ebook img

Superspace Gauge Fixing of Topological ang-Mills Theories PDF

26 Pages·2003·0.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Superspace Gauge Fixing of Topological ang-Mills Theories

CBPF-NF-036/03 hep-th/0310184 UFES-DF-OP2003/4 Superspace Gauge Fixing of Topological Yang-Mills Theories a1 a;1 b;1 Clisthenis P. Constantinidis , Olivier Piguet and Wesley Spalenza a Universidade Federal do Esp(cid:19)(cid:16)rito Santo (UFES) b Centro Brasileiro de Pesquisas F(cid:19)(cid:16)sicas (CBPF) Abstract We revisit the construction of topological Yang-Mills theories of the Witten type witharbitraryspace-timedimensionandnumberof \shiftsupersymmetry"generators, using a superspace formalism. The super-BF structure of these theories is exploited in order to determine their actions uniquely, up to the ambiguities due to the (cid:12)xing of the Yang-Mills and BF gauge invariance. UV (cid:12)niteness to all orders of perturbation theory is proved in a gauge of the Landau type Key-words: Quantum (cid:12)eld; Topological theory; Gauge theory. 1 SupportedinpartbytheConselhoNacionaldeDesenvolvimentoCient(cid:19)(cid:16)(cid:12)coeTecnol(cid:19)ogicoCNPq{Brazil. CBPF-NF-036/03 1 1 Introduction Observables in topological theories possess a global character, such as the knot invariants of Chern-Simons theory, the Wilson loops, etc. The problem of (cid:12)nding alltheses invariants is a problem of equivariant cohomology, as proposed by Witten in 1988 [1] for Yang-Mills topo- logical theory in four-dimensional space-time. Equivariant cohomology is the cohomology of a BRST-like operator { the \shift supersymmetry operator", associated to a local shift transformation of the connection (cid:12)eld { in a space of gauge invariant (cid:12)eld polynomials. A superspace formulation of Witten’s model was proposed by Horne [2] and developed later on, in particular by Blau and Thompson [3, 4], who extended it to the cases of more than one supersymmetry generator and in di(cid:11)erent space-time dimensions. In various cases these topological theories are seen to arise from super-Yang-Mills theories through some twist of group representations [1, 3, 4], possibly accompanied by dimensional reduction. The reader maysee[5]forthesystematicconstructionoftopologicaltheoriesfromsuper-Yang-Millsones using this technique. Our proposal is to systematize the superspace construction of actions in the most general setting involving an arbitrary number NT of topological supersymmetry generators in any space-time dimension D. Our construction will be direct, not passing through the twist procedure. The question of the existence, in each case, of a corresponding super-Yang-Mills theory will not be touched. The theory intends to describe gauge (cid:12)eld con(cid:12)gurations with null curvature { or also selfdual curvature, in the 4-dimensional case. The null or selfdual curvature condition is implemented through a Lagrange multiplier (cid:12)eld B which has the same hierarchy of zero- modes as the B (cid:12)eld of a BF type theory [6]. The point of view usually adopted in the literature [1, 2, 3, 4] is that of considering the supersymmetry generator(s) as BRST oper- ator(s) associated to the local shift invariance, and (cid:12)xing the latter with suitable Lagrange multiplier (cid:12)elds. In the present paper, in order to avoid certain ambiguities which may arise in the usual scheme, we shall consider the theory as a rigid supersymmetric theory with two gauge invariances, namely the usual Yang-Mills gauge invariance and the gauge invariance of the B (cid:12)eld, like the one encountered in BF-theories. Both invariances are supergauge invariances, their parameters being superspace functions. We shall see that this is enough to de(cid:12)ne the theory in an unambiguous way, apart from the freedom in the choice of a gauge (cid:12)xing procedure. Moreover, in the case of a gauge (cid:12)xing of the Landau type, we shall show, using supergraph techniques, that perturbative radiative corrections are completely absent. The theory thus turns out to be obviously ultraviolet (cid:12)nite. A very important point is the systematic characterization of all observables of a topolog- ical theory. This has been fully done in [7] for the NT = 1 theories. Partial results exist in the literature. In particular, a set of observables has been given in [8] for the case of NT = 2 in a 4-dimensionalKa(cid:127)hler manifold. In the present paper we shallonly show a rather general set of observables, however without determining if it represents the most general one. The plan of the paper is the following. After reminding the principal features of the originalWitten-Donaldson’s topologicalYang-Millstheory [1] in section 2 and of superspace CBPF-NF-036/03 2 formalism for topological theories in section 3, we shall show the construction of the action as a super-BF one, with the appropriate gauge (cid:12)xing, in section 4. Examples of observables are given in section 5, and the ultraviolert problem is dealt with in section 6. A discussion of the results is done in the concluding section. Some of our conventions and notations are given in two appendices. 2 Shift Supersymmetry We are going to review here, for illustrative purpose, how \shift supersymmetry" may de- scribe the gauge (cid:12)xing of gauge (cid:12)eld con(cid:12)gurations with null curvature, or alternativelywith selfdualcurvature. We shallconcentrate on the originalDonaldson-Wittenmodel[1, 9], with one supersymmetry generator in four dimensional space-time. 2.1 Transformation rules and invariant actions We recall that this model implies, beyond the gauge connection a(cid:22) associated to some gauge group G, a fermion 1-form (cid:22) and a 0-form (cid:30), with \shift" supersymmetry de(cid:12)ned by the in(cid:12)nitesimal transformations Q~a = ; Q~ = D(a)(cid:30) (d(cid:30)+[a;(cid:30)]) ; Q~(cid:30) = 0 : (2.1) (cid:0) (cid:17) (cid:0) All (cid:12)elds here and in the rest of the paper are valued in the Lie algebra of the gauge group { assumed to be a compact Lie group. Details on the notation are given in appendix ??. The usualYang-Millsgaugetransformationsread, writtenasBRST transformationswith ghost c: 2 Sa = D(a)c ; S = [c; ] ; S(cid:30) = [c;(cid:30)] ; Sc = c : (2.2) (cid:0) (cid:0) (cid:0) (cid:0) Whereas the BRST operator S is nilpotent, the fermionic generator Q~ is nilpotent modulo a (cid:30)-dependent gauge transformation: Q~2a = D(a)(cid:30) ; Q~2 = [ ;(cid:30)] ; Q~2(cid:30) = 0 : (2.3) (cid:0) (cid:0) This means that Q~ is nilpotent when restricted to gauge invariant quantities. Following Witten, we may thus interpret the shiftsupersymmetry invarianceas a BRST-like invariance in the space of gauge invariant (cid:12)eld functionals. The 1-form represents the ghost of local shiftinvarianceand (cid:30) isitsghost of ghost. Then the followingcounting ofdegrees offreedom holds: counting 4 degrees of freedom for a, 4 for the ghost and 1 for the ghost of ghost (cid:30), (cid:0) we arrive to a total of 1 degree of freedom, which corresponds to the scalar mode of the (cid:12)eld a { which in turn is eliminated thanks to the usual Yang-Mills gauge invariance. The (cid:12)nal number zero of local degrees of freedom is of course characteristic of a topological theory. In view of the absence of local degrees of freedom, the theory may be de(cid:12)ned through an actionwhichwillbepurelyofagauge(cid:12)xingtype. This(cid:12)xingofthelocalshiftsupersymmetry CBPF-NF-036/03 3 0 1 0 (cid:0)1 may be done introducing Lagrange multipliers (cid:12)elds b2, (cid:21)1, (cid:21)0 and (cid:17)0, together with (cid:0)1(cid:22) 0(cid:22) (cid:0)1(cid:22) (cid:0)2(cid:22) the corresponding \antighost" (cid:12)elds b2, 1, 0 and (cid:30)0, where the lower right index denotes the form degree and the upper left one the degree of supersymmetry or \SUSY- number". The latter number corresponds to a ghost number in the interpretation of shift supersymmetry as a BRST transformation. Each \antighost" transforms under Q~ into its corresponding Lagrange multiplier: Q~ (cid:0)1(cid:22)b2 = 0b2 ; Q~ p(cid:0)1 (cid:22)p = p(cid:21)p (p = 1;2) ; Q~ (cid:0)2(cid:30)(cid:22)0 = (cid:0)1(cid:17)0 ; (2.4) ~ 0 (cid:0)1(cid:22) ~ p p(cid:0)1(cid:22) ~ (cid:0)1 (cid:0)2(cid:22) Q b2 = [ b2;(cid:30)] ; Q (cid:21)p = [ p;(cid:30)] ; Q (cid:17)0 = [ (cid:30)0;(cid:30)] ; (cid:0) (cid:0) (cid:0) the transformation rules of the Lagrange multipliers assuring the nilpotency of Q~ modulo a (cid:30)-dependent gauge transformation. If one intends to study the instanton gauge (cid:12)eld con(cid:12)gurations, i.e. those withselfdualcurvature F = P+F, where P+ isde(cid:12)ned by (A.6), the (cid:0)1(cid:22) associated \antighost" andLagrangemutiplierhave tobe chosen as anti-selfdual: P+ 0 = 0 0, P+ (cid:21)0 = 0. A gauge invariant and Q~- invariant action may be taken as (following [4]) ~ (cid:0)1(cid:22) (cid:0)2(cid:22) 0(cid:22) (cid:0)1(cid:22) (cid:0)1(cid:22) 0 (cid:22) Q Tr b2 F(a)+ (cid:30)0 D(a) + 1 D(a) b2 + 0 D(a) 1 Z (cid:16) (cid:3) (cid:3) (cid:3) (cid:17) 0 (cid:0)1 1 (cid:0)1(cid:22) 0 0 (cid:22) = Tr b2F(a)+ (cid:17)0 D(a) + (cid:21)1 D(a) b2 + (cid:21)0 D(a) 1 Z (cid:16) (cid:3) (cid:3) (cid:3) (2.5) (cid:0)1(cid:22) (cid:0)2(cid:22) 0(cid:22) 0 (cid:0)1(cid:22) 1 + b2 D(a) + (cid:30)0 D(a) D(a)(cid:30)+ 1 D(a) b2 + 0 D(a) (cid:21)1 (cid:3) (cid:3) (cid:3) (cid:0)2(cid:22) 0(cid:22) (cid:0)1(cid:22) (cid:0)1 (cid:22) 0(cid:22) + (cid:30)0[ ; ] 1[ ; b2] 0[ ; 1] ; (cid:3) (cid:0) (cid:3) (cid:0) (cid:3) (cid:17) 2 where F(a) = da+ a is the curvature of the Yang-Mills connection a and is the Hodge 0(cid:3) duality operator (see appendix ??). One sees that the Lagrange multiplier b2 implements the zero-curvature condition F(a) = 0 { or the selfduality condition, as in the original (cid:0)1 1 Witten’s paper. (cid:17)0 is the Lagrange multiplier (cid:12)xing the zero-mode of . Morover, (cid:21)1 (cid:0)1(cid:22) 0 0(cid:22) 0(cid:22) 0 (cid:12)xes the zero-mode of b2, (cid:21)0 that of 1. Finally, 1 (cid:12)xes the zero-mode of b2 and (cid:0)1(cid:22) 1 0 that of (cid:21)1. This action corresponds to a generalized \Landau gauge" (cid:12)xing. However, it is still possible to add one invariant term quadratic in the Lagrange multipliers without spoiling gauge invariance, supersymmetry and SUSY-number conservation. It reads Q~ Tr (cid:24) (cid:0)2 (cid:22)2 0b2 = Tr (cid:24) 0b2 0b2 + (cid:0)2 (cid:22)2 [ (cid:0)2 (cid:22)2;(cid:30)] : (2.6) Z 2 (cid:3) Z 2 (cid:3) (cid:3) (cid:0) (cid:1) In this case, which corresponds to a generalized Feynman gauge, the Lagrange mmultiplier 0 b2 becomes an auxiliary (cid:12)elds, whose elimination through its equation of motion gives rise, for (cid:24) = 1, to the original action of Witten [1], which describes selfdual con(cid:12)gurations when 0 choosing the Lagrange multiplier b2 and its corresponding \antighost" as anti-selfdual 2-forms. CBPF-NF-036/03 4 2.2 Observables According to Witten, the algebra of observables of the theory is generated by sets of gauge (n) invariant forms wp (0 p 4, n integer) obeying "descent equations" (cid:20) (cid:20) Q~wp(n) +dwp(n(cid:0))1 = 0 (4 p 1) ; Q~w0(n) = 0 ; (2.7) (cid:21) (cid:21) and are uniquely (cid:12)xed up to total derivatives by (n) (n) w0 = C ((cid:30)) ; (n) (n) where C ((cid:30)) is an invariant corresponding to a Casimr operator of the gauge group. n C Each p-form wp being then integrated on some p-dimensional submanifold Mp, represents an equivariant cohomology class and de(cid:12)nes a basis element of the algebra of observables. N 3 T-Extended Supersymmetry Our purpose in this section is to review and develop a superspace formalism describing topological theories such as Wittens’s theory described in section 2 and generalizations of it for more than one supersymmetric generators and for any space-time dimension, starting from the formalism described in [2, 4, 7]. 3.1 NT Superspace formalism NT supersymmetry is generated by the fermionic charges QI, I = 1;:::;NT obeying the 2 Abelian superalgebra [QI;QJ] = 0 ; (3.1) commuting with the space-time symmetry generators and the gauge group generators. The gauge group is some compact Lie group. A representation of supersymmetry is provided by superspace, a supermanifold with D 3 (cid:22) bosonic and NT fermionic dimensions . The respective coordinates are denoted by (x , I (cid:22) = 0;:::;D 1), and ((cid:18) , I = 1;:::;NT). A super(cid:12)eld is by de(cid:12)nition a superspace (cid:0) function F(x;(cid:18)) which transforms as @ QIF(x;(cid:18)) = @IF(x;(cid:18)) IF(x;(cid:18)) (3.2) (cid:17) @(cid:18) under an in(cid:12)nitesimal supersymmetry transformation. 2 The bracket is here an anti-commutator. 3 Notations and conventions on superspace are given in appendix ??. CBPF-NF-036/03 5 I An expansion in the coordinates (cid:18) of a generic super(cid:12)eld reads N 1 I1 In F(x;(cid:18)) = f(x)+ (cid:18) :::(cid:18) fI1:::In(x) (3.3) n! Xn=1 where the space-time (cid:12)elds fI1:::In(x) are completely antisymmetric in the indices I1:::In. We recall that all (cid:12)elds (and super(cid:12)elds) are Lie algebra valued. We shall also deal with superforms. A p-superform may be written as p ^ I1 Ik (cid:10)p = (cid:10)p(cid:0)k;I1:::Ikd(cid:18) d(cid:18) ; (3.4) (cid:1)(cid:1)(cid:1) Xk=0 where the coeÆcients (cid:10)k(cid:0)1;I1:::Ik are (Lie algebra valued) super(cid:12)elds which are space-time formsof degree (p k). They arecompletelysymmetricintheirindices since, the coordinates (cid:0) I (cid:18) being anti-commutative, the di(cid:11)erentials d(cid:18) are commutative. The superspace exterior derivative is de(cid:12)ned as I (cid:22) ^ d = d+d(cid:18) @I ; d = dx @(cid:22) ; (3.5) ^2 and is nilpotent: d = 0. The basic super(cid:12)eld of the theory is the superconnection A^, a 1-superform: I A^ = A+EId(cid:18) ; (3.6) (cid:22) with A = A(cid:22)(x;(cid:18))dx a 1-form super(cid:12)eld and EI = EI(x;(cid:18)) a 0-form super(cid:12)eld. The superghost C(x;(cid:18)) is a 0-superform. We expand the components of the superconnection (3.6) as N 1 I1 In A = a(x)+ (cid:18) :::(cid:18) aI1:::In(x) ; (3.7) n! Xn=1 where the 1-form a is the gauge connection, and the 1-forms aI1:::In its supersymmetric partners. The expansions of EI and of the ghost super(cid:12)eld C read N 1 I1 In EI = eI(x)+ (cid:18) :::(cid:18) eI;I1:::In(x) ; n! Xn=1 N (3.8) 1 I1 In C = c(x)+ (cid:18) :::(cid:18) cI1:::In(x) : n! Xn=1 The in(cid:12)nitesimal supergauge transformations of the superconnection are expressed as the nilpotent BRST transformations SA^ = d^C [C;A^] ; SC = C2 ; S2 = 0 : (3.9) (cid:0) (cid:0) (cid:0) In terms of component super(cid:12)elds we have 2 SA = dC [C;A] ; SEI = @IC [C;EI] ; SC = C : (3.10) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) CBPF-NF-036/03 6 The supercurvature ^ ^^ ^2 I I J F = dA+A = F(A)+(cid:9)I d(cid:18) +(cid:8)IJ d(cid:18) d(cid:18) (3.11) transforms covariantly: SF^ = [C;F^] ; (cid:0) as well as its components 2 1 F(A) = dA+A ; (cid:9)I = @IA+D(A)EI ; (cid:8)IJ = (@IEJ +@JEI +[EI;EJ]) ; (3.12) 2 where the covariant derivative is de(cid:12)ned by D(A)( ) = d( )+[A;( )] (cid:1) (cid:1) (cid:1) For further use and comparisons with the literature, let us give the explicit examples of NT = 1; 2. Example 1 { Case NT = 1 The superconnection (3.6) and the expansions (3.7 - 3.8) read 0 A(x;(cid:18)) = a(x)+(cid:18) (x) ; E(x;(cid:18)) = (cid:31)(x)+(cid:18)(cid:30)(x) ; C(x;(cid:18)) = c(x)+(cid:18)c(x) : (3.13) The BRST transformations of the component (cid:12)elds are 0 0 0 Sa = D(a)c ; S = [c; ] D(a)c ; S(cid:30) = [c;(cid:30)] [(cid:31);c] ; S(cid:31) = [c;(cid:31)] c ; (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) 2 0 0 Sc = c ; Sc = [c;c] (cid:0) (cid:0) (3.14) As for the supersymmetry transformations de(cid:12)ned by (3.2), we have: 0 0 Qa = ; Q = 0 ; Q(cid:31) = (cid:30) ; Q(cid:30) = 0 ; Qc = c ; Qc = 0 : (3.15) The supercurvature components (3.12) read F(A) = F(a) (cid:18)D(a) ; (cid:0) (cid:9) = +D(a)(cid:31) (cid:18)(D(a)(cid:30) [ ;(cid:31)]) ; (3.16) (cid:0) (cid:0) 2 (cid:8) = (cid:30)+(cid:31) +(cid:18)[(cid:30);(cid:31)] : Example 2 { Case NT = 2 The superconnection (3.6) and the expansions (3.7 - 3.8) now read (with I = 1;2) I 1 2 I 1 2 A(x;(cid:18)) = a(x)+(cid:18) I(x)+ 2(cid:18) (cid:11) ; EI(x;(cid:18)) = (cid:31)I(x)+(cid:18) (cid:30)IJ(x)+ 2(cid:18) (cid:17)I ; (3.17) I 1 2 C(x;(cid:18)) = c(x)+(cid:18) cI(x)+ 2(cid:18) cF : CBPF-NF-036/03 7 The BRST transformations of the component (cid:12)elds are IJ Sa = D(a)c ; S I = [c; I] D(a)cI; S(cid:11) = [c;(cid:11)] D(a)cF +(cid:15) [cI; J] ; (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) S(cid:31)I = [c;(cid:31)I] cI ; S(cid:30)IJ = [c;(cid:30)IJ] (cid:15)IJcF +[(cid:31)I;cJ] ; (cid:0) (cid:0) (cid:0) (cid:0) JK S(cid:17)I = [c;(cid:17)I] [cF;(cid:31)I]+(cid:15) [cJ;(cid:30)IK] ; (cid:0) (cid:0) 2 1 IJ Sc = c ; ScI = [c;cI] ; ScF = [c;cF]+ 2(cid:15) [cI;cJ] : (cid:0) (cid:0) (cid:0) (3.18) The supersymmetry transformations read QIa = I ; QI J = (cid:15)IJ(cid:11) ; QI(cid:11) = 0 ; (cid:0) QI(cid:31)J = (cid:30)JI ; QI(cid:30)Jk = (cid:15)IK(cid:17)J ; QI(cid:17)J = 0 ; (3.19) (cid:0) QIc = cI ; QIcI = (cid:15)IJcF ; QIcF = 0 : (cid:0) The supercurvature components (3.12) read now I 1 2 1 IJ F(A) = F(a) (cid:18) D(a) I + 2(cid:18) (D(a)(cid:11) 2(cid:15) [ I; J]) ; (cid:0) (cid:0) J (cid:9)I = I +D(a)(cid:31)I +(cid:18) ((cid:15)IJ(cid:11) D(a)(cid:30)IJ +[ J;(cid:31)I]) (cid:0) 1 2 KJ + 2(cid:18) (D(a)(cid:17)I (cid:15) [ K;(cid:30)IJ]+[(cid:11);(cid:31)I]) ; (3.20) (cid:0) 1 K (cid:8)IJ = (cid:30)IJ +(cid:30)JI +[(cid:31)I;(cid:31)J]+(cid:18) ((cid:15)IK(cid:17)J +(cid:15)JK(cid:17)I +[(cid:30)JK;(cid:31)I]+[(cid:30)IK;(cid:31)J]) 2 (cid:0) 1 2 KL + 2(cid:18) ([(cid:31)I;(cid:17)J]+[(cid:17)I;(cid:31)J] (cid:15) [(cid:30)IK;(cid:30)JL]) : (cid:0) (cid:1) Counting the number of degrees of freedom: The numbers ofdegrees offreedom, i.e. the numbers ofcomponent (cid:12)elds {rememberingthat a p-form has D!=[p!(D p!)] components { are shown in Table 1. If we were considering the (cid:0) Fields: aI1(cid:1)(cid:1)(cid:1)In(x) A(x;(cid:18)) eI;I1(cid:1)(cid:1)(cid:1)In(x) EI(x;(cid:18)) cI1(cid:1)(cid:1)(cid:1)In(x) C(x;(cid:18)) Numbers NT NT NT NT NT NT D n D 2 NT n NT 2 n 2 of (cid:12)elds: (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Table 1: Numbers of component (cid:12)elds. D = space-time dimension, NT = number of super- symmetry generators. present theory asausualsupersymmetric gaugetheory, with(super)gauge invariancede(cid:12)ned by the BRST transformations (3.10), the number of physical degrees of freedom would be given by the total number of components of the forms A and EI minus the number of components of the superghost C. However, considering it as a topological theory we have to treat supersymmetry as a local invariance, too, all (cid:12)elds excepted the Yang-Mills connection a being ghosts or ghosts of ghosts, as in the example shown in section 2. The SUSY-number CBPF-NF-036/03 8 4 s is thus a ghost number as well as the usual ghost number g. Thus the e(cid:11)ective ghost number is equal to s +g and, in the counting of the physical degrees of freedom, we must s+g therefore assign a sign ( ) to the number of degrees of freedom of a (cid:12)eld, as shown in (cid:0) Table 2. One sees that there is a complete cancellation of the local degrees of freedom, as it Fields: aI1(cid:1)(cid:1)(cid:1)In A eI;I1(cid:1)(cid:1)(cid:1)In EI cI1(cid:1)(cid:1)(cid:1)In C SUSY #: n 0 n+1 1 n 0 Ghost #: 0 0 0 0 1 1 Degrees of n NT n+1 NT n+1 NT ( 1) D n 0 ( 1) NT n 0 ( 1) n 0 freedom: (cid:0) (cid:0) (cid:0) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Table 2: Numbers of physical degrees of freedom. D = space-time dimension, NT = number of supersymmetry generators. should in a topological theory. 3.2 Wess-Zumino gauge The contact with the formalism described in section 2 is made by choosing a special gauge (cid:12)xing [4] of the Wess-Zumino type [10]. The BRST transformations of the component (cid:12)elds can be calculated from the super(cid:12)eld expressions (3.10). They are explicitly given, for NT = 1 and 2, by (3.14,3.18). We shall only write explicitly the linear part { or Abelian approximation { of the transformations in the general case, which will be suÆcient for our argument: Sa = dc+ ; SaI1:::IN = dcI1:::IN + ; (cid:0) (cid:1)(cid:1)(cid:1) (cid:0) (cid:1)(cid:1)(cid:1) SeI = cI + ; SeI;I1:::IN = cII1:::IN + ; (3.21) (cid:0) (cid:1)(cid:1)(cid:1) (cid:0) (cid:1)(cid:1)(cid:1) Sc = ; ScI1:::IN = ; (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) where the dots represent nonlinear terms. These transformaions indicate that eI(x) and the completely antisymmetric part of the (cid:12)elds eI;I1:::In(x) are pure gauge degrees of freedom. A possiblegauge (cid:12)xing istherefore of settingthese (cid:12)elds tozero. This de(cid:12)nes the Wess-Zumino (WZ) gauge: eI = 0 ; e[I;I1:::In] = 0 (1 n NT) : (3.22) (cid:20) (cid:20) This (cid:12)xes the gauge degreees of freedom corresponding to the ghosts cI1:::In (1 n NT). (cid:20) (cid:20) The remaining gauge degree of freedom parametrized by the ghost c, which is of the usual Yang-Mills type, can be (cid:12)xed in a usual way. The WZ gauge condition (3.22) is not stable under supersymmetry transformations, but one can rede(cid:12)ne the generators QI into new generators Q~I, compatible with the WZ condi- tion, resultingfromacombinationofQI and ofa(cid:12)eld dependent supergauge transformation. 4 s and g are de(cid:12)ned by attributing s = g = 0 to the gauge connection a(x), s = 1; g = 0 for the I supersymmetry genratorsQI { hence s=(cid:0)1 to (cid:18) { and s=0; g =1 for the BRST generator S. CBPF-NF-036/03 9 Thus, let us combine an in(cid:12)nitesimalsupersymmetry transformation of constant commuting I parameters (cid:15) with a supergauge transformation Æ(cid:3) of anticommutingparameters (fermionic super(cid:12)eld) (cid:3)(x;(cid:18)): I I Q~ = (cid:15) QI +Æ(cid:3) (cid:15) Q~I : (3.23) (cid:17) Æ(cid:3) is in fact a BRST transformation (3.14), with C substituted by (cid:3). This will de(cid:12)ne the modi(cid:12)ed supersymmetry generator Q~I, provided we choose (cid:3) in such a way to preserve the WZ gauge condition (3.23). It is convenient to rewrite the WZ condition in a superspace way: I (cid:18) EI(x;(cid:18)) = 0 ; (3.24) where EI is the d(cid:18)-part of the superconnection (3.6). We shall denote by E~I the solution of this condition, and by e~[I;I1:::In] (0 n NT) the components of its (cid:18)-expansion { which are (cid:20) (cid:20) therefore solutions of (3.22). The latters are tensors with mixed symmetry. Applying Q~ to (3.24) we (cid:12)nd, after some integration by part in (cid:18): I I J I I J I I Q~((cid:18) EI) = (cid:18) (cid:15) @JEI @IC [C;EI] = (cid:15) EI+(cid:18) @I(cid:3)+@J((cid:15) (cid:18) EI)+[(cid:18) EI;(cid:3)]; (3.25) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:1) which shows that the WZ condition (3.24) is stable if, and only if, (cid:3) obeys the equation I I (cid:18) @I(cid:3) = (cid:15) EI : (3.26) The solution reads NT I 1 I1 In (cid:3) = (cid:15) (cid:18) (cid:18) e~I;I1:::In(x) ; (3.27) n!n (cid:1)(cid:1)(cid:1) Xn=1 where the functions e~I;I1:::In(x) are the coeÆcients of the super(cid:12)eld expansion of E~I, solution of (3.24). One can now check that the superalgebra now closes up to (cid:12)eld dependent gauge trans- formations Æ : e~IJ [Q~I;Q~J] = 2Æ : e~IJ (cid:0) Physical degrees of freedom in the WZ gauge: The numbers of component (cid:12)elds are now given in Table 3. Remember that the only re- maining ghost is c(x), since the cI1:::In for n 1 correspond to the gauge degrees of freedom (cid:21) which have been (cid:12)xed. In order to count the physical degrees of freedom we must again take Fields: aI1(cid:1)(cid:1)(cid:1)In(x) A(x;(cid:18)) eI;I1(cid:1)(cid:1)(cid:1)In(x) EI(x;(cid:18)) c(x) Numbers NT NT NT+1 NT D n D 2 n+1 n (NT 1)2 +1 1 of (cid:12)elds: (cid:0) (cid:0) (cid:1) (cid:0) (cid:1) Table 3: Numbers of component (cid:12)elds in the WZ gauge. D = space-time dimension, NT = number of supersymmetry generators.

Description:
Moreover, in the case of a gauge fixing of the Landau type, we shall show, scribe the gauge fixing of gauge field configurations with null curvature,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.