ebook img

Supersymmetry: Experimental Status PDF

4.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Supersymmetry: Experimental Status

Supersymmetry: Experimental Status Keith A. Ulmer, on behalf of 6 1 the CMS and ATLAS Collaborations 0 2 Texas A&M University n Department of Physics and Astronomy a J College Station, TX, 77843, USA. 4 1 January 18, 2016 ] x e Abstract - p This talk presents results from the CMS and ATLAS Collaborations e fromsearchesforphysicsbeyondtheStandardModelmotivatedbysuper- h symmetryfromRun1oftheLHC.Representativesearchesaredescribed [ toillustratethediversenatureofthesearchprograminbothbackground 1 estimationtechniquesandfinalstatetopologies. Thestatusofpreparation v for Run 2 searches at 13 TeV is also presented. 4 7 7 1 INTRODUCTION 3 0 . The Standard Model of particle physics accurately describes the interactions of 1 all known fundamental particles in the universe, and has remained the prevail- 0 ing paradigm in the field for over forty years. Despite its success, the Standard 6 1 Model remains an incomplete theory of fundamental particles and interactions. : It does not include a description of gravity, nor does it explain the compelling v astronomicalevidencefordarkmatter. OftheproposedextensionstotheStan- i X dardModel, supersymmetry(SUSY)hasremainedamongthemostpopularfor r decades. It provides exactly the needed compensation to stabilize the Higgs a mass, while additionally providing an ideal candidate for dark matter with a stable weakly interacting lightest supersymmetric particle (LSP). The CMS [1] and ATLAS [2] experiments at the CERN Large Hadron Col- lider are general purpose detectors built to explore the fundamental nature of the universe. Among the results from the two experiments are many searches for supersymmetry, which have thus far yielded null results [3, 4]. The search programs in both experiments are based on a wide arrange of techniques to measure standard model background contributions as well as a diverse range of possible final states. In this talk, a sample of results are shown to illustrate 1 techniques deployed in these searches. By no means are all relevant results discussed or presented. In the first section, a series of general searches in different final states are described. The second section contains a discussion of more targeted searches focused on dedicated final state topologies, while the third section discussed difficult to reach signatures. The forth section attempts to put the full set of searches performed into a global context, while the final section shows progress toward new searches in the LHC Run 2 with 13 TeV proton-proton collisions. 2 INCLUSIVE SEARCHES Unlike the Standard Model Higgs boson, supersymmetry has many free param- eters,whichcangiverisetoagreatvarietyofsignatures. Further,theunknown mass spectrum can also give rise to a great variety of production cross sections and final state kinematics. With such a broad range of possible signatures, a fruitful class of supersymmetry searches is performed with inclusive sensitivity. Here I describe four such examples in different final states. The classic jets plus missing energy signature is searched for in a three dimensional binned analysis taking advantage of sensitivity in different bins of missing energy (MET), the sum of jet transverse momenta (HT), and the number of jets tagged as bottom quarks [5]. Events are selected by removing those with an identified electron or muon and then requiring at least three jets and at least one tagged b-quark jet. The main Standard Model backgrounds derive from tt¯, W + jets, Z + jets, and QCD multijet events. The contribution from each category of background is measured from data control samples to minimizetherelianceonaccuratesimulation. Inparticular,singleleptonevents are used to predict the tt¯and W + jets backgrounds, and dilepton events are usedtopredicttheZ +jetsbackgroundswithZ decaystoneutrinos. TheQCD multijet contribution is predicted by utilizing a kinematic sideband enriched in QCD events where a jet and MET are aligned. No significant excess of events above the Standard Model predictions is ob- served. Fig. 1 (left) shows the data compared to the expected Standard Model contribution after selecting events with at least 3 b-quark jets. The search re- sults are interpreted in several benchmark SUSY models, including gluino pair productionwitheachgluinodecayingtotwob-quarksandtheLSP.Fig.1(right) shows that such models are excluded for gluino masses as high as around 1.2 TeV. Asimilarlybroadsearchwasperformedwithcomplementaryeventsselected with exactly one muon or electron in [6]. Minimal requirements on MET and the transverse mass (MT) of the lepton and MET are used to select SUSY- like events. Sensitivity to a variety of models is obtained by classifying search regions into large and small jet multiplicity. Backgrounds arise predominately from W + jets and tt¯events. The size of the Standard Model contributions are predicted by identifying data control regions enriched in each background. MC simulation is then used with the overall normalization taken from the data 2 CMS, L = 19.4 fb-1, s = 8 TeV CMS , L = 19.4 fb-1, s = 8 TeV Events / 12 GeV110023 ZL, Nb-jet ‡ 3 D(T(TtWSt6111ia02n+bbt02gjabbe,5le bbt5,s b bt01o05p)0 )G GeVeV (GeV)m~0c111802000000pp fiOE x~bgp~gsee, cr ~gvt eefidd – –b 1b1 s s~ce10txh pe eoNrriymLeOnt+NLL exclusion 1 s section (pb) QCD s o Z+jets cr 10 Diboson 600 10-1mit on 400 er li 1 10-2upp Data/MC 21 150 200 250 300 350 4E0mT0iss 4(5G0eV5)00 200 5% CL 0 10-39 0 400 600 800 1000 1200 1400 150 200 250 300 350 400 450 500 EmTiss (GeV) m~g (GeV) Figure 1: MET distribution in hadronic search with at least 3 b-jets (left) and limV its from the search for gluino tVo bbLSP production (right). Taken from RcFoEvents / 50 Geiegnf.t.T11100r02[23ho5le](Ah3(n.sa-Tlrjo=ereMLd 8etuA Tf1pTgSRLpteE eVei)r,/ o µE2T Tm0nwi.s3s) ifdbtt-1oihstpdrriaebtduaiDSTVFD(g~1tg~oat+cai0ab kpjt12icenaoe -t5tQds ossL,aoo tu5eerna4dpnpsrt5m t,kM o,ms hn6o(s5dg~)fep, e Glχo∼e±1,aV rχ∼b01r)=aeacdksitgg~or) [GeV]tm(nEvents / 50 Geo1tau67890h00000111l1n00000000e0234r~dg-e~gb AAh3(pgnHAslia-lTr asjo=oalerni=LiTmd 8drtu8dcoA OE u iLW1ptT sxcbT1SkLp penAetsaR-eie eeloVteeV crrgaS9nv,p/t ,e 5µ,Ee t2 2d%owr dc~gTm0 0 nl→ liioC.s imh m3fsobL) ii ittntu-f ct 1(bl(+±y±-sh1χ1∼n1 01σ σi,e tSgdhxmUpeSofi)(rYnyχ∼~)g01 ve)a→= t sec∼mχl0 tf(1~otr)irob DSTVFD(g~i-1dmg~oat+ ai0edab2 kpjtre12enaoe0n -5tQdgs ss L,aoG tua5eernami4dppesr5 t,tkoVM o,ms n6oi(s5nodg~o)e, Glχ∼r.ne±1,Ve χ∼.01)=jNetos sisigsnhifiowcanint J signal is observed in any of the search500regions and 95% CL upper limits aJre set H on a1variety of simplified models. Fig.12 (right) shows the limits for gluinHo pair E pbreData / SMoydo2nu1dcti1o.n3 wTeitVhfboorthligghltuiLnSoPssd.ecayiData / SMn34g000021intotwotopquarkswithlimitsreaEPching P0 1050 200 250 300 350 400 450 500ETmis5s5 [0GeV60]0 2004100500 205000250603000730500 480000450900500E1Tm0is50s5 0[0Ge1V610]000 1200m1(30~g0) 0[Ge1V4]00 4( Events / 50 GeV 11110000234 Ah5(nsa-Tjo=erLd 8tuA T1pTSRLpe eVer,/ µE2 Tm0i.s3s) fb-1 DSTVFD(g~1g~oat+ai0ab kpjt12enaoe -5tQds ssL,ao tu5eerna4dppsr5 t,kM o,ms n6o(s5dg~)e, Glχ∼e±1,V χ∼01)= ∼0) [GeV]m(χEvents / 50 GeV1156789000000011100000010000234~g-~g HAApAh5(slnalsra- =TToljor=ier8mdLdd 8Ltu OEuiA T 1t W1psxTcAb-eS pLpltsaeeViReeotS eVp ce,r9nr vtt,2/e5 o,e µE d%02dn~g Tm 0l → lfioCimibm.s3nsL -i1)ittl t ty f(χ∼(b±±01-11,1~ gσ σme→tShx( Upe~tttSo))∼rχY 0y> )1f>or bmidd(~gen)DSTVFD(g~1g~oat+ai0ab kpjt12enaoe -5tQds ssL,ao tu5eerna4dppsr5 t,kM o,ms n6o(s5dg~)e, Glχ∼e±1,V χ∼01)= 4(2015) 2015)116 400 1 3001 1 SM 2 SM2002 1 Data / 1 Data / 1001 6 1050 200 250 300 350 400 450 500 550 600 5100500 206000250730000 385000400904050 150000055011060001200 1300 1400 ETmiss [GeV] ETmiss [GeV] m(~g) [GeV] F(utTsFbhpeieogaipagtuekbtrruoraecemcrEnhke)8Tgmrt.fi(2ts¯orslu:D(oenlcefimduMsftttt)r),oiEfRbaianuniTnnedtdtiifdoecW.ndraet[ris+eo6stedfjt]seit.rstbuhsiye6bl(6trtmu%sihgiethsf(istr7aoi)no2rnrcg%moow)tnfrto,faFtta9drtohon5rouiihvre%sgedlsiurvsetettrtincCreomheuhaeorLgayetspstelh,1ileeeoiet83wxfioana.-Wceeimpptjlsdx9uherpps5ostmuqc%etilmvuhrisohteei+aeeCdmte¯ldrdyenlLkeil(fvg,ntiWewiojhiutngn˜xaaetimcrtl→t˜)hl(tttuay→hhsgsgnectEeillt¯deooulclχ˜osncTmnχihu˜bw01net01olaiaoi)(sircm(-rbsdnnokmbtdoiogilatittseoprnntdftsor)rordriiueomaosnoittngmtrbhgi)deoilnwuodle-t.deohhtnrtin-Tieetc3oloelraheptyh-aentjgepaLniesttsnrtqhhditd.dgouSeeaoosnart(g8ikPrnhrtnTlyk1ueocgbih%hplupnl±efuepnrao)-o1oelcsne(σdreparpda4nruortanvut5ceeoasatdtr%dlnhirai.inhoiestcatu)nd5syhitTuee,-ialcosfmjwihno.iennntineherteTdneoeislrhnothecieonotntlhodwhtubeehescse(mseattoh(rryievmpedvieegxig˜esdaeq,xcmnhlunpuaoet˜e1st(rmcxiχ˜kvt)Lp01ieen).eidl)scyatplaltielsmlhdaismrnuioltemiisumtfgeaoiidhsttr the5-jettt¯(W)controlregion; the5-jetWshowcnonbtyraolsorliedgdioanrkirsedclriones,s-wciothntthaemdianraktreedddboyttetdt¯lienveesnintdsicaattingthe 1σvariationonthis ± thelevelof40%. The“Data/SM”plotsslhimowitdtuheetorathteiothoeofredtaictaalstcoaletahnedsPuDmFmunecdertSatinatniedsaorndthMesoidgneallcrosssection. expectation, which is derived from the fit described in section 9. The uncertainty band on the Standard Model expectation shown here combines the statistical uncertainty on the simulated event samples with the relevant systematic uncertainti3es (see text). The last bin includes the overflow. The “Top Quarks” label includes all top-quark-related backgrounds, while “V+jets” includesW+jets,Z+jetsandotherDrell-YanbackgroundssuchasZ→τ+τ−–a4n5d–γ∗/Z outside the Z pole region. For illustration, the expected signal distributions are shown for gluino pair productionwithmg˜=1025GeV,mχ˜±1 =545GeVandmχ˜01=65GeV. –24– Next, a search was performed based on events with two electrons or muons with the same electric charge [7]. Such events are rare in the Standard Model, butcanoccurreadilyinmanynewphysicssignatures. Theleptonsarerequired to be well isolated to select prompt leptons from W or Z decays and remove those associated with jets, for example from semi-leptonic b decays. The main backgroundsarisefromeventswithanon-promptleptonthatmistakenlypasses the isolation criteria in addition to another prompt lepton or from events with two true prompt leptons arising from such rare processes as diboson produc- tion. The background from non-prompt leptons is determined by measuring the so-called “fake rate” of the likelihood of a non-prompt lepton to pass the isolation criteria in a data control sample, as shown in Fig. 3 (left). The con- tributions from rare backgrounds are taken from simulation. As with the other inclusive searches, signal regions are defined in a number of bins of MET, HT, and number of b-tagged jets to ensure sensitivity to a variety of possible signal models and parameter space. No significant excess of events is observed above the expected Standard Model backgrounds. Fig. 3 (right) shows the observed limit for sbottom pair production with each sbottom decaying to t, W, and the LSP. CMS s = 8 TeV, L = 19.5 fb-1 L ratio0.04.55 M u o n s CMS s = 8 TaawweVaayy, Ljjeeintt tpp =T >>1 02400.5 GG feebVV-1 (GeV)mLSP334050000 ppfiOE~bxb1p~bse1e*,cr ~bvte1efidd – –t W 11 s~c s01et xh peNeorrLiymOen+tNmLLc~01 i/nemtxc~c+1l u=s 0io.5n 103s section (fb) T 0.4 away jet pT > 60 GeV 250 os 0.03.53 T 200 102mit on cr 0.02.52 150 per li p 0.15 100 u L 0.1 C 50 % 0.05 5 05 10 15 20 25 30 35 350 400 450 500 550 600 650 10 9 p (GeV) m (GeV) T sbottom Figure 3: Tight to loose isolation ratio used to measure non-prompt lepton fake rate (left) and results from same-sign dilepton search for sbottom pair production (right). Taken from Ref. [7]. The final inclusive search described in this talk is based on events with two high p photons [8]. Such a signature is common in gauge mediated (GMSB) T SUSY scenarios where the LSP is a gravitino and the lightest neutralino decays into a photon and the gravitino. Sensitivity to strong and electroweak produc- tionisachievedwithsearchbinsinlowandhighMETandjetmultiplicity. The mainbackgroundsarisefromcombinatorialdiphotonproductionandfrompho- ton + jets events where one of the jets is mistaken as an isolated photon. The missingenergyinsuchbackgroundeventsisgenerallytheresultofmismeasured jets. Since the MET does not come from the photons themselves, data control 4 samplescomposedofeventsfromthephotonisolationsidebandscanbeusedto measure the expected MET shape. The MET shape is then normalized to the low MET region in the true two photon sample to predict the background in the signal region. Fig. 4 (left) shows the MET distribution for a signal region with MET > 200 GeV where the signal extends to higher MET than the re- maining backgrounds. No significant excess of signal events is observed. Fig. 4 (right) shows the upper limits on gluino production in a GMSB scenario with a beVino10-4likAeTLAnSeutras l=i 8n TeoV,. 20.3 fb-1 Data 2012 eV104 ATLAS s = 8 TeV, 20.3 fb-1 Data 2012 Events / 25 GeVEvents / 25 G1111111011000000-0011-2234231 ATLAS s = 8mmmm TWWWW~~~~e ====V SS6666,0000 RR20000γγWW0,,,,γγ mmmm.--HH3∼∼∼∼χχχχ 10101010 f====b -1515100000000 ZZDeeγγγγssWWγjγjtt→→γγ aaaγγ++γγtttγγaγγ ..jj jj ⊕⊕mm2 0ssiiss1yy--2ssIIDDtt.. [GeV]m~Events / 25 GeVEvents / 25 Gg11111134561111101100000000000000-0011-2234231 GAGMTL: AASbAslRiTnl S =oγSlLiγ-m l 8iAaki etTnsS ean aVleytu,s t92risa50li .n%3so ,f = bCg -l8L1ummmm inTWWWW~~~~oe ====pV SSr6666,o0000 RRd20000uγγWW0,,,,γγ cmmmm.--tLL3i∼∼∼∼χχχχo 10101010n f====b -1515100000000 EEOZZDeeγγγγssWWγjγjtt→→xxγγ abaaγγ++γγpptttsγγaγγ ..eejj e jj ⊕⊕mm2ccr 0vttssiissee1eyy--dd2ssIIdDDtt ..llliiimmmiiittt (((±±± 121 σσσEETSxxhUppeS..))oY ry) ata/SM1100--2211 ata/SM111121000000--2421 m ∼0>χ 1m~g D 0 D 0 ata/SM 210 100 200 300 EmT4is0s0 [GeV50]0 ata/SM10002400 201000 400200600300800EmT4i1s0s00 0[0GeV1520]000 mχ∼110 4[G0e0V] FoFafinDgitguhdreuerrS50e0e:RsD�Wu�4islH:ttri1s(blM0ue0ftfiotoE)rnaTong2fd0ltuhd0SeRiinms�Wt�oi3srLs0iipb0n(rgruigoEttrhdamTit4n)oius0ssnsv0 ce[elGtFaCrenfisiLcgedoeotuiVi5tnrrmnohe0]etnho80Sie:GmenRaExer�ScxMec��ncaLeltlDubupuaSesmntsilaooBtilnwhyEvse0lTtmiie0hsmmiEesfisotuTmdsornfioibmsindsrrp�˜ot101etrhkhhe0ee<leqn0og8us(clu0tauiri0rrmonevioGgemnp2-.eblh0eVTeinn0.htsoseCt)eumooi.ramtbvasssrbiee3Tsvirlcn0vifpaanh.e0ltadgiknoOleaniEesm,slvilunmTioeg4tsrfsriies0nlngasfqag0r lriuue[atnGiohienlrexoemeahSmraVri5eRbne0ei]d�StRtn��eg0hbdHtieisnefaooonfrnam.tlhyae[ss(i8snsloa]femro.erfinetmxa)�lc˜01lSuU�deS8dY0a0mtG9o5de%Vel expectedSM� backgroundsas�afunctionofcrEosTms-issse,ctsioenpaexrapetectdatiionnt,oasthweelvlaarsifooursacSoUnStYribcruotsisnsgecstioounricnecrse.asAedlsaonddecreasedbyonestandard FosmhfiogotduwherenelsS5a.:rRTeD�ht�eihseltorisw(bilgueentrfitaop)lnlaoeontxsfdpstehShceoRtawm�t�iiotshnseisn(rrfgaiotgtrirhoatthn)oesfsvoe(emlbdarenessWc˜vdeeti,ri±amvomt2ienoo�˜sdn01mtea)odnxefad=cntatheatreup(d6t-mtcod0reot0thvEsh,iseaTem-1tsiieE0coscs0onmtif)mroioasnGsnbrgsiteryenheVsseeqteodusmafaiSntarhmdteMeicmpe(uxlmeeenpxnWces˜ptecu,retetirmcatdvsitn�ia˜elvit01tlmy)iif.on.itA=ng.lO.sa(oFlv6lose0rhrr0eoltqw,ah5iunen0isir0seea)tmrhpeGeleoetnehxtVtspes,ectedlimit,aswellasthe±1 theinnerbWanHdrepresentstheWranLgeofstatisticaluncertaintywhilTetheouterbandrepresentsthecombined expectedSM� backgroundsas�afunctionofEmiss,separatedintothevariouscontributingsources. Also s3tatisticaTlanAdsyRstemGaticEunTcertEaintDy.EveSntsEoTutAsideRtheCrangHeofEtheSdisplayedregionareincludedinthe smhhiogodhweenlssta.-vrTeahltueheeldoswbigiennr.aplloetxspsehcotawtiothnesrfaotriothoefo(mbsW˜e,rvme�˜d01)da=ta(6to00th,e10c0o)mGbienVedaSndM(mexW˜p,emct�a˜01t)io=n.(F6o0r0t,h5e0s0e)pGloetVs, theinnerbandrepresentstherangeofstatisticaluncertaintywhiletheouterbandrepresentsthecombined In addition to generic inclusive searches, some SUSY signatures are sufficiently statisticalandsystematicuncertainty.Eventsoutsidetherangeofthedisplayedregionareincludedinthe hwigehlelstm-vaoluteidvbaint.ed to demand dedicated searches targeting a more specific model. Heretwosuchtargetedsearchesaredescribed. Thefirstisforstaupairproduc- tion, while the second targets direct stop production. Direct stau pair production is well motivated, in part3i0cular by its potential connection to cosmological scenarios to describe the early evolution of the uni- verse. While generic dilepton searches are often sensitive to stau production through the stau decays to electrons or muons, a dedicated search is required 26 to capture sensitivity to hadronic stau decays which have the largest branching fraction. In [9] events with two hadronic tau candidates with opposite charge areselected. Z bosoncandidatesar2e6vetoedtorejectZ toττ events,andevents withab-taggedjetarerejectedtoremovett¯events. Theremainingbackground is dominated by QCD multijet events. To select signal from this background, a multivariate boosted decision tree (BDT) is trained and only events with high BDT score are retained. After such selection, the main backgrounds remaining are W + jets and diboson events. The W + jets background is measured by identifyingadatacontrolsampleenrichedinW +jetsandnormalizingtheMC simulation prediction to the yield in this control sample. Fig. 5 (left) shows a plot of the MT2 distribution in this control sample. No significant excess of 5 events is observed about the background predictions and 95% CL upper limits areset. Evenafterstringentselectionandsignificantbackgroundrejection,only thelighteststausareexcludedwithmassesaround100GeV,asshowninFig.5 (right). Figure5: StausearchW +jetsvalidationregion(left)andstauexclusionlimits (right). Taken from Ref. [9]. AnotherverywellmotivatedSUSYscenarioisdirectstopproduction,asthe stop plays a key role in the cancelation of quadratic divergences to the Higgs mass from top quark loops. The search in [10] utilizes the all hadronic final statetotargetstoppairproductionwithstoptotop,LSPdecayswithbothtops decaying hadronically. The analysis uses a customized jet algorithm to identify two hadronic top decay candidates. Events with an isolated electron, muon, or tau are removed. The most significant background arrises from tt¯events with METfromaleptonicW decaywherethechargedleptonislost. Theseparation ofsignalandbackgroundisachievedwithaBDTtrainedtoselectsignalevents. KinematicvariablessuchastheanglebetweentheMETandthejetsinthesub- leading top candidate as shown in Fig. 6 (left) are used in the BDT. After the selection, MC simulation is used to estimate the total background contribution in each signal region. The MC is corrected to achieve good agreement with data in several key kinematic distributions and the background prediction is validated in the BDT sidebands. No significant excess of data over background is observed and limits are set on direct stop production. As shown in Fig. 6 (right) stop masses up to around 800 GeV are excluded for light LSPs. 4 EXPLORING GAPS As more and more SUSY searches have yielded null results, an increasing effort has been placed on considering where a signal may yet be hiding in space ac- cessible with current LHC data. This section describes four such searches that 6 ppfi ~t ~t*; ~tfi t + c~ 0 18.9 fb-1 (8 TeV) Events / 0.2233505000 DMMM1a(((~~~ttt8t)))a ===. 9367P057 005rf,,,e bMMMl(((-iccc~~~1m101010C ))) (===i8 n722M575 a5 T( x(rSx1ey100)V)) [GeV]mLSP233450500000 O E xbpseecrvteedd,, –– 11 ssethxpeoe1rriyment PrelimCinMarSy 111002s95% CL limit on tt and W+jets 200 200 ttZ and Z+jets Other processes 150 150 10-1 100 100 50 50 10-2 00 0.5 1 1.5 2 2.5 3 2000 300 400 500 600 700 800 900 min[|D f (jets ˛ top,pmiss|] m~t [GeV] 2 T Figure 6: Minimum ∆φ distribution between MET and subleading top candi- datejets(left)andstoptotop,LSPproductionlimits(right)fromthehadronic stop search. Taken from Ref. [10]. explore regions not covered by more conventional SUSY searches. OnesuchgapinSUSYsensitivityoccurswhenthestophasamassveryclose to that of the top and LSP is very light. In this scenario, stop pair production looks very similar kinematically to top pair production and the signal can be very difficult to dig out. One approach is to use a precision measurement of the top cross section and compare it to the theoretically predicted cross section fromtheStandardModel. Ifexcesseventsexist,theycouldbefromthepresence of stops. Additionally, the spin correlations of the scalar stops are somewhat differentfromthatofthespin1/2tops. Thesearchin[11]exploitsthisdifference togainsensitivitytostopproductioninthisdifficultregion. Dileptonictt¯events are used to compare the observed angular difference between the leptons with that expected from tt¯and stop pair production, as shown in Fig. 7 (left). No deviationfromtheexpectedStandardModeldistributionisobservedandlimits are set on stop pair production, as shown in Fig. 7 (right). Another difficult to access region occurs when SUSY particle masses are nearly degenerate. These so called “compressed” spectra can result in SUSY decays with little missing energy if the LSP is close in mass the parent particle. Asindirectdarkmattersearcheswiththemonojettopology,compressedSUSY canbesearchedforineventswheretheSUSYsystemrecoilsagainstanISRjet. The compressed spectrum then produces missing energy when it is boosted. Such a technique is employed in [12] where the ISR jet and missing energy are searchedforincombinationwithoneortwolowp leptons,whichcanoriginate T from stop or chargino decays. The resulting lepton p spectrum is soft, as T shown in Fig. 8 (left) for compressed decays. After selecting only events with low p isolated leptons much of the background is removed and sensitivity to T this difficult region is obtained, as shown in Fig. 8 (right). 7 3 Process Yield 0.116000 Data ATLAS Z/�t⇤t¯+jets 542080000±+�33346000000 Events/1124000000 Stt M(A t=t0) s = 8 TeV, 20.3 fb-1 tV (singletop) 2600 180 tt¯V 80±11 10000 ~B~ackground WW,WZ,ZZ 180±65 8000 t1t1 , 180 GeV Fakeleptons 780±780 6000 Fit Totalnon-tt¯ 6400±860 4000 ± Expected 60000+3500 2000 3700 Observed 60�424 0 t˜t¯˜ 7100 1100 1.2 1 1 ± 1.1 (mt˜1=180GeV,m�˜01=1GeV) atio 1 R 0.9 TABLEI. Observeddileptonyieldindataandtheexpected SUSYandtt¯signalsandbackgroundcontributions. Systematic 0.8 0 0.2 0.4 0.6 0.8 1 uncertaintiesduetotheoreticalcrosssectionsandsystematicun- certaintiesevaluatedfordata-drivenbackgroundsareincludedin ∆φ [rad] / π theuncertainties. FthFIrGeie.g1du.ilerpetoRn7ecc:ohnasnAtnruenlcst.gedlTe�he�bpderietsdtwricibteiuoetnionnforftowbratcohkegrlsoeuumpndtoo(fbntlhusee in dileptonic tt¯ cross section measure- likelihoodfitisusedtoextractthespincorrelationfrom hmistoegnratm)cpolumsSpMartt¯epdrotduoctiSonU(SsoYlidbsltacokphisstioggrnama)la(nldeft)andresultingexclusionlimitforstop the��distributionindata. Thisisdonebydefininga backgroundplustt¯predictionwithnospincorrelation(dashed coefficientfSMthatmeasuresthedegreeofspincorrela- bplacrkohdisutocgrtaimo)nis(croimgpharte)d.toTthaekdeatnaafnrdotmotheRreesfu.lt[o1f1]. tionrelativetotheSMprediction.Thefitincludesalinear thefittothedata(reddashedhistogram)withtheorangeband superpositionofthe��distributionfromSMtt¯MCsim- representingthetotalsystematicuncertaintyonfSM. Boththe uwewtniic+looiiaattrnelthhmi�poofaa,rrnuleeµticdezw+soiapcwimtµttiihinoi�motnhnccoaooonanoerbdfrffitvefiaetxalhci±aleneiutdeµeieonpd⌥bntrooabcffwdcyhSkufiaMttgcSnhhtr,Mneioocea,ufionlnnsletdedcfaaafirrfvognecrisrooinefisermgenmtststeetatchdw(hlt1ieeiiszotia�htmtntt¯t¯ituo[fhns7lnSeito1.maMr]ntmhu)Tew.elaohaoiluettTirihzseohliattnynet¯-- Stltdtrsoohhehuevents / 5 GeVMcgieocsttawtihN11rictoo00eint¯rnLt23nohCsa(ONsmMsn(s[oSNmd1c slcPiLr0ett˜rodohe11cOrlseit]grmsie=orinpnccesnaorlteeruioy1ncioss ss1t8npsi9h0noSs.i7inonss Mf[Gbtet7oc-ic1ed1n ogattVi,ictrrSt¯ sorali7pgseunmpan 2ll=daanra ((]l)8i22io:ytd .n n22miT(de55ogect(T~,,utdmhV n)l21,uc)h en14m.�t55dt˜ee(i))tt¯~c01 ioxThGG10ln)ntpoeeehg-=VVwroteeoprendy-pl1ruleirecxsuepatGtdnilddWtDZsmV-booticiaet VYniucfia ontte+ngVlattc li-srsegjinjeeknt)onThtt-aa sosge+nlopinro xrnjweeoofgtttso-ryusantmrnorotoihd-t˜artfl1hmoleit¯˜mi7saz1sae%del (GeV)mpidaicdznLSPlrooiesogtsroodn----334405050000 pCpM fiOESx b~tp s~ te,Pe ~ctr rvtfieeedd lbi –m– f 11if' ns s~ceat10hx per eoNyrriymLeOnt+N19L.L7 efbx-c1 l(u8s iToenV) 110023 ss section [pb] tahnetiu-cnocrerretlaaitniotineso.fNtheegatotipveanvdaluanestitoofpfqSuMarckorsrpeisnpso.nAdvtoalaune tbraibcuktgiroonusn(dexpcreepdticftoironb.ackgroundonly)dividedbytheSMtt¯plus250 n cro oufesfSoMff=SM0i>mpl1ieisntdhiactatteheaspdiengsreaereoufntct¯orsrpeilnatecdorarneldatviaoln- 10 200 mit o larSgyersttehmanatpicreudnicceterdtaibnytitehseaSreMe.valuatedbyapplyingthefit Ttiohneumnocdeertlaiinstydedteuremtionethdebpyarctoonmpshaoriwngertawnodtht¯adsaromnpizleas-150 10 er li p psaromcpeldeusrmeotodipfiseedutdoo-reexflpeecrtimtheenstysscteremaatetidcfvraormiatisoimnsu.laTtehde gtheMC eneort12ah0teerdo20bnyeiA4n0tLerPf6Ga0cEeNd8,0wonit1eh00iHntE1e2R0rfWac1Im4Ge0ud.Pt[Tm1w6eh0dieituhmu1M8nPu0IcnYdeeTr2xt0]Ha0iInAtyanodn100 L up fitfeetmreoanftcifecSMubnetciwsererteeapninettahyteeudmsitnoegadnteshteeorfnmoGimnaeuinstashileatneemffifeptsclatttooefst.heeaTchrheessudylistfs-- ttehhvdata/eeenas01itm..155ms,ouuslhnatotewodfetirt¯neidstaiamwl-pitalhendiPsfiYanTsasHel-IssAste,adtwebriytahdciovamatiropienadr(iInaSgmRAo/FuLSnPRtGs)EoiNnf 51000 150 200 250 300 350 400 1 95% C ffireodmpmseaundyo-pdsaetuadios-teaxkpeenriamsetnhtessuyssintegmnaotimciunnaclearntadinmtyodoin- IcSoRmpa0an0tdibFl2eS0wR.i4t0Ahsthi6en0rRece80efn.t[14m020e],a1st2hu0eresm14i0zeent1osp60fTo(mtfh)1 ea8[G0dvedaVi2rt]0ii0oatniaolnjeist mstop (GeV) fSM[102]. activityintt¯events[103]. TheWtnormalizationisvar- Thevarioussystematicuncertaintiesareestimatedinthe ieFdiwgiuthrineth8e:thMeoruetoicnalpuncerdtaiisnttireisbouftthieocnros(sl-esefctt)ionand compressed stop search limits (right) samewayasinRef.[42]withthefollowingexceptions: calculation[86],andtheseTnsitivitytotheinterferencebe- sincethisanalysisemploysb-tagging,theassociatedun- twineensoWfttpmrouduocntioSnUanSdYtt¯psreoadurcctihon. aTtaNkLeOnisfsrtoudm- Ref. [12]. certainty is estimated by varying the relative normaliza- iedbycomparingthepredictionsofPOWHEG-BOXwith tionsofsimulatedb-jet,c-jetandlight-jetsamples. The the diagram-removal (baseline) and diagram-subtraction uncertaintyduethechoiceofgeneratorisdeterminedby schemes[85,104]. AsinRef.[42],theuncertaintydue comparingthedefaulttoanalternativett¯samplegenerated totheTtophqeuasrekamracshsisineva[l9u]ateedxbtuetnndotsintchluededsoinftthelepton plus ISR topology even further in withthePOWHEG-BOXgeneratorinterfacedwithPYTHIA. sysseteamracthiciunngceritnainteievse,snintcseiwtwitohuldthhavreeneosoigrnimficaonrte low pT leptons plus large MET. This allowsforsensitivitytosuchSUSYsignaturesascharginoorneutralinoproduc- tion decaying to a neutralino LSP with intermediate sleptons, which can give up to four leptons in the final state. The Standard Model background for three ormoreisolatedleptonspluslargeMETandahighp ISRjetisverylow. Fig- T ure 9 (left) shows the single observed signal event in one of the search regions compared to the background prediction, while Fig. 9 (right) shows the results 8 of the search when combined with same-sign dilepton and high p multilepton T searches. Figure9: AngularseparationbetweenleadjetandMETinthethreesoftlepton +ISRsearch(left)andresultinglimitsonelectroweakSUSYproduction(right). Taken from Ref. [9]. AnotheralternativetoISRtoboostthecompressedSUSYspectrumisvector bosonfusion(VBF).ThepairofVBFjetsservesthesamepurposeofproviding a boost to the SUSY system, which would otherwise have very low MET. The search in [13] exploits the VBF topology to search for compressed SUSY with complementarysensitivitytotheISRsearches. Asanadditionaldiscriminating variable, the mass of the VBF dijet system can be utilized to select high mass events more typical of signal. Figure 10 (left) shows the dijet mass distribution forbackgroundcomparedtosignal. Theobserveddistributionisconsistentwith the Standard Model expectation and no evidence for SUSY is found. Figure 10 (right) shows the search results interpreted as limits on compressed sbottom pair production as well as direct dark matter production. 5 THE BROAD PICTURE With the plethora of possible SUSY signatures and searches performed at the LHC, it is important to put the entirety of the search program together to as- sess where things stand. Many different searches can be sensitive to the same model. Whenmutuallyexclusivefinalstatesprovidecomplementarysensitivity, a combination of the results of the different relevant searches can extend the overall reach. For example, in Fig. 11 (left) the results from searches using five different final states are shown along with the combination of the five searches, which extends the sensitivity beyond any of the individual searches alone. Al- ternatively,differentsearchescanbedesignedtobesensitivetodifferentregions of parameter space for a given model. When the exclusion regions for each in- 9 CMSPreliminary 18.5 fb-1 (8 TeV) 50 GeV120 dZa(fitann)+jets [fb] 104CMSPreliminary O– b1s se ervxepde c9t5e%d 9C5L% CL18.5 fb-1 (8 TeV) Events / 21680000 Wopptpph( fiefifir s l b~cnb~c)* +jjjj,j,e Lmts b~= = 6 30000 G GeeVV, ,m mc c~=10 =1 0209 5G eGVe V s 11100023 –ss ((2b~c cb~s j jjej))x ((pLNeOLc)Ot,e L)d, D =9m 56% 0=0 mC GLb~e V- m~c01 = 5 GeV 1 40 100 200 300 400 500 M [Ge6V0]0 Obs./Prediction0122...00025551800100012001400160018002000220m0jj [2G4e0V0] L [GeV] 1122330505055000000000000000 DM1 EFT scalaE–OLLr x b1o<<ps s p2Mee eMcercrvtx/ac2eeptdpdoe rc99t55e%%d C9C5LL% CL10 102RL = 80ggg%eeeffffff === M124c [GeV] Figure 10: Dijet mass distribution comparing signal and background (left) and limitsforsbottompairanddarkmatterproduction(right)fromtheVBFSUSY search. Taken from Ref. [13]. dividual search are overlaid, the total exclusion can show significant coverage. For example, Fig. 11 (right) shows the exclusions from eight different searches targetingdirectstopproduction. Intotal,theyexcludeaverysignificantregion of the plane. Such summary plots also serve to highlight regions where gaps exist in the current sensitivity and can motivate future efforts. ~g-~g production, ~gfi t t ~c 0 1 V]1000 Ge CMS SUS-13-012 0-lep (ET+HT) 19.5 fb-1 SP mass [ 890000 s OE=xbp s8eecr vtTeeddeV SSSSUUUUSSSS----11113344----000001117300 1232----lllleeeepppp ((((OnS3SljSe+t)+sb 1‡b)9 )61 .15)9 9 .1f5.b95 f.- 3b1fb -f1-b1-1 L 700 SUS-14-010 0+1+2(SS,OS)+>2-lep 19.5 fb-1 600 500 234000000 m(gluino) - m(LSP) = 2 m(top) 100 0 600 800 1000 1200 1400 1600 gluino mass [GeV] Figure 11: Summary plots of various search results from gluino-mediated stop production (left) from [3] and direct stop production (right) from [4]. An alternative approach to assess the overall state of the SUSY search pro- gram is to consider full SUSY models. A popular approach is to utilize the parameterized minimal supersymmetric standard model (pMSSM) which pa- rameterizes SUSY with 19 free parameters after making several experimentally 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.