Astron. Nachr./AN000,No.00,1–8(0000)/DOIpleasesetDOI! Suppression of the large-scale Lorentz force by turbulence G.Ru¨diger1,⋆,L.L.Kitchatinov2,3,andM.Schultz1 1 Leibniz-Institutfu¨rAstrophysikPotsdam,AnderSternwarte16,D-14482Potsdam,Germany 2 InstituteforSolar-TerrestrialPhysics,P.O.Box291,Irkutsk664033,Russia 3 PulkovoAstronomicalObservatory,St.Petersburg196140,Russia Received2011Nov17,accepted2011Dec5 Publishedonline2012Jan23 Keywords magnetohydrodynamics(MHD)–magneticfields–turbulence 2 The components of the total stress tensor (Reynolds stress plus Maxwell stress) are computed within the quasilinear 1 approximation foradriven turbulenceinfluencedbyalarge-scalemagneticbackground field.Theconducting fluidhas 0 anarbitrarymagneticPrandtlnumber andtheturbulencewithoutthebackground fieldisassumedashomogeneous and 2 isotropicwithafreeStrouhalnumberSt.Thetotallarge-scalemagnetictensionisalwaysreducedbytheturbulencewith n thepossibilityofa‘catastrophicquenching’forlargemagneticReynoldsnumberRmsothatevenitssignisreversed.The a totalmagneticpressureisenhancedbyturbulenceinthehigh-conductivitylimitbutitisreducedinthelow-conductivity J limit.Alsointhiscasethesignofthetotalpressuremayreversebutonlyforspecialturbulenceswithsufficientlylarge St>1.Theturbulence-inducedtermsofthestresstensoraresuppressedbystrongmagneticfields.Forthetensionterm 3 thisquenchinggrowswiththesquareoftheHartmannnumberofthemagneticfield.Formicroscopic(i.e.small)diffu- sivityvaluesthemagnetictensiontermbecomesthushighlyquenchedevenforfieldamplitudesmuchsmallerthantheir ] R equipartitionvalue.Intheoppositecaseoflarge-eddysimulationsthemagneticquenchingisonlymildbutthenalsothe turbulence-inducedMaxwelltensorcomponentsforweakfieldsremainrathersmall. S . h (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim p - o 1 Introduction notedbyuandthefluctuatingfieldcomponentsaredenoted r t byb.ThestandardMaxwelltensor s a Differential rotation and fossil fields do not coexist. A 1 1 [ nonuniformrotationlawinducesazimuthalfieldsδBφfrom Mij = µ0BiBj − 2µ0B2δij (2) 2 an original poloidal field BR which together transport an- forthe consideredMHD turbulenceturnsintothe general- v gular momentumin radialdirectionreducingthe shear δΩ izedstresstensor 5 viathelarge-scaleLorentzforceJ B,i.e. 4 × Mtot =M ρQ +MT, (3) 3 RδΩ BRδBφ. (1) wiitjhtheoniej-p−ointcijorrelatiijontensor 3 δt ≃ µ ρ∆R 0 9. Qij = ui(x,t)uj(x,t) (4) AstheinducedB resultsasδB ∆ΩB δttheduration h i 0 φ φ ≃ R oftheflowandtheturbulence-inducedMaxwelltensor 1 ofthecompletedecayoftheshear(i.e.δΩ = ∆Ω)isδt ≃ 1 1 v:1 f√osµs0ilρRfie/lBdRof. 1ThGisauisssacsohmoprtartiemdewoitfhotrhdeertim10e0s0c0alyeroffotrhea MiTj = µ0hbi(x,t)bj(x,t)i− 2µ0hb2(x,t)iδij. (5) i starformation.Allprotostarsshouldthusrotaterigidly. ThegeneralizedLorentzforceF isthen X Equation(1)isalsousedfortheexplanationoftheob- F =Mtot. (6) r i ij,j servedtorsionaloscillationsoftheSun.WithB 5Gauss a R ≃ If the onlypreferreddirectionin the turbulenceis the uni- and B 10000Gaussthe estimationforRδΩ is10 m/s whichφis≃closetotheobservedvalueof5ms−1.Theresult formbackgroundfieldBboththetensorsQijandMiTj have the same form as the Maxwelltensor (2) butwith two un- isthat–ifEq.(1)iscorrect–themaximalfieldstrengthof knownscalarparameters.Itmakesthussensetowrite theinvisibletoroidalfieldsshouldnotbemuchhigherthan 1 1 10000Gauss.However,thesolarconvectionzoneisturbu- Mtot = (1 κ)B B (1 κ )B2δ (7) lent and it is not yet clear whether Eq. (1) is also true for ij µ0 − i j − 2µ0 − p ij conductingfluidswithfluctuatingflowsandfields. forthetotalstresstensor(3).ThefirsttermoftheRHSde- In this paper the total Maxwell stress is thus derived scribes a tension along the magnetic field lines while the fora turbulentfluidunderthe presenceofa uniformback- second term is the sum of the magnetic-inducedpressures ground field B. The fluctuating flow components are de- transverse to the lines of force. The main role of the first term in stellar physics is an outward-directedangular mo- ⋆ Correspondingauthor:[email protected] mentum transport if BRBφ <0. If its coefficient 1 κ − (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 2 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence wouldchangeitssignunderthepresenceofturbulencethen and the same for the velocity field. The influence of mean for the same magnetic geometry the angular momentum magneticfieldonturbulenceisdescribedbytherelation transportwouldbeinwardlydirected.TheLorentzforce(6) uˆ(0)(k,ω) with(7)becomes uˆ(k,ω)= , (11) 1+ (k·V)2 1 (−iω+ηk2)(−iω+νk2) F =(1−κ)J ×B− 2µ0(κ−κp)∇B2, (8) where V = B/√µ0ρ is the Alfve´n velocity of the large- scale backgroundfield, η is the microscopicmagnetic dif- sothatthe‘laminar’LorentzforceJ B hastobemulti- × fusivity, and ν is the microscopic viscosity. In Eq. (11) uˆ plied with the factor1 κ andan extramagneticpressure − is the (Fourier-transformed)velocity field modified by the appearsif theκ’sareunequal(andtheyare)duetotheac- meanmagneticfieldanduˆ(0) standsforthevelocityofthe tion of the turbulence. If the κ is positive then its ampli- ‘original’turbulencewhichisassumedtoexistforB = 0. tude should not exceed unity as otherwise the direction of Theoriginalturbulenceisassumedasstatisticallyhomoge- the Lorentzforcereversed.Roberts& Soward(1975)con- neousandisotropic,i.e. sideringonlythetermsoftheMaxwellstressfound(large) pthoesiwtivelel-κknaonwdnneedgdatyivdeifκfups,iiv.iet.yκ(s=ee−Eqκ.p(4=2)η,Tbe/lηoww)i.thηT huˆ(i0)(k,ω)uˆ(j0)(k′,ω′)i= E1(6kπ,kω2) δij − kkik2j (cid:18) (cid:19) Ru¨diger et al. (1986) found κ also as positive and as δ(k+k′)δ(ω+ω′), (12) × runningwiththemagneticReynoldsnumberRmofthetur- whereE(k,ω)isthepositive-definitespectrumfunctionof bulence even for Rm > 1. Kleeorin et al. (1989) suggest theturbulence.Here thatκp >0andevenlargerthanunitysothatthetotalmag- ∞ ∞ netic pressure changesits sign and becomesnegative.The u2 = E(k,ω)dkdω (13) resultinginstabilitymayproducestructuresofconcentrated Z Z magneticfieldandmaybeimportantforsunspotformation 0 0 definesthermsvelocityuoftheoriginalturbulence.Equa- (Kleeorinetal.1990;Brandenburgetal.2010,2011). tions(9)to(12)sufficetoderivethevaluesoftheκ’s. Hence,the κ’s haveanimportantphysicalmeaning.In the simplest case they both wouldresult as negative.Then the effective pressure is increased by the magnetic terms 3 Weakfield and also the tension term 1 κ remains positive so that − the Lorentz force in turbulent media is simply amplified. We proceed by considering special cases. For weak mean Many more serious consequences would result from posi- magnetic field one finds from the expressions given by tive κ and κ if exceeding unity. In this case the Lorentz Ru¨diger&Kitchatinov(1990)therelation p force changes its sign with dramatic consequencesfor the ∞∞ 1 Ek2(ν(2η+ν)k4 ω2) theoryoftorsionaloscillationsandsolaroscillations(Klee- κ= − dkdω, orin&Rogachevskii1994:Kleeorinetal.1996). 15 (ν2k4+ω2)(η2k4+ω2) ZZ 0 0 The turbulence-induced modification of the Maxwell ∞∞ stress can also be important in other constellations where 1 Ek2(ν(8η ν)k4 9ω2) κ = − − dkdω. (14) large-scale fields and turbulence simultaneously exist. p 15 (ν2k4+ω2)(η2k4+ω2) ZZ Tachocline theory, jet theory, the structure of magnetized 0 0 Theexpressionsdonothavedefinitesignssothatitremains galactic disks (Battaner & Florido 1995)or oscillations of unclearwhetherthelarge-scaleMaxwellstressisincreased convectivestarswithmagneticfieldscouldbementioned. ordecreasedbytheturbulence.Eventhesignsofκandκ p maydependonthespectrumoftheturbulence. 2 Equations The simplest case is a turbulence with a white-noise spectrum containing all frequencies with the same ampli- We applythequasilinearapproximationknownalso asthe tude. Here and in the following we shall use the Strouhal second order correlation approximation (SOCA). All pre- numberStandthenormalizedcharacteristicfrequencyw∗ liminary steps to derive main equationsfor the problemat u wl2 St= τ , w∗ = c (15) handweredescribedbyRu¨diger&Kitchatinov(1990).The l c η c fluctuating magnetic and velocity fields are related by the (l correlation length, τ correlation time). The turbulence c c equation frequencyw∗ measures the characteristic frequencyof the i(k B) turbulencespectruminrelationtothediffusionfrequency.It bˆ(k,ω)= · uˆ(k,ω), (9) iω+ηk2 islargeforflatspectrasuchaswhitenoiseanditissmallfor − verysteepspectralikeδ functions.Ontheotherhand,itis wherethehatnotationmarksFourieramplitudes,e.g. largeinthehigh-conductivitylimitanditissmallinthelow- b(r,t)= ei(kx−ωt)bˆ(k,ω)dkdω, (10) conductivity limit. E.g., it is much larger than unity if the microscopic(Spitzer)diffusivityisused(high-conductivity Z (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(0000) 3 ∞∞ limit).Itshouldbeunityif–asitisusedinlarge-eddysim- 1 ωk2 ∂E ulations – η = η wl2. In the numerical integrations dkdω, (20) presented below tThe≃limitcw∗ 0 (i.e. low-conductivity − 15Z0 Z0 ω2+η2k4 ∂ω → limit) applies to the case of the frequency spectrum as a fromwhichκ provestobepositive-definiteforallspectral Diracdeltafunctionδ(ω). functions E which do not increase for increasing ω. We TheproductofStandw∗givingthemagneticReynolds shall see that the positivity of κ which reduces the effec- number tivityoftheangularmomentumtransportisageneralresult Rm= ulc, (16) oftheSOCAtheory. η Furthersimplificationscanbeachievedbyapplyingthe wherewehaveusedtherelationτ =1/wasadefinitionof modelspectrum c thecorrelationtime.Thenitisw∗ =Rm/St. 2w E(k,ω)=q(k) (21) In the high-conductivitylimit (‘whitenoise’)one finds π(w2+ω2) thesimpleresults with 1 1 ∞ κ= RmSt, κ = RmSt, (17) p 15 −15 q(k)dk =u2, (22) so that the κ is positive and runs with RmSt = u2τ /η c Z 0 whichisthe(large)ratiooftheeddydiffusivityandthemi- wherewisacharacteristicfrequencyoftheturbulencespec- croscopic diffusivityhence the magnetic tension is always trum.For w 0 (21) representsa Dirac δ-functionwhile (strongly) reduced. On the other hand, the magnetic pres- → w gives‘whitenoise’.Theresultsare sureisincreased(seeEq.7).Thenegativesignofthevalue →∞ ∞ of κp excludes the possibility that the effective pressure 1 w+3ηk2 term in Eq. (7) changes its sign so that the total magnetic κ= qdk (23) 15η (w+ηk2)2 pressure becomes negative. This is formally possible after Z 0 (17)forthemagnetictensionparameter1 κ. and − Thewhite-noiseapproximation,however,isnotperfect. ∞ If,forexample,theoppositefrequencyprofileforverylong 1 7ηk2 w κ = − qdk. (24) correlation times, i.e. E δ(ω), is applied to (14) then p 15η (w+ηk2)2 again the κ is positive bu∝t the sign of κ depends on the Z0 p Againthe κ is positive-definite.Note thatfor w the magneticPrandtlnumber → ∞ high-conductivityresults (17) are reproduced. In this case ν Pm= . (18) the κ’s are running with 1/η while for w 0 the κ’s η → are runningwith 1/η2. This is a basic result: for low con- Itis thusnecessaryto discusstheintegralsin (14) in more ductivity and for high conductivity the dependence of the detail. κ’sonthemagneticReynoldsnumberRmdiffers.Forhigh conductivity(whitenoise)theκ’sareproportionatetoRm 3.1 Pm≥ 1 while for low conductivity (steep spectra) the factor Rm2 appears.Notethatforδ-likespectralfunctionsthenumeri- For Pm > 8 one finds that κ is negative-definite for all p calcoefficientforκ is 0.2while forκ thisfactoris about possible spectral functions. The coefficient 1 κ of the p − p 0.5.OnecanalsofindthesevaluesattheordinateofFig.2. magnetic pressure is thus positive-definite and cannot be- Abasicdifferenceexistsforκandκ ,too.Whiletheκ comenegative.Thisisnottrueforκ.Weshallshowthatthe p ispositive-definite,theκ canchangeitssign.Generallyit κwill‘almostalways’bepositivesothattheLorentzforce p willbepositiveonlyforsmallw∗ butitshouldbenegative terminthegeneralizedLorentzforceexpression(8)is‘al- for large w∗. Already from these arguments one finds the mostalways’quenchedbytheexistenceoftheturbulence. maincomplicationoftheproblem.Theshapeoftheturbu- Forν =ηtheexpressions(14)turninto lencespectrumhasafundamentalmeaningfortheresults. ∞∞ 1 Ek2(3η2k4 ω2) Toprobetheseresultsindetailaspectralfunctionq(k) κ= − dkdω, 15 (ω2+η2k4)2 2l u2 Z0 Z0 q c (25) ∞∞ ≃ π 1+k2l2 1 Ek2(7η2k4 9ω2) c κ = − dkdω, (19) isused.Theintegrationyields p 15 (ω2+η2k4)2 Z0 Z0 1 StRm√w∗(2+√w∗) κ= , (26) whichagaindonothavedefinitesigns.Onecanwrite,how- 15 (1+√w∗)2 ever,theexpressionforκas sothat ∞∞ κ= 115Z0 Z0 (ω22η+2kη62Ek4)2dkdω κ≃( 125R115mRmSt√Stw∗ ) for w∗(cid:26) ><41. (27) www.an-journal.org (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 4 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence spectrawithfinitecorrelationtime.Stationarypatternswith E δ(ω)areexcluded.In thelimitofverysmallPmthe ∝ Eqs.(14)reduceto ∞ ∞∞ π 1 E(k,ω)k2 κ= E(k,0)dk dkdω, 15η − 15 ω2+η2k4 Z ZZ 0 0 0 ∞ ∞∞ 4π 9 E(k,ω)k2 κ = E(k,0)dk dkdω. (30) p 15η − 15 ω2+η2k4 Z ZZ 0 0 0 Thespectrum(21)leadsto ∞ 1 2ηk2+w κ= q(k)dk, 15ηw ηk2+w Z 0 Fig.1 Theκ vs.RmafterEq.(28).Fromtoptobottom: ∞ p 1 8ηk2 w St = 7,St = 4,andSt = 1.Allcurveshaveamaximum. κ = − q(k)dk. (31) Notethatallκ becomenegativeforsufficientlylargeRm; p 15ηw ηk2+w p Z 0 Pm=1. Again κ is positive-definite. If the wave number spectrum hasonlyasinglevaluethen Hence, for small w∗ (low conductivity) the κ runs with 1 Rm22+w∗ St0.5Rm1.5whileforhighconductivitytherelationissim- κ= , plyStRm.Onefindsagainthedifferencesbetweenthetwo 15 w∗ 1+w∗ limits.Inlarge-eddysimulationsfortheeffectivediffusivity 1 Rm28 w∗ κ = − . (32) therelationη ul isusedsothatRm Pm 1.Asin p 15 w∗ 1+w∗ c ≃ ≃ ≃ themajorityoftheapplicationsalsotheStrouhalnumberSt Thelimitw∗ 0isherenotallowed.Againtheκ ispos- p isofthesameorderthecoefficient(27)isasmallnumber. itive(negative→)forsmall(large)w∗.Formally,theStrouhal If for direct numerical simulations the numerical value of numberStdoesnotappear.Replacingthew∗ byRm/Stin Rmbecomeslargethenthereisnoreasonthat(26)remains bothlimitsthe κ runslinearlywithStRm,i.e.with1/η. p smallerthanunity. | | Theκalsorunswith1/ηinthehigh-conductivitylimit, Forκpthereisanothersituation.Oneobtains i.e. 1 RmSt√w∗(3 √w∗) 1 κ = − , (28) κ StRm, (33) p 15 (1+√w∗)2 ≃ 15 whileforlowconductivitythevalueisκ (2/15)StRm. hence, Forlargew∗,i.e.forRm > St,andPm <≃1thereisprac- κ 51Rm1.5 St0.5 for w∗ <9 (29) ticallynoinfluenceofthenumericalvalu∼eofthemagnetic p ≃( −115RmSt ) (cid:26) >9. Prandtl number (see Eq. 27). Below we shall also demon- strate by numericalsolutions of the integrals that Eq. (33) For w∗ > 9 the κ is negativeso thatthe total pressureis p forms the main result of the presentanalysis. Whether the alwayspositive.Forw∗ <9,however,theκ becomespos- p κ-coefficientmaybecomelargerthanunityonlydependson itive. In this case for largeStrouhalnumberthe total mag- thenumericalvaluesofStandRm.Forlarge-eddysimula- netic pressure 1 κ becomes negative. Figure 1 demon- − p tionswithSt = Rm = Pm = 1theκisbasicallyonlyof strates that κ exceeds unity for St>4. For St>4 one p order0.1. findsκ >1forRm=14,i.e.w∗ =3.5.Wehavetostress, p Withthespectralfunction(25)theresultsareverysim- however, that the SOCA approximation only holds if not ilar,i.e. boththequantitiesStandRmsimultaneouslyexceedunity. For turbulences in liquid metals in the MHD laboratory 1 Rm28 √w∗ κ = − . (34) Rm 1isatypicalvalue.Kemeletal.(2012)reportanin- p 15 w∗ 1+√w∗ ≃ creaseofκ withRm2 (theirFig.9,bottom).Thenegative p ThisexpressiononlyexceedunityforSt 1.ForsmallSt branchof(29)doesnotexistinthesimulations(Pm=0.5). ≫ the sum 1 κ is thusalways positive independentof the p − actualvalueofRmcontribution. 3.2 Pm≪ 1 ThesituationismoreclearforsmallmagneticPrandtlnum- 4 Strong fields bers, which exist, e.g., in stellar interiors, protoplanetary disksandalsointheMHDlaboratory.Itispossibletocon- Sofaronlytheinfluenceofweakmagneticfieldshasbeen siderthelimitν 0intheEqs.(14)butonlyforturbulence considered.The influenceof strong magneticfields is also → (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(0000) 5 Fig.3 ThesameasinFig.2forPm = 0.1.From topto bottom:S=0.01,S=1,andS=10.Thequantitiesvanish as1/w∗ forw∗ . →∞ the frequency integration so that the turbulence quantities κ/Rm2andκ /Rm2onlydependontheLundquistnumber p Bl S= c (36) √µ0ρη Fig.2 The κ/Rm2 (top) and κp/Rm2 (middle, bottom) of the magnetic field, the frequency w∗ and the magnetic vs.w∗fortheone-modemodel(35).Thecurvesintheplots PrandtlnumberPm. (from top to bottom) are for S = 0.01, S = 1, S = 3, Intheweak-fieldlimit,S 1,onefindstheoverallre- and S = 10. At the left vertical axis the values are valid sult that κ/Rm2 runs as 1/1≪5w∗ (Figs. 2 and 3, top) so forthe deltafunctionspectra(low-conductivitylimit).The that again the general result (33) is reproduced. For very quantitiesvanishas1/w∗ forw∗ → ∞(high-conductivity smallw∗,i.e.fordeltafunctionfrequencyspectra(or,what limit,rightverticalaxis)leadingtotheresult(33).Bottom: isthesame,forverylongcorrelationtimes),theκ’srunwith detailsforκ /Rm2;Pm=1. p 1/Rm2–asalreadyshownabove. Whenthefieldisnotweak,thestressparametersrapidly decreasewith S. Figures2 and3 also demonstratethatthe importanttoknow.TherathercomplexresultsoftheSOCA magneticquenchingcanbewrittenas theory with arbitrary magnetic field amplitudes and with κ free valuesofbothdiffusivitiesare givenin theAppendix. κ 0 (37) ≃ 1+ǫS2 Theseexpressionscanbediscussedbyapplyingthesingle- (see Fig. 4), in confirmation to Brandenburg et al. (2010) scalewavenumberspectrum whofoundthemagneticquenchingintermsof1/B2.From q(k)=2u2δ(k l−1) (35) theFiguresonefindsthatǫ<∼1forPm < 1.ForlargePm − c the ǫ is even smaller. The magnetic quenching of the κ- and the frequency spectrum (21). Such an approximation parameteristhusstrongerforsmallmagneticPrandtlnum- allows to solve the Eqs. (A1)...(A4)numericallyincluding ber than for largePm. While a magneticfield with S = 1 www.an-journal.org (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 6 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence reduces the κ remarkablyif Pm < 1 in the opposite case Pm > 1 the κ is almost uninfluenced by S = 1. Figure 5demonstratestheinversedependenceoftheǫonthemag- neticPrandtlnumber.Onefindsǫ 0.75/Pm.Thequench- ≃ ingexpression,therefore,turnsforPm=1into 6 κ κ 0 , (38) ≃ 1+0.75Ha2 with the Hartmann number Ha=S/√Pm instead of the LundquistnumberS.Forthemagneticquenchingitisthus notimportantwhichofthediffusivitiesislargeandwhichis small.Thequenchingisverystrongifoneofthemissmall (see Roberts & Soward 1975). For the high-conductivity limit(η 0)orforinviscidfluids(ν 0)the Hartmann → → numberHa takesverylargevaluesso thatevenveryweak Fig.4 The verification of the relation (38) for the func- fieldsstronglysuppresstheκ-effect. tions w∗κ marked by their Lundquist numbers S. The re- Notethat sultingvalueforǫisabout0.75;Pm=1. B S=Rm , (39) B eq with B = µ ρ u2 as the equilibrium field strength. eq 0 h i The magnetic quenching of the κ-term thus grows with p Rm2(Brandenburg&Subramanian2005)sothatforgrow- ingRmtheκbecomessmallerandsmaller: 1 StB2 κ eq . (40) ≃ 15ǫRmB2 Itbecomesthusclearthatinthehigh-conductivitylimiteven forrathersmallfieldstheκ-terminEq.(7)takesverysmall valueswhichdonotplayanimportantroleinthemean-field magnetohydrodynamics. Ontheotherhand,forRm=1thewell-knownstandard expression κ κ= 1+ǫ0BBe22q (41) Fthieg.m5agnTethiceP(wraenadkt)lnduepmebnedrePncme.of the quantityPm·ǫ on for magneticquenchingappearswith ǫ of orderunityonly slightlydifferingforsmallandlargew∗. Because of St=Rm=1 in this case the κ’s always themodifiedmagnetictensiontermiswrittenas1 κ.The − remain smaller than unity in accordance to (33). Hence in quantities κ and κ have been computedwithin the quasi- p both the possible concepts, i.e. the use of the microscopic linearapproximation(SOCA)whichcanbeusedifthemin- diffusivitiesandtheuseofthelarge-eddysimulationswith imum of both the numbers St and Rm is (much) smaller subgrid diffusivities, the values of the turbulence-induced than unity. As almost all turbulences fulfill the condition Maxwelltensorcoefficientsremainsmall. St 1, the validity of SOCA requires Rm=ul /η <1. c The numerical simulations by Kemel et al. (2012) in- Und≃er this restriction the resulting κ′s are always smaller deed yield a magnetic quenching of the pressure term in thanunity.ForallmagneticPrandtlnumbersPmwefound termsofRm2butonlyforRm<10. κ as positive so that the non-pressure force term (B )B ∇ isreducedundertheinfluenceofturbulence.Thisisinpar- ticular true for the coefficients of the angular momentum 5 Catastrophic quenching? transport terms B B and B B which, therefore, be- φ R φ z comemoreandmoreineffectiveinturbulentfluids. We have computed the stress tensor which is formed by large-scale background fields, by the Reynolds stress of a Thesignofκ stronglydependsonthemagneticPrandtl p turbulencefieldundertheinfluenceofthefieldandthetur- number.Itprovestobenegative-definiteforlargePm.For bulentMaxwellstressofthefieldfluctuations.Allcontribu- smallerPmthesignofκ dependsontheshapeofthefre- p tions can be summarizedin form of the classical Maxwell quency spectrum of the turbulence. For steep profiles, i.e. stresstensorbutwithturbulence-modifiedcoefficients(see verylongcorrelationtimes,theκ becomespositivewhile p Eq. 7). The modified pressure term is now 1 κ while forflatfrequency-spectraoftheturbulencewhichareasflat p − (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(0000) 7 asthespectrumofwhitenoise(veryshortcorrelationtimes) 1 S2 forsmallSandlike S−3 forlargeS. Of course,by − theκ forRm<1becomesnegative. this procedure the η cannot become negative. We know, p T OnecouldbelievethatrelationsvalidforsmallRmlike ontheotherhand,thatthemagneticquenchingoftheeddy κ St RmcanbealsousedforRm>1sothatfinallythe diffusivityinsunspotsreducesitsvalue(only)from5 1012 efpfe∝ctive·magnetic pressure becomes negative. This, how- cm2s−1 to about 1011 cm2s−1 what – together wi×th the ever,isnottrue.Theκ changesitssignforRm Stand time decay law of the sunspots – can be understood with p becomes negative. Hence, the total magnetic pre≫ssure re- quenching expressions like (42) for Rm = 1 (Ru¨diger & sultsasmostlypositive.Theonlyexceptionexistsforsuffi- Kitchatinov2000).Itisthussuggestedtoworkwiththesim- cientlylargeStandsufficientlysmallRm(seeFig.1). plerelationsRm = 1andS B/Beq inapplicationswith ≃ turbulentconvection. More dramatic is the situation with the magnetic ten- sionanditscoefficient1 κwhichisalsothecoefficientof Similarly, also the κ increases for vanishing η. There thevectorJ Bintheg−eneralizedLorentzforceinturbu- is, however, no nonmagnetic term against which the mag- × lent media. This coefficientis positive for small κ, i.e. for netic influence can be neglected as it must be compared sufficiently small Rm if St = 1. It is positive and smaller with the large-scaleLorentz force J B which is also of than unity for the large-eddy simulations (‘mixing-length thesecondorderinB.Theonlypossi×bilitytokeepthetur- model’)consideredattheendofSect.3.2withRm=St= bulence contributionsmall for large Rm is to put St 1. ≪ Pm=1(seeFig.2). However,ifthemagneticfieldissuper-equipartitionedthen Thequestion,however,whethertheκcanexceedunity the κ is magnetically quenched which introduces a new (sothat1 κbecomesnegative)cannotfinallybeanswered factor Rm−2. Then the magnetic-induced κ-effect finally withinthe−quasilinearapproximation.Itisκ 0.1St Rm runswith1/Rmsothatitvanishesinthehigh-conductivity where one of the factors St and Rm must b≃e smaller·than limit. In summary, for large Rm and for very weak mag- unitybuttheproductSt Rmisformally notrestrictedby netic field the κ can exceedunity(so thatthe stress tensor the SOCA. It is thus a c·lear and surprising result also in reverses sign) but this phenomenondisappears already for the frame of SOCA that the angular momentum transport ratherweakfields. by large-scale magnetic fields can strongly be suppressed undertheinfluenceofturbulence.Thepossibleexistenceof Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft and by the Russian Foundation for Ba- an instability resultingfromκ > 1 hasbeenconfirmedby sicResearch(projects10-02-00148,10-02-00391). thenumericalsimulationsbyBrandenburgetal.(2011). The formal background of this phenomenon is that the integrals defining κ and κp do not exist in the high- References conductivitylimit or, what is the same, in the ideal MHD. Thesameistrueforthemuchsimplermagnetic-suppression Battaner,E.,Florido,E.:1995,MNRAS277,1129 problemoftheeddydiffusivity.Wetaketheexpression Blackman,E.G.,Field,G.B.:2000,ApJ534,984 Blackman,E.G.,Brandenburg, A.:2002,ApJ579,359 ∞∞ 1 ηk2E Brandenburg,A.,Subramanian,K.:2005,Phys.Rep.417,1 ηT = 3 ω2+η2k4 Brandenburg,A.,Kleeorin,N.,Rogachevskii,I.:2010,AN331,5 ZZ Brandenburg,A., Kemel, K., Kleeorin,N., Mitra, D., Ro- 0 0 gachevskii,I.:2011,ApJ740,L50 6 η2k4 ω2 B2 1 − dkdω (42) Kemel, K., Brandenburg,A., Kleeorin,N., Mitra, D., Ro- (cid:18) − 5(ω2+η2k4)2 µ0ρ(cid:19) gachevskii,I.:2012,Sol.Phys.(subm.),arXiv:1112.0279 Kitchatinov,L.L.:1991,A&A243,483 (Kitchatinov et al. 1994) for the SOCA expression of the Kitchatinov,L.L.,Pipin,V.V.,Ru¨diger,G.:1994,AN315,157 eddy diffusivityunderthe presence of a uniformmagnetic Kleeorin,N.I.,Rogachevskii,I.:1994,Phys.Rev.E50,493 backgroundfield(Pm= 1).Theexpressionispartofase- Kleeorin,N.I., Rogachevskii, I.V., Ruzmaikin,A.A.: 1989, SvA riesexpansionwhichconvergesifthesecondtermissmaller Lett.15,274 thanthefirstterm.ThesecondtermoftheRHSofthisex- Kleeorin,N.I., Rogachevskii,I.V., Ruzmaikin,A.A.: 1990, JETP pressionhastwoimportantproperties:i)itispositiveforall 70,878 spectralfunctionsE with∂E/∂ω < 0sothattheη isal- Kleeorin,N.,Mond,M.,Rogachevskii,I.:1996,A&A307,293 T waysreducedbythemagneticfields,andii)itdoesnotexist Roberts,P.H.,Soward,A.M.:1975,AN296,49 Ru¨diger,G.,Kitchatinov,L.L.:1990,A&A236,503 forthelimitη 0.Inotherwords,forrathersmallηthein- → Ru¨diger,G.,Kitchatinov,L.L.:2000,AN321,75 tegralbecomeslargesothatthemagneticquenchingwould Ru¨diger, G., Tuominen, I., Krause, F.,Virtanen, H.: 1986, A&A be extremely effective for large Rm. This is why such a 166,306 seriesexpansiononlyholdsforveryweakfields.Thisphe- nomenon has been called a ‘catastrophic’ quenching (see Blackman&Field2000;Blackman&Brandenburg2002). A SOCA expressions ofthe κ’s It exists within the SOCA theory for the eddy diffusivity andalsofortheeddyviscosity.OnefindsfromEq.(42)that Theexpressionsforthemean-fieldLorentzforceparametersκand the mentioneddiffusivitiesare magneticallyquenchedlike κpofEq.(7)providedbythequasilineartheoryforarbitrarymag- www.an-journal.org (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 8 G.Ru¨diger,L.L.Kitchatinov&M.Schultz:Suppressionofthelarge-scaleLorentzforcebyturbulence neticamplitudescanbewrittenas κ= ∞ ∞ωE2(k+,ωη2)kk24 K(B,k,ω)dkdω, Kp = ωω22++νη22kk44 1/2 4β14 38β2+(β2−1)4βLsNinφ − Z Z (cid:18) (cid:19) (cid:18) 2 0 0 AR 1 LN ∞ ∞ (β2+1) + 2−(β2−1+2cosφ) E(k,ω)k2 2βcosφ 4β4 4βsinφ κp = ω2+η2k4 Kp(B,k,ω)dkdω. (A1) 2(cid:19) (cid:18) 2 Z0 Z0 −(β2+1+2cosφ) AR . (A4) 2βcosφ ThekernelfunctionsKandKpdependonthemagneticfieldand 2(cid:19) thevariableskandωvia Thefirstpartsintheseexpressionsrepresentthecontributionofthe kV Reynoldsstresswhilethefollowinglinesrepresentthesmall-scale β = , (ω2+η2k4)1/4(ω2+ν2k4)1/4 Maxwellstress. β2−2βsinφ +1 LN =log 2 , β2+2βsinφ +1 (cid:18) 2 (cid:19) β−sinφ β+sinφ AR=arctan 2 +arctan 2 . (A2) cosφ cosφ (cid:18) 2 (cid:19) (cid:18) 2 (cid:19) Here, cosφ = ηνk4−ω2 / (ω2+η2k4)(ν2k4+ω2). Thekernelsread (cid:0) (cid:1) p ω2+η2k4 1/2 1 LN K = −(β2+3) + ω2+ν2k4 8β4 4βsinφ (cid:18) (cid:19) (cid:18) 2 AR 1 LN (β2−3) + 6−(β2−3+6cosφ) 2βcosφ 8β4 4βsinφ 2(cid:19) (cid:18) 2 AR −(β2+3+6cosφ) (A3) 2βcosφ 2(cid:19) and (cid:13)c 0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org