophic quenching? transport terms B B and B B which, therefore, be- φ R φ z comemoreandmoreineffectiveinturbulentfluids. We have computed the stress tensor which is formed by large-scale background fields, by the Reynolds stress of a Thesignofκ stronglydependsonthemagneticPrandtl p turbulencefieldundertheinfluenceofthefieldandthetur- number.Itprovestobenegative-definiteforlargePm.For bulentMaxwellstressofthefieldfluctuations.Allcontribu- smallerPmthesignofκ dependsontheshapeofthefre- p tions can be summarizedin form of the classical Maxwell quency spectrum of the turbulence. For steep profiles, i.e. stresstensorbutwithturbulence-modifiedcoefficients(see verylongcorrelationtimes,theκ becomespositivewhile p Eq. 7). The modified pressure term is now 1 κ while forflatfrequency-spectraoftheturbulencewhichareasflat p − (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(0000) 7 asthespectrumofwhitenoise(veryshortcorrelationtimes) 1 S2 forsmallSandlike S−3 forlargeS. Of course,by − theκ forRm<1becomesnegative. this procedure the η cannot become negative. We know, p T OnecouldbelievethatrelationsvalidforsmallRmlike ontheotherhand,thatthemagneticquenchingoftheeddy κ St RmcanbealsousedforRm>1sothatfinallythe diffusivityinsunspotsreducesitsvalue(only)from5 1012 efpfe∝ctive·magnetic pressure becomes negative. This, how- cm2s−1 to about 1011 cm2s−1 what – together wi×th the ever,isnottrue.Theκ changesitssignforRm Stand time decay law of the sunspots – can be understood with p becomes negative. Hence, the total magnetic pre≫ssure re- quenching expressions like (42) for Rm = 1 (Ru¨diger & sultsasmostlypositive.Theonlyexceptionexistsforsuffi- Kitchatinov2000).Itisthussuggestedtoworkwiththesim- cientlylargeStandsufficientlysmallRm(seeFig.1). plerelationsRm = 1andS B/Beq inapplicationswith ≃ turbulentconvection. More dramatic is the situation with the magnetic ten- sionanditscoefficient1 κwhichisalsothecoefficientof Similarly, also the κ increases for vanishing η. There thevectorJ Bintheg−eneralizedLorentzforceinturbu- is, however, no nonmagnetic term against which the mag- × lent media. This coefficientis positive for small κ, i.e. for netic influence can be neglected as it must be compared sufficiently small Rm if St = 1. It is positive and smaller with the large-scaleLorentz force J B which is also of than unity for the large-eddy simulations (‘mixing-length thesecondorderinB.Theonlypossi×bilitytokeepthetur- model’)consideredattheendofSect.3.2withRm=St= bulence contributionsmall for large Rm is to put St 1. ≪ Pm=1(seeFig.2). However,ifthemagneticfieldissuper-equipartitionedthen Thequestion,however,whethertheκcanexceedunity the κ is magnetically quenched which introduces a new (sothat1 κbecomesnegative)cannotfinallybeanswered factor Rm−2. Then the magnetic-induced κ-effect finally withinthe−quasilinearapproximation.Itisκ 0.1St Rm runswith1/Rmsothatitvanishesinthehigh-conductivity where one of the factors St and Rm must b≃e smaller·than limit. In summary, for large Rm and for very weak mag- unitybuttheproductSt Rmisformally notrestrictedby netic field the κ can exceedunity(so thatthe stress tensor the SOCA. It is thus a c·lear and surprising result also in reverses sign) but this phenomenondisappears already for the frame of SOCA that the angular momentum transport ratherweakfields. by large-scale magnetic fields can strongly be suppressed undertheinfluenceofturbulence.Thepossibleexistenceof Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft and by the Russian Foundation for Ba- an instability resultingfromκ > 1 hasbeenconfirmedby sicResearch(projects10-02-00148,10-02-00391). thenumericalsimulationsbyBrandenburgetal.(2011). The formal background of this phenomenon is that the integrals defining κ and κp do not exist in the high- References conductivitylimit or, what is the same, in the ideal MHD. Thesameistrueforthemuchsimplermagnetic-suppression Battaner,E.,Florido,E.:1995,MNRAS277,1129 problemoftheeddydiffusivity.Wetaketheexpression Blackman,E.G.,Field,G.B.:2000,ApJ534,984 Blackman,E.G.,Brandenburg, A.:2002,ApJ579,359 ∞∞ 1 ηk2E Brandenburg,A.,Subramanian,K.:2005,Phys.Rep.417,1 ηT = 3 ω2+η2k4 Brandenburg,A.,Kleeorin,N.,Rogachevskii,I.:2010,AN331,5 ZZ Brandenburg,A., Kemel, K., Kleeorin,N., Mitra, D., Ro- 0 0 gachevskii,I.:2011,ApJ740,L50 6 η2k4 ω2 B2 1 − dkdω (42) Kemel, K., Brandenburg,A., Kleeorin,N., Mitra, D., Ro- (cid:18) − 5(ω2+η2k4)2 µ0ρ(cid:19) gachevskii,I.:2012,Sol.Phys.(subm.),arXiv:1112.0279 Kitchatinov,L.L.:1991,A&A243,483 (Kitchatinov et al. 1994) for the SOCA expression of the Kitchatinov,L.L.,Pipin,V.V.,Ru¨diger,G.:1994,AN315,157 eddy diffusivityunderthe presence of a uniformmagnetic Kleeorin,N.I.,Rogachevskii,I.:1994,Phys.Rev.E50,493 backgroundfield(Pm= 1).Theexpressionispartofase- Kleeorin,N.I., Rogachevskii, I.V., Ruzmaikin,A.A.: 1989, SvA riesexpansionwhichconvergesifthesecondtermissmaller Lett.15,274 thanthefirstterm.ThesecondtermoftheRHSofthisex- Kleeorin,N.I., Rogachevskii,I.V., Ruzmaikin,A.A.: 1990, JETP pressionhastwoimportantproperties:i)itispositiveforall 70,878 spectralfunctionsE with∂E/∂ω < 0sothattheη isal- Kleeorin,N.,Mond,M.,Rogachevskii,I.:1996,A&A307,293 T waysreducedbythemagneticfields,andii)itdoesnotexist Roberts,P.H.,Soward,A.M.:1975,AN296,49 Ru¨diger,G.,Kitchatinov,L.L.:1990,A&A236,503 forthelimitη 0.Inotherwords,forrathersmallηthein- → Ru¨diger,G.,Kitchatinov,L.L.:2000,AN321,75 tegralbecomeslargesothatthemagneticquenchingwould Ru¨diger, G., Tuominen, I., Krause, F.,Virtanen, H.: 1986, A&A be extremely effective for large Rm. This is why such a 166,306 seriesexpansiononlyholdsforveryweakfields.Thisphe- nomenon has been called a ‘catastrophic’ quenching (see Blackman&Field2000;Blackman&Brandenburg2002). A SOCA expressions ofthe κ’s It exists within the SOCA theory for the eddy diffusivity andalsofortheeddyviscosity.OnefindsfromEq.(42)that Theexpressionsforthemean-fieldLorentzforceparametersκand the mentioneddiffusivitiesare magneticallyquenchedlike κpofEq.(7)providedbythequasilineartheoryforarbitrarymag- www.an-journal.org (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 8 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence neticamplitudescanbewrittenas κ= ∞ ∞ωE2(k+,ωη2)kk24 K(B,k,ω)dkdω, Kp = ωω22++νη22kk44 1/2 4β14 38β2+(β2−1)4βLsNinφ − Z Z (cid:18) (cid:19) (cid:18) 2 0 0 AR 1 LN ∞ ∞ (β2+1) + 2−(β2−1+2cosφ) E(k,ω)k2 2βcosφ 4β4 4βsinφ κp = ω2+η2k4 Kp(B,k,ω)dkdω. (A1) 2(cid:19) (cid:18) 2 Z0 Z0 −(β2+1+2cosφ) AR . (A4) 2βcosφ ThekernelfunctionsKandKpdependonthemagneticfieldand 2(cid:19) thevariableskandωvia Thefirstpartsintheseexpressionsrepresentthecontributionofthe kV Reynoldsstresswhilethefollowinglinesrepresentthesmall-scale β = , (ω2+η2k4)1/4(ω2+ν2k4)1/4 Maxwellstress. β2−2βsinφ +1 LN =log 2 , β2+2βsinφ +1 (cid:18) 2 (cid:19) β−sinφ β+sinφ AR=arctan 2 +arctan 2 . (A2) cosφ cosφ (cid:18) 2 (cid:19) (cid:18) 2 (cid:19) Here, cosφ = ηνk4−ω2 / (ω2+η2k4)(ν2k4+ω2). Thekernelsread (cid:0) (cid:1) p ω2+η2k4 1/2 1 LN K = −(β2+3) + ω2+ν2k4 8β4 4βsinφ (cid:18) (cid:19) (cid:18) 2 AR 1 LN (β2−3) + 6−(β2−3+6cosφ) 2βcosφ 8β4 4βsinφ 2(cid:19) (cid:18) 2 AR −(β2+3+6cosφ) (A3) 2βcosφ 2(cid:19) and (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.