Lecture Notes in Physics FoundingEditors:W.Beiglbo¨ck,J.Ehlers,K.Hepp,H.Weidenmu¨ller EditorialBoard R.Beig,Vienna,Austria W.Beiglbo¨ck,Heidelberg,Germany W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France F.Guinea,Madrid,Spain P.Ha¨nggi,Augsburg,Germany G.Hasinger,Garching,Germany W.Hillebrandt,Garching,Germany R.L.Jaffe,Cambridge,MA,USA W.Janke,Leipzig,Germany H.v.Lo¨hneysen,Karlsruhe,Germany M.Mangano,Geneva,Switzerland J.-M.Raimond,Paris,France D.Sornette,Zurich,Switzerland S.Theisen,Potsdam,Germany D.Vollhardt,Augsburg,Germany W.Weise,Garching,Germany J.Zittartz,Ko¨ln,Germany TheLectureNotesinPhysics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopments in physics research and teaching – quickly and informally, but with a high quality and theexplicitaimtosummarizeandcommunicatecurrentknowledgeinanaccessibleway. Bookspublishedinthisseriesareconceivedasbridgingmaterialbetweenadvancedgrad- uatetextbooksandtheforefrontofresearchandtoservethreepurposes: • tobeacompactandmodernup-to-datesourceofreferenceonawell-definedtopic • to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas • tobeasourceofadvancedteachingmaterialforspecializedseminars,coursesand schools Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Pro- ceedingswillnotbeconsideredforLNP. VolumespublishedinLNParedisseminatedbothinprintandinelectronicformats,the electronicarchivebeingavailableatspringerlink.com.Theseriescontentisindexed,ab- stractedandreferencedbymanyabstractingandinformationservices,bibliographicnet- works,subscriptionagencies,librarynetworks,andconsortia. ProposalsshouldbesenttoamemberoftheEditorialBoard,ordirectlytothemanaging editoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] S. Bellucci (Ed.) Supersymmetric Mechanics - Vol. 3 Attractors and Black Holes in Supersymmetric Gravity 123 StefanoBellucci IstitutoNazionalediFisica Nucleare LaboratoriNazionalidiFrascati viaE.Fermi,40 00044FrascatiRM Italy [email protected] Bellucci,S.(Ed.),SupersymmetricMechanics-Vol.3,Lect.NotesPhys.755(Springer, BerlinHeidelberg2008),DOI10.1007/978-3-540-79523-0 ISBN:978-3-540-79522-3 e-ISBN:978-3-540-79523-0 DOI10.1007/978-3-540-79523-0 LectureNotesinPhysicsISSN:0075-8450 LibraryofCongressControlNumber:2006926534 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L.,F.Steinen-Broo,Pau/Girona,Spain Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface This is the third volume in a series of books on the general topics of Supersym- metric Mechanics, with the first and second volumes being published as Lecture Notes in Physics Vol. 698, Supersymmetric Mechanics – Vol. 1: Supersymmetry, NoncommutativityandMatrixModels(ISBN:3-540-33313-4),andLectureNotes inPhysicsVol.701,SupersymmetricMechanics–Vol.2:TheAttractorMechanism andSpaceTimeSingularities(ISBN:3-540-34156-0). The aim of this ongoing collection is to provide a reference corpus of suitable, introductorymaterialtothefield,bygatheringthesignificantlyexpandedandedited versionsofalltutoriallectures,givenovertheyearsatthewell-establishedannual INFN-LaboratoriNazionalidiFrascatiWinterSchoolontheAttractorMechanism, directedbymyself. The present set of notes results again from the participation and dedication of prestigiouslecturers,suchasIosifBena,SergioFerrara,RenataKallosh,PerKraus, FinnLarsen,andBorisPioline.Asusual,thelecturesweresubsequentlycarefully edited and reworked, taking into account the extensive follow-up discussions. The presentvolumeemphasizestopicsofgreatrecentinterest,namelygeneralconcepts ofattractorsinsupersymmetricgravityandblackholes. A two-parameter family of spherically symmetric, static, asymptotically flat, electricallychargedsingularmetricsind=4isdescribedbytheso-calledReissner- No¨rdstromsolution.Itmayberigorouslyshownthatthesphericallysymmetricso- lution of N =2, d =4 Maxwell-Einstein supergravity represented by an extremal Reissner-No¨rdstrom black hole preserves one-half of the supersymmetry isome- tries out of the eight related to the asymptotical limit given by the N =2, d =4 Minkowskibackground. Whenapproachingtheeventhorizonoftheblackhole,onegetsarestorationof thepreviouslylostfouradditionalsupersymmetries,hencereobtainingamaximally symmetric N =2 metric background, namely the 4-d Bertotti-Robinson AdS×S2 blackholemetric. In the earlier book Supersymmetric Mechanics – Vol. 2, a general dynamical principle was considered, namely the “attractor mechanism”, which governs the dynamics inside the moduli space, with supersymmetry being related to dynami- cal systems with fixed points describing the corresponding equilibrium state and thestabilityproperties.Ifthismechanismholds,inapproachingsomefixedvalues, v vi Preface whichdependsolelyupontheelectricandmagneticchargesofthetheory,theorbits of the dynamical evolution lose all memory of their initial conditions, and yet the overalldynamicsremainsfullydeterministic.Historically,thefirstattractorexample insupersymmetricsystemsemergedfromtheconsiderationofextremeblackholes inN=2, d=4,5Maxwell-Einsteinsupergravitiescoupledwithmattermultiplets. In the present volume, some of the founders of the research in this field, interact- ing among themselves, as well as with younger collaborators, yield a pedagogical introductiontothesubject. In his lectures, Iosif Bena (co-authored by Nick Warner) gives an introduc- tion to the construction and analysis of three-charge configurations in string the- ory and supergravity and describes the corresponding implications for the physics of black holes in string theory. Sergio Ferrara (co-authored by Mike Duff) re- views some recently established connections between the mathematics of black hole entropy in string theory and that of multipartite entanglement in quantum in- formation theory, a topic that could be of great interest also for experimental test- ing and perhaps even for potential applications. The lectures by Renata Kallosh (co-authored by Stefano Bellucci, Sergio Ferrara, and Alessio Marrani) provides a pedagogical, introductory review of the Attractor Mechanism (at work in two different 4-dimensional frameworks: extremal black holes in N =2 supergravity and N =1 flux compactifications. AdS black holes and their connection to two- 3 dimensionalconformalfieldtheoriesviatheAdS/CFTcorrespondencearethesub- ject of the lectures by Per Kraus, including background material on gravity in AdS , in the context of the holographic renormalization. Also Finn Larsen in his 3 lectures yields a pedagogical introduction to the attractor mechanism, in particu- lar in five dimensions, concentrating chiefly on supersymmetry-preserving black holes in five dimensions, both with and without spherical symmetry, being mo- tivated essentially by the consideration of black rings, as well as rotating black holes. Pioline in his contribution “Black Holes, Topological Strings and Quantum Attractors” reviews recent developments on the relation between the macroscopic entropy of four-dimensional BPS black holes and the microscopic counting of states. I wish to thank all lecturers and participants of the School for contributing to createanalmostmagicalatmospheretoprogressinthelearningandthefurtherre- searching in this absolutely fascinating topic. I wish to thank most warmly Mrs. SilviaColasantiforhergenerouseffortsinthesecretarialworkandinvariousorga- nizationalaspects.MygratitudegoestoINFNandinparticulartoMarioCalvettifor supportingtheSchool.InwelcomingourbrandnewdaughterErica,mythoughtsgo tomywifeGloriaandourbelovedCostanza,Eleonora,andAnnalisaforproviding meeverydayjoy,withoutwhichIcouldneverhaveaccomplishedthiseffort. Frascati,December2007 StefanoBellucci Contents BlackHoles,BlackRings,andtheirMicrostates...................... 1 IosifBenaandNicholasP.Warner 1 Introduction.............................................. 1 2 Three-ChargeMicroscopicConfigurations .................... 6 3 BlackRingsandSupertubes ................................ 16 4 Geometric Interlude: Four-Dimensional Black Holes andFive-DimensionalFoam ................................ 26 5 SolutionsonaGibbons-HawkingBase ....................... 31 6 BubbledGeometries....................................... 45 7 MicrostatesforBlackHolesandBlackRings.................. 57 8 MergersandDeepMicrostates .............................. 63 9 ImplicationsforBlack-HolePhysics ......................... 78 References..................................................... 87 BlackHoleEntropyandQuantumInformation ...................... 93 M.J.DuffandS.Ferrara 1 BlackHolesandQubits .................................... 93 2 TheN=2STUModel...................................... 95 3 Cayley’sHyperdeterminant ................................. 98 4 BlackHoleEntropy .......................................100 5 TheN=8Generalization ..................................101 6 DecompositionofE ....................................102 7(7) 7 TripartiteEntanglementof7Qubits ..........................103 8 Cartan’sE Invariant ....................................105 7(7) 9 TheBlackHoleAnalogy ...................................108 10 Subsectors ...............................................111 11 Conclusions..............................................112 References.....................................................113 vii viii Contents ExtremalBlackHoleandFluxVacuaAttractors ..................... 115 S.Bellucci,S.Ferrara,R.KalloshandA.Marrani 1 Introduction..............................................116 2 SpecialKa¨hlerGeometry...................................123 3 Extremal Black Hole Attractor Equations inN = 2, d = 4 (ungauged)Supergravity ...................................129 4 FluxVacuaAttractorEquationsinN =1,d =4Supergravity fromTypeIIBon CY3×T2 ...................................160 Z 2 5 SomeRecentDevelopmentsonExtremalBlackHoleAttractors ..176 References.....................................................186 LecturesonBlackHolesandtheAdS /CFT Correspondence.......... 193 3 2 P.Kraus 1 Introduction..............................................193 2 GravityinAsymptoticallyAdS Spacetimes...................197 3 3 ChargedBlackHolesandChern-SimonsTerms ................210 4 StringTheoryConstructions ................................215 5 PartitionFunctionsandEllipticGenera .......................225 6 ComputationofPartitionFunctionsinGravity:Warmup Examples................................................231 7 ComputationofPartitionFunctionsinSupergravity.............235 8 ComputationofBPSSpectra................................240 9 Conclusion...............................................243 References.....................................................244 TheAttractorMechanisminFiveDimensions ....................... 249 F.Larsen 1 Introduction..............................................249 2 TheBasicsoftheAttractorMechanism.......................250 3 BlackRingAttractors......................................262 4 ExtremizationPrinciples ...................................275 References.....................................................280 Lectures on Black Holes, Topological Strings, and Quantum Attractors(2.0) ................................................. 283 B.Pioline 1 Introduction..............................................283 2 ExtremalBlackHolesinStringTheory .......................285 3 SpecialGeometryandBlackHoleAttractors ..................293 4 TopologicalStringPrimer ..................................311 5 HigherDerivativeCorrectionsandTopologicalStrings ..........323 6 PrecisionCountingofSmallBlackHoles .....................329 7 QuantumAttractorsandAutomorphicPartitionFunctions .......336 8 Conclusion...............................................365 References.....................................................366 Black Holes, Black Rings, and their Microstates IosifBenaandNicholasP.Warner Abstract In this review article, we describe some of the recent progress towards the construction and analysis of three-charge configurations in string theory and supergravity. We begin by describing the Born-Infeld construction of three-charge supertubes with two dipole charges and then discuss the general method of con- structingthree-chargesolutionsinfivedimensions.Weexplainindetailtheuseof these methods to construct black rings, black holes, as well as smooth microstate geometrieswithblackholeandblackringcharges,butwithnohorizon.Wepresent argumentsthatmanyofthesemicrostategeometriesaredualtoboundarystatesthat belongtothesamesectoroftheD1-D5-PCFTasthetypicalstates.Weendwithan extendeddiscussionoftheimplicationsofthisworkforthephysicsofblackholes instringtheory. 1 Introduction Blackholesareveryinterestingobjects,whosephysicsbringsquantummechanics and general relativity into sharp contrast. Perhaps the best known, and sharpest, exampleofsuchcontrastisHawking’sinformationparadox[1,2].Thishasprovided averyvaluableguideandtestinggroundinformulatingaquantumtheoryofgravity. Indeed, it is one of the relatively few issues that we know must be explained by a viabletheoryofquantumgravity. String theory is a quantum theory of gravity and has had several astounding successes in describing properties of black holes. In particular, Strominger and Vafa have shown [3] that one can count microscopic configurations of branes and strings at zero gravitational coupling and exactly match their statistical entropy to IosifBena Service de Physique The´orique, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France, [email protected] Nicholas.P.Warner Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484,USA,[email protected] Bena,I., Warner, N.P.: BlackHoles, BlackRings and theirMicrostates. Lect.Notes Phys. 755, 1–92(2008) DOI10.1007/978-3-540-79523-0 1 (cid:2)c Springer-VerlagBerlinHeidelberg2008