J.Aust. Math. Soc. 78(2005),373–392 ON THE MASS FORMULA OF SUPERSINGULAR ABELIAN VARIETIES WITH REAL MULTIPLICATIONS CHIA-FUYU (Received1July2003;revised12November2003) CommunicatedbyK.F.Lai Abstract Ageometricmassconcerningsupersingularabelianvarietieswithrealmultiplicationsisformulatedand relatedtoanarithmeticmass. Wedeterminetheexactgeometricmassformulaforsuperspecialabelian varieties of Hilbert-Blumenthal type. As an application, we compute the number of the irreducible componentsofthesupersingularlocusofsomeHilbert-Blumenthalvarietiesintermsofspecialvaluesof thezetafunction. 2000Mathematicssubjectclassification:primary11F41;secondary: 11E41. Keywords and phrases: mass formula, supersingular locus, superspecial abelian varieties, Hilbert- Blumenthalvarieties. 1. Introduction For a reductive group G over Q which is R-anisotropic and an open compact sub- group K of G.A /, one can define the mass of .G;K/. The attached mass is a f weighted class number. It measures the size of K as well as the class number; but more importantly it behaves well when the group G or the level K varies. The im- portance of the mass formula is its uniform way to organize arithmetic objects and the measurement of these arithmetic objects. The computation of the mass formula hasalonghistory,datingfromthepioneersSmith,Minkowski,andSiegel. Thereare many important contributions to the Tamagawa numbers due to the works of Weil, Ono,Langlands,Harder,LaiandKottwitz, andtotheexactformulas duetothoseof Shimura,Hashimoto-Ibukiyama,Prasad,Gross,Gan-Yuandmanyothers. ForasmallclassofgroupsG,themasscanalsoarisefromspecialabelianvarieties (cid:13)c 2005AustralianMathematicalSociety1446-8107/05$A2:00C0:00 373 374 Chia-FuYu [2] incharacteristic p. ThecelebratedDeuringmassformulasays X 1 p−1 D ; #AutE 24 E where E runsovertheisomorphismclassesofsupersingularellipticcurves. Thegoal of this paper is to establish the connection between the geometrically defined mass and the arithmetically defined mass. Then one can either access the existing mass formulas,orverifya(arithmeticorgeometric)massformulabyadifferent(geometric orarithmetic)method. In this paper weshow that the mass for certain special polarized abelian varieties withrealmultiplicationscanbeanarithmeticmassforsome.G;K/;seeCorollary2.5. Thefeatures are: these aresupersingular points and neednotto besuperspecial; the polarizations can be inseparable; and the formulation does not require the existence ordefinitionofthemodulispace. Thelatterindicatesthatthereisnonewdifficultyto establish suchconnection evenwhenthemoduli spaceeither hasbadreduction oris notwell-behaved. We use Shimura’s exact mass formula [9] to express the geometric mass in term of special values of the zeta function up to precise local terms; see equation (3) and Theorem2.7. Thespecialcasewhenthetotallyrealnumberfield F isQ,theabelian varieties are superspecial, and the polarizations are principal, the geometric mass formulareducestoaresultofEkedahlandvanderGeer[3]obtainedbythegeometric method. OurformulationcanbegeneralizedtobasicpointsinarbitraryPEL-Shimura variety modulo p (with modification due to the Hasse principle). Doing that will requiremuchmoreworkandweplantocarryitoutinasubsequentpaper. In a part of this paper we determine the remaining local terms in the case of superspecialabelianvarietiesofHilbert-Blumenthaltype;seeTheorem3.7. Usingthis geometricmassformula,wecandeterminethenumberoftheirreduciblecomponents ofthesupersingular locus, followingthe methodsin [6]and[11]. Inthelast section we determine this number in some restricted cases, particularly when p is totally ramified in F; see Theorem 4.4. We note that our approach gives an explanation of the interesting result of Bachmat and Goren [1] on the supersingular locus of Hilbert modular surfaces. Finally we note that there is an interesting connection of supersingularpointswiththetheoryofmodularformsmodulo p;see[4]and[8]. 2. Supersingularpointsandthemassformula 2.1. Shimura’sexactmassformula Let B beaquaterniondivisionalgebraovera totallyrealnumberfield F,andlet(cid:27) denotethestandardinvolutionof B. LetV bea [3] Supersingularabelianvarieties 375 left B-moduleofrankm,andlet’ beaquaternionHermitianformonV,thatis, ’ V V (cid:2)V ! B such that ’.x;y/ D ’.y;x/(cid:27) and ’.ax;by/ D a’.x;y/b(cid:27) for all x;y 2 V and a;b 2 B. LetG’ denotetheunitarygroupattachedto’. Itisareductivegroupover F andwewillregarditasareductivealgebraicgroupoverQviatheWeilrestriction of scalars from F to Q. Assume that G’.R/ is compact. For any open compact subgroup K of G’.A /,the mass of K is definedas follows. Letfc ;c ;:::;c gbe f 1 2 h a(complete)setofrepresentativesofthedoublecosetspaceG’.Q/nG’.A /=K,and f let 0 VD G’.Q/\c Kc−1. Notethat each 0 is finite bythe assumption of G’.R/. i i i i Themassof K isdefinedtobe Xh 1 mass.K/VD : #0 iD1 i Forthegeneraldefinitionofthemassof K (withoutthecompactnessassumption), we refer to [9, Introduction, page 67]. It follows easily from the definition that for twoopencompactsubgroups K (cid:26) K ,onehasmass.K /DTK V K Umass.K /. 1 2 1 2 1 2 Chooseamaximalorder O of B. Let L bean O -lattice in V whichismaximal B B alongthelattices onwhich ’ takesits valuein O . Let K bethemaximal compact B 0 subgroup of G’.A / which stabilizes the adelic lattice L ⊗ ZO. In [9, Introduction, f Z page68]Shimuragivesanexplicitformula Ym n (cid:2) (cid:3) o (1) mass.K /DjD jm2 D1=2 .2k−1/W.2(cid:25)/−2k d(cid:16) .2k/ 0 F F F kD1 Ys Ym (cid:8) (cid:9) (cid:2) .N. /k C.−1/k ; i p iD1 kD1 where D isthediscriminantof F overQ,d isthedegreeof F,andf g arethe F i 1(cid:20)i(cid:20)s p primesof O atwhich B isramified. F Notethatthemaximalityof L isalocalproperty. Thatis, L ismaximalifandonly ifeach L ismaximalforallprimes of F. p p 2.2. Onecanexpresstheexactformulaintermsofspecialvaluesofzetafunctions atnegativeintegers. Let F beatotallyrealfieldofdegreed. Set 3 .s/ VD As0.s=2/d(cid:16) .s/; A VD D1=2(cid:25)−d=2: F F F Thenonehasthefunctionalequationfor(cid:16) .s/ F 3 .1−s/D3 .s/: F F 376 Chia-FuYu [4] Itgives 0..1−s/=2/d (cid:16) .s/D D1=2D−s(cid:25)−d=2Cds (cid:16) .1−s/: F F F 0.s=2/d F Lets D2k,onegets 0..1−2k/=2/d (cid:16) .2k/D D1=2D−2k(cid:25)−d=2C2dk (cid:16) .1−2k/: F F F 0.k/d F Ontheotherhand,onehas p 0..1−2k/=2/ .−1/k22k−1.k−1/W0.1=2/ .−1/k22k−1 (cid:25) D .2k−1/W D : 0.k/ .k−1/W .2k−1/W Thefactorinthemiddleof(1)canberewrittenasfollows. (cid:2) (cid:3) (2) D1=2 .2k−1/W.2(cid:25)/−2k d(cid:16) .2k/ F F (cid:20) p (cid:21) (cid:2) (cid:3) .−1/k22k−1 (cid:25) d D DF1−2k .2k−1/W.2(cid:25)/−2k d .2k−1/W (cid:25)−d2C2dk(cid:16)F.1−2k/ (cid:20) (cid:21) .−1/k d D D1−2k (cid:16) .1−2k/: F 2 F Henceweget ( ) (cid:20) (cid:21) Ym .−1/k d Ys Ym (cid:8) (cid:9) (3) mass.K /D (cid:16) .1−2k/ .N. /k C.−1/k : 0 2 F pi kD1 iD1 kD1 2.3. If F D Q and B isthe quaternion algebra whichis ramified atf1; pg,then wehave ( ) .−1/m.mC1/=2 Ym Ym (cid:8) (cid:9) (4) mass.K /D (cid:16).1−2k/ .pk C.−1/k : 0 2m kD1 kD1 If m D 1and B isramified onlyattheprimes over p andinfinite places, then we have (cid:20) (cid:21) −1 d Ys (5) mass.K /D (cid:16) .−1/ f.N. /C.−1/g: 0 2 F i p iD1 2.4. Inthefollowing,thegroundfieldk isalgebraicallyclosedofcharacteristic p. Letx D .A ;(cid:21) ;(cid:19) /beasupersingularpolarizedabelian O -varietyoverk ofdimen- 0 0 0 F siong Dmd. LetG denotethegroupschemeoverSpecZwhosegroupof R-points, x foreachcommutativering R,isG .R/D f(cid:30) 2 .End .A /⊗ R/(cid:2);(cid:30)0(cid:30) D1g,where x OF 0 themap(cid:30) 7!(cid:30)0 istheRosatiinvolutioninducedby(cid:21) . 0 Let3 denotethesetoftheisomorphismclassesofpolarizedabelian O -varieties x F .A;(cid:21);(cid:19)/ofdimension goverk suchthat [5] Supersingularabelianvarieties 377 (i) the Dieudonne´ module M.A/ is isomorphic to M.A / as quasi-polarized 0 Dieudonne´ O ⊗Z -modules,and F p (ii) the Tate module T.A/ is isomorphic to T.A / asnon-degenerate alternating l l 0 O ⊗Z-modulesforalll 6D p. F l Thecondition (i) implies that A issupersingular. Let30 bethesubset of3 that x x consistsofobjects.A;(cid:21);(cid:19)/suchthat (iii) thereexistsanelement(cid:30) 2Hom .A ;A/⊗Qsuchthat(cid:30)(cid:3)(cid:21)D(cid:21) . OF 0 0 THEOREM 2.1 ([11, Theorem 10.5]). There is a natural bijection of pointed sets between30 andG .Q/nG .A /=G .ZO/. x x x f x PROPOSITION2.2. Let.Ai;(cid:21)i;(cid:19)i/,i D1;2betwosupersingularpolarizedabelian O -varietiesoverk. Thenthereexists’ 2Hom .A ;A /⊗Qsuchthat’(cid:3)(cid:21) D(cid:21) . F OF 1 2 2 1 Thatis,thecondition(iii)ofSubsection2.4isautomatic. PROOF. Choose an isogeny ’ V A1 ! A2. By Noether-Skolem’s theorem, ’ can be chosen to be O -linear. Let (cid:21)0 VD ’(cid:3)(cid:21) and (cid:3) and (cid:3)0 be the Rosati involutions F 1 2 1 1 inducedby(cid:21) and (cid:21)0 on E VD End.A /⊗Q, respectively. By[12, Satz1.1], there 1 1 1 1 existsapositiveelementc 2 E1(cid:2) withc D c(cid:3)1 suchthat x(cid:3)01 D c−1x(cid:3)1cforallx 2 E1. Asx 2 F,cliesinC VDEnd .A /⊗Q. OF 1 Let P be the the algebraic variety over Q defined by fX 2 C;X(cid:3)1X D cg. It is atorsor under the algebraic group G1 VD fg 2 C(cid:2);g(cid:3)1g D 1g overQ byleft action. Henceitformsanelement(cid:24) inH1.Q;G /. By[5,Lemma2.11],P.R/6D;. SinceG 1 1 issemi-simpleandsimply-connected, H1.Q ;G / D0. Therefore(cid:24) islocallytrivial p 1 everywhere. BytheHasseprinciplefor G ,(cid:24) istrivial. Thenthereexistsanelement 1 g 2 C.Q/ such that g(cid:3)1g D c. Replacing ’ by ’g, we have (cid:3)1 D (cid:3)01, hence that (cid:21)0 D q(cid:21) for some q 2 Q(cid:2). Note that q is positive. This follows from the fact 1 1 thatthepolarizationslieinthepositiveconeoftheNe´ron-SeverigroupNS.A /⊗R. 1 Therefore q is a norm of C and we can find a ’ 2 Hom .A ;A /⊗Q such that OF 1 2 ’(cid:3)(cid:21) D(cid:21) . Thiscompletestheproof. 2 1 COROLLARY2.3. 30x D3x. LEMMA2.4. Let.A;(cid:21);(cid:19)/ 2 3x andTcU bethe corresponding double coset. Then Aut.A;(cid:21);(cid:19)/ ’0 ,where0 VD G .Q/\cG .ZO/c−1. c c x x PROOF. LetG0 bethegroupschemeoverSpecZattachedto.A;(cid:21);(cid:19)/definedasin Subsection2.4. Thatis,foranycommutativering R, G0.R/Df(cid:11) 2.End .A/⊗ R/;(cid:11)0(cid:11) D1g; OF 378 Chia-FuYu [6] wherethemap(cid:11) 7!(cid:11)0 istheRosatiinvolutioninducedby(cid:21). Choose a map (cid:30) 2 Hom .A ;A/⊗Q such that (cid:30)(cid:3)(cid:21) D (cid:21) . Then the element OF 0 0 c 2 G .A /hastheproperty x f ((cid:3)) (cid:30)c 2Isom..A .l/;(cid:21) ;(cid:19) /;.A.l/;(cid:21);(cid:19)//; 8l: l 0 0 0 Notethat(cid:11) 2Aut.A;(cid:21);(cid:19)/ifandonlyif(cid:11) 2 G0.Q/and(cid:11) 2Aut.A.l/;(cid:21);(cid:19)/foralll. l Themap(cid:30)givesanisomorphismG .Q/! G0.Q/whichsends(cid:12)to(cid:30)(cid:12)(cid:30)−1 DV(cid:11). x From((cid:3)),wehave(cid:11) 2 G0.ZO/ifandonlyif.(cid:30)c/−1(cid:11).(cid:30)c/2 G .ZO/. Hence,(cid:11) 2 G0.ZO/ x ifandonlyifc−1(cid:12)c 2 G .ZO/. Thiscompletestheproof. x X COROLLARY2.5. mass.3x/ VD #Aut.1A;(cid:21);(cid:19)/ Dmass.Gx.ZO//. .A;(cid:21);(cid:19)/23x 2.5. The semi-simple algebra C VD End .A /⊗Q is the centralizer of F in x OF 0 thesimplealgebra M .End0.E//,where E isasupersingularellipticcurve. Wehave g C ’ M .B/,where B isaquaternionalgebraoverthetotallyrealfield F ramifiedat x m allrealplacesandunramifiedatallprimesnotdividing p. Sincethelocalinvariantsof thecommutantC coincideswiththoseofF⊗ End0.E/,wehaveB ’ F⊗ End0.E/. x Q Q Therefore, C ⊗R’ M .H/; C ⊗Q ’ M .F ⊗Q/; l 6D p x m Y x l 2mY l C ⊗Q ’ M .B /(cid:2) M .F /; x p m 2m jp;g Vodd p jp;g Veven p p p p p where g VD TF V Q U. The Rosati involution induces the standard involution on p M .H/ pand M p.B /, which we will denote by (cid:3). It also induces the symplectic m m involutionon M .pF ⊗Q/and M .F /. Therefore,wehave 2m l 2m p G .R/’fg 2 M .H/;g(cid:3)g D1g; G .Q/’Sp .F ⊗Q/; l 6D p x m Y x Yl 2m l G .Q /’ G (cid:2) Sp .F /; x p 2m jp;g Vodd p jp;g Veven p p p p p whereG Dfg 2 M .B /;g(cid:3)g D1g. Wewillchoosesuchisomorphismsandreplace m ’byD.p p LEMMA2.6. Thereexistaleft B-module V,aquaternionHermitianfrom’ on V, and a maximal lattice L in the sense of Shimura (see Subsection 2.1) such that G’ ’ G overQand K definedinSubsection2.1is x Y 0 Y Y K D Sp .O ⊗Q/(cid:2) K (cid:2) Sp .O /; 0 2m F l 0; 2m l6Dp jp;g Vodd p jp;g Veven p p p p p where O istheringofintegersin F and K Dfg 2 M .O /;g(cid:3)g D1g. 0; m B p p P p p PROOF. LetV D B(cid:8)g with’.x;y/ D xiyNi(cid:27) andlet L D OB(cid:8)g. [7] Supersingularabelianvarieties 379 2.6. The computation of mass.G .ZO// is to relate with the mass of the standard x one, K ,andthentoapplyShimura’smassformula. 0 ForanytwoopencompactsubgroupsK ;K ofG .A /,ofG .Q /,orofG .Q/, 1 2 x f x p x l wedefinearationalnumber(cid:22) .K =K /with(cid:15)D f; p orl inthreerespectivecases, (cid:15) 2 1 by (cid:22) .K =K /VD TK V K \K U−1TK V K \K U: (cid:15) 2 1 1 1 2 2 1 2 Wehavethefollowingproperties ( TK V K U if K (cid:26) K ; (i) (cid:22) .K =K /D 2 1 1 2 (cid:15) 2 1 TK V K U−1 if K (cid:27) K : Q 1 2 Q 1 2 (ii) If K D K and K D K , where l runs over all primes of Q, then 1 Q l 1;l 2 l 2;l (cid:22) .K =K /D (cid:22).K =K /. f 2 1 l l 2;l 1;l (iii) mass.K /D(cid:22) .K =K /mass.K /. 1 f 2 1 2 FromCorollary2.5,wehave (6) mass.3 / D(cid:22) .K =G .ZO//mass.K /: x f 0 x 0 Iflisprimetothedegreeofthepolarization(cid:21) ,thenG .Z/isisomorphictoaproduct 0 x l ofSp .O /and(cid:22).K =G .Z//D1. Therefore,wehave 2m v l 0;l x l ( ) Y (7) mass.3 / D (cid:22).K =G .Z// mass.K /: x l 0;l x l 0 lDp;orljdeg(cid:21)0 THEOREM2.7. Letnotationbeasabove. Ifm D1ordeg(cid:21)0isapowerof p,thenwe have the simplified mass formula mass.3 / D (cid:22) .K =K /mass.K /, where K x p 0;p M0 0 M0 isthegroupofautomorphismsofthequasi-polarizedDieudonne´ O ⊗Z -moduleM F p 0 attachedto x. Asaconsequence,thefollowingcorollaryisageneralization oftheDeuringmass formula. Recently, Ekedahl and van der Geer [3] compute the intersections of cy- cle classes on the moduli space . They obtained this as a consequence of the g A Hirzebruch-Mumfordproportionalityprinciple. COROLLARY2.8. Let3bethesetoftheisomorphismclassesofprincipallypolar- izedsuperspecialabelianvarietiesoverk ofdimensiong. Then ( ) X 1 .−1/g.gC1/=2 Yg Yg (cid:8) (cid:9) D (cid:16).1−2k/ .pk C.−1/k : #Aut.A;(cid:21)/ 2g .A;(cid:21)/23 kD1 kD1 380 Chia-FuYu [8] PROOF. Takex D.A0;(cid:21)0/tobeaprincipallypolarizedsuperspecialabelianvariety overk ofdimension g. NotethattheDieudonne´ module M ofx isisomorphictothe 0 product of g copies of separably quasi-polarized rank two supersingular Dieudonne´ modules. It follows that 3 D 3 and the group K of the automorphisms of M x M0 0 is K D f(cid:11) 2 M .O /;(cid:11)(cid:3)(cid:11) D 1g, where B is the quaternion division algebra M0 g Bp p overQ . Therefore,weobtainmass.3/Dmass.K /andfinishtheproofby(4). p 0 3. SuperspecialpointsofHBtypeandthemassformula We keep the notations in the previous section, except that we denote the totally realfield by F andreserve thesymbol F for the Frobenius operator onaDieudonne´ module. Let beaprimeofO overp,andlete and f denotetheramificationdegree F andresidue dpegreeof ,respectively. Intherepst ofthpis paper, wewillonly treat the Hilbert-Blumenthalcapses,namelym D1andd D g. Let VD O ⊗Z D(cid:8) . F p jp O p Op 3.1. We first recall the classification of superspecial quasi-polarized Dieudonne´ -modules[10]. Let x D .A ;(cid:21) ;(cid:19) /beasuperspecial polarizedabelian O -variety 0 0 0 F Oover k and let M be its covariant Dieudonne´ module. We have M D (cid:8) M and 0 0 jp willdescribe M foreach . p p LetebetheLpietypeofpM anda bethea-typeof M . Werecalltheirdefinitions in[10,Section1]below: p p M e.M / D.fe1i;e2ig/i2Z=f Z () Lie.M /’ kT(cid:25)U=.(cid:25)e1i/(cid:8)kT(cid:25)U=.(cid:25)e2i/ p p p i2Z=f Z M p a.M / D.fa1i;a2ig/i2Z=f Z () M =.F;V/M ’ kT(cid:25)U=.(cid:25)a1i/(cid:8)kT(cid:25)U=.(cid:25)a2i/; p p p p i2Z=f Z p where(cid:25) isauniformizerof O andtheright-handsidesareisomorphismsof O ⊗ Z p k ’(cid:8) kT(cid:25)U=.(cid:25)e /-moduples. p i2Z=f Z p As M ipssuperspecial,eisequaltoa andithastheform p .fe ;e g;fe −e ;e −e g;fe ;e g;:::/ 1 2 1 2 1 2 p p forsomeintegerse ,e with0 (cid:20) e (cid:20) e (cid:20) e ;see[10,Section2]. When f isodd, 1 2 1 2 it satisfies an additional condition e Ce Dpe . We say M is of type .ep;e / for 1 2 1 2 convenience. p p Let −1 D .(cid:25)−d/ be the inverse of the different of over Z . There is a p uniqueDWp⊗ -bilinear pairing .(cid:1);(cid:1)/ V M (cid:2) M ! WO⊗p such that hx;yi D Tr .(cid:25)−Od.px;y//. Wehave O ⊗W Dp(cid:8) p Wi bytheOapctionof ur andthis W⊗ =W i2Z=f Z alsogOipvesthedecomposition M Dp(cid:8) Mi. p Op i2Z=f Z p p p [9] Supersingularabelianvarieties 381 LEMMA3.1. (1) If f is even, then there is a Wi-basis Xi;Yi for Mi for each i 2Z=f Zsuchthat p p ( p (cid:25)n ifi isodd; (i) .X ;Y/D i i (cid:25)nCe −e1−e2 ifi iseven; p foralli 2Z=f (Zandsomen 2Z. ( (ii) FX Dp −(cid:25)e1YiC1 ifi isodd; FY D v(cid:25)e2XiC1 ifi isodd; i −(cid:25)ep−e2YiC1 ifi iseven; i v(cid:25)ep−e1XiC1 ifi iseven; wherev(cid:25)e D p. p (2) If f is odd, then there is a Wi-basis X ;Y for Mi for each i 2 Z=f Z such i i that p p p (i) .X ;Y/D(cid:25)n forsomen 2Z. i i (ii) FXi D−(cid:25)e1YiC1;FYi Dv(cid:25)e2YiC1 fori 2Z=f Z,wherev(cid:25)ep D p. (3) Inparticular, if the pairing .(cid:1);(cid:1)/ is perfect and pM satisfies the Rapoport con- dition(inthiscase, M isoftype.0;e /),thenthereexisptsa Wi-basisfX ;Ygof Mi i i foreachi 2Z=f Zsucphthat p p p (i) Y 2.VM/i and.X ;Y/ D1, i i i (ii) FX D−Y ; FY D pX , i iC1 i iC1 foralli 2Z=f Z. p PROOF. See[10,Lemmas4.5–4.6]. LetF0 betheuniquequadraticunramified extensionof F and(cid:28) bethegenerator ofGal.Fp0=F /. p p p LEMMA3.2. Let KM bethegroupofautomorphismsofthequasi-polarizedDieu- donne´ -module M .p Op p (1) Iftheresiduedegree f iseven,then (cid:26)(cid:18) p (cid:19) (cid:27) a b K ’ 2SL .O /;c (cid:17)0 mod (cid:25)e2−e1 : M c d 2 F p p (2) Iftheresiduedegree f isodd,then p (cid:26)(cid:18) (cid:19) (cid:27) a b KM ’ (cid:25)e2−e1b(cid:28) a(cid:28) 2SL2.OF0 / : p p PROOF. Let(cid:30) 2 KM . ChooseaWi-basisfXi;Yigfor Mi asinLemma3.1. Write (cid:18) p(cid:19) (cid:18) (cid:19) (cid:18) (cid:19) p (cid:30).X / X a b i D A i ; A D i i 2GL .Wi/: (cid:30).Y/ i Y i c d 2 i i i i 382 Chia-FuYu [10] It follows from .(cid:30).X /;(cid:30).Y// D .X ;Y/ that A 2 SL .Wi/. Note that we have i i i i i 2 F2.X / D −pX and F2.Y / D −pY foralli. Thecondition (cid:30)F2 D F2(cid:30) gives i iC2 i iC2 A D A.2/ foralli 2Z=f Z,wherewewrite A.n/ for A(cid:27)n. iC2 i (1)If f iseven,thenfApgaredeterminedby A and A ,and A ;A 2 SL .O /. i 0 1 0 1 2 F Wehave p p (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) F.X0/ D J X1 ; J D 0 −(cid:25)ep−e2 ; (cid:18)F.Y0/(cid:19) 1(cid:18)Y1(cid:19) 1 (cid:18)v(cid:25)ep−e1 (cid:19)0 F.X1/ D J X2 ; J D 0 −(cid:25)e1 : F.Y1/ 0 Y2 0 v(cid:25)e2 0 The condition F(cid:30) D (cid:30)F gives J A D A.1/J and J A.1/ D A J . These give the 1 1 0 1 0 0 1 0 relations a Dd.1/; d Da.1/; c.1/ D−v(cid:25)e2−e1b ; c D−v(cid:25)e2−e1b.1/: 1 0 1 0 0 1 1 0 Weseethat A1 isdeterminedby A0 andc0 (cid:17)0 mod (cid:25)e2−e1. (2)If f isodd,thenfAigaredeterminedby A0 and A0 2SL2.OF0 /. Wehave p (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) p F.X0/ D J X1 ; J D 0 −(cid:25)e1 : F.Y0/ Y1 v(cid:25)e2 0 Applying F(cid:30) D(cid:30)F,wehave JA D A.1/J. As A D A.f C1/,thisequationgives 1 0 1 0p d D a(cid:28); c D−v(cid:25)e2−e1b(cid:28): 0 0 0 0 As−visanormofsomeelementin O(cid:2) (over O(cid:2) ),wechooseanisomorphism F0 F (cid:26)(cid:18) p (cid:19) p (cid:27) a b KM ’ (cid:25)e2−e1b(cid:28) a(cid:28) 2SL2.OF0 / : p p Thiscompletestheproof. 3.2. Itremainstocomputethelocalterm(cid:22) .K =K /. Wewriteq for N. /,the 0; M cardinalityoftheresiduefieldk. /. p p p p When f is even, KM D 00.(cid:25)pe2−e1/ is anopencompact subgroup ofSL2.F /. If e De ,thepn(cid:22) .K =Kp /D1;ife >e ,then p 1 2 0; M 2 1 p p p (cid:22) .K0; =KM /D#P1.OF =(cid:25)e2−e1/Dqe2−e1−1.q C1/: p p p p Considernowthecasewhere f isodd. Put (cid:26)(cid:18)p (cid:19) (cid:27) a b K.n/VD (cid:25)nb(cid:28) a(cid:28) 2SL2.OF0 / : p
Description: