ebook img

Supersingular abelian varieties - Australian Mathematical Society PDF

20 Pages·2005·0.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Supersingular abelian varieties - Australian Mathematical Society

J.Aust. Math. Soc. 78(2005),373–392 ON THE MASS FORMULA OF SUPERSINGULAR ABELIAN VARIETIES WITH REAL MULTIPLICATIONS CHIA-FUYU (Received1July2003;revised12November2003) CommunicatedbyK.F.Lai Abstract Ageometricmassconcerningsupersingularabelianvarietieswithrealmultiplicationsisformulatedand relatedtoanarithmeticmass. Wedeterminetheexactgeometricmassformulaforsuperspecialabelian varieties of Hilbert-Blumenthal type. As an application, we compute the number of the irreducible componentsofthesupersingularlocusofsomeHilbert-Blumenthalvarietiesintermsofspecialvaluesof thezetafunction. 2000Mathematicssubjectclassification:primary11F41;secondary: 11E41. Keywords and phrases: mass formula, supersingular locus, superspecial abelian varieties, Hilbert- Blumenthalvarieties. 1. Introduction For a reductive group G over Q which is R-anisotropic and an open compact sub- group K of G.A /, one can define the mass of .G;K/. The attached mass is a f weighted class number. It measures the size of K as well as the class number; but more importantly it behaves well when the group G or the level K varies. The im- portance of the mass formula is its uniform way to organize arithmetic objects and the measurement of these arithmetic objects. The computation of the mass formula hasalonghistory,datingfromthepioneersSmith,Minkowski,andSiegel. Thereare many important contributions to the Tamagawa numbers due to the works of Weil, Ono,Langlands,Harder,LaiandKottwitz, andtotheexactformulas duetothoseof Shimura,Hashimoto-Ibukiyama,Prasad,Gross,Gan-Yuandmanyothers. ForasmallclassofgroupsG,themasscanalsoarisefromspecialabelianvarieties (cid:13)c 2005AustralianMathematicalSociety1446-8107/05$A2:00C0:00 373 374 Chia-FuYu [2] incharacteristic p. ThecelebratedDeuringmassformulasays X 1 p−1 D ; #AutE 24 E where E runsovertheisomorphismclassesofsupersingularellipticcurves. Thegoal of this paper is to establish the connection between the geometrically defined mass and the arithmetically defined mass. Then one can either access the existing mass formulas,orverifya(arithmeticorgeometric)massformulabyadifferent(geometric orarithmetic)method. In this paper weshow that the mass for certain special polarized abelian varieties withrealmultiplicationscanbeanarithmeticmassforsome.G;K/;seeCorollary2.5. Thefeatures are: these aresupersingular points and neednotto besuperspecial; the polarizations can be inseparable; and the formulation does not require the existence ordefinitionofthemodulispace. Thelatterindicatesthatthereisnonewdifficultyto establish suchconnection evenwhenthemoduli spaceeither hasbadreduction oris notwell-behaved. We use Shimura’s exact mass formula [9] to express the geometric mass in term of special values of the zeta function up to precise local terms; see equation (3) and Theorem2.7. Thespecialcasewhenthetotallyrealnumberfield F isQ,theabelian varieties are superspecial, and the polarizations are principal, the geometric mass formulareducestoaresultofEkedahlandvanderGeer[3]obtainedbythegeometric method. OurformulationcanbegeneralizedtobasicpointsinarbitraryPEL-Shimura variety modulo p (with modification due to the Hasse principle). Doing that will requiremuchmoreworkandweplantocarryitoutinasubsequentpaper. In a part of this paper we determine the remaining local terms in the case of superspecialabelianvarietiesofHilbert-Blumenthaltype;seeTheorem3.7. Usingthis geometricmassformula,wecandeterminethenumberoftheirreduciblecomponents ofthesupersingular locus, followingthe methodsin [6]and[11]. Inthelast section we determine this number in some restricted cases, particularly when p is totally ramified in F; see Theorem 4.4. We note that our approach gives an explanation of the interesting result of Bachmat and Goren [1] on the supersingular locus of Hilbert modular surfaces. Finally we note that there is an interesting connection of supersingularpointswiththetheoryofmodularformsmodulo p;see[4]and[8]. 2. Supersingularpointsandthemassformula 2.1. Shimura’sexactmassformula Let B beaquaterniondivisionalgebraovera totallyrealnumberfield F,andlet(cid:27) denotethestandardinvolutionof B. LetV bea [3] Supersingularabelianvarieties 375 left B-moduleofrankm,andlet’ beaquaternionHermitianformonV,thatis, ’ V V (cid:2)V ! B such that ’.x;y/ D ’.y;x/(cid:27) and ’.ax;by/ D a’.x;y/b(cid:27) for all x;y 2 V and a;b 2 B. LetG’ denotetheunitarygroupattachedto’. Itisareductivegroupover F andwewillregarditasareductivealgebraicgroupoverQviatheWeilrestriction of scalars from F to Q. Assume that G’.R/ is compact. For any open compact subgroup K of G’.A /,the mass of K is definedas follows. Letfc ;c ;:::;c gbe f 1 2 h a(complete)setofrepresentativesofthedoublecosetspaceG’.Q/nG’.A /=K,and f let 0 VD G’.Q/\c Kc−1. Notethat each 0 is finite bythe assumption of G’.R/. i i i i Themassof K isdefinedtobe Xh 1 mass.K/VD : #0 iD1 i Forthegeneraldefinitionofthemassof K (withoutthecompactnessassumption), we refer to [9, Introduction, page 67]. It follows easily from the definition that for twoopencompactsubgroups K (cid:26) K ,onehasmass.K /DTK V K Umass.K /. 1 2 1 2 1 2 Chooseamaximalorder O of B. Let L bean O -lattice in V whichismaximal B B alongthelattices onwhich ’ takesits valuein O . Let K bethemaximal compact B 0 subgroup of G’.A / which stabilizes the adelic lattice L ⊗ ZO. In [9, Introduction, f Z page68]Shimuragivesanexplicitformula Ym n (cid:2) (cid:3) o (1) mass.K /DjD jm2 D1=2 .2k−1/W.2(cid:25)/−2k d(cid:16) .2k/ 0 F F F kD1 Ys Ym (cid:8) (cid:9) (cid:2) .N. /k C.−1/k ; i p iD1 kD1 where D isthediscriminantof F overQ,d isthedegreeof F,andf g arethe F i 1(cid:20)i(cid:20)s p primesof O atwhich B isramified. F Notethatthemaximalityof L isalocalproperty. Thatis, L ismaximalifandonly ifeach L ismaximalforallprimes of F. p p 2.2. Onecanexpresstheexactformulaintermsofspecialvaluesofzetafunctions atnegativeintegers. Let F beatotallyrealfieldofdegreed. Set 3 .s/ VD As0.s=2/d(cid:16) .s/; A VD D1=2(cid:25)−d=2: F F F Thenonehasthefunctionalequationfor(cid:16) .s/ F 3 .1−s/D3 .s/: F F 376 Chia-FuYu [4] Itgives 0..1−s/=2/d (cid:16) .s/D D1=2D−s(cid:25)−d=2Cds (cid:16) .1−s/: F F F 0.s=2/d F Lets D2k,onegets 0..1−2k/=2/d (cid:16) .2k/D D1=2D−2k(cid:25)−d=2C2dk (cid:16) .1−2k/: F F F 0.k/d F Ontheotherhand,onehas p 0..1−2k/=2/ .−1/k22k−1.k−1/W0.1=2/ .−1/k22k−1 (cid:25) D .2k−1/W D : 0.k/ .k−1/W .2k−1/W Thefactorinthemiddleof(1)canberewrittenasfollows. (cid:2) (cid:3) (2) D1=2 .2k−1/W.2(cid:25)/−2k d(cid:16) .2k/ F F (cid:20) p (cid:21) (cid:2) (cid:3) .−1/k22k−1 (cid:25) d D DF1−2k .2k−1/W.2(cid:25)/−2k d .2k−1/W (cid:25)−d2C2dk(cid:16)F.1−2k/ (cid:20) (cid:21) .−1/k d D D1−2k (cid:16) .1−2k/: F 2 F Henceweget ( ) (cid:20) (cid:21) Ym .−1/k d Ys Ym (cid:8) (cid:9) (3) mass.K /D (cid:16) .1−2k/ .N. /k C.−1/k : 0 2 F pi kD1 iD1 kD1 2.3. If F D Q and B isthe quaternion algebra whichis ramified atf1; pg,then wehave ( ) .−1/m.mC1/=2 Ym Ym (cid:8) (cid:9) (4) mass.K /D (cid:16).1−2k/ .pk C.−1/k : 0 2m kD1 kD1 If m D 1and B isramified onlyattheprimes over p andinfinite places, then we have (cid:20) (cid:21) −1 d Ys (5) mass.K /D (cid:16) .−1/ f.N. /C.−1/g: 0 2 F i p iD1 2.4. Inthefollowing,thegroundfieldk isalgebraicallyclosedofcharacteristic p. Letx D .A ;(cid:21) ;(cid:19) /beasupersingularpolarizedabelian O -varietyoverk ofdimen- 0 0 0 F siong Dmd. LetG denotethegroupschemeoverSpecZwhosegroupof R-points, x foreachcommutativering R,isG .R/D f(cid:30) 2 .End .A /⊗ R/(cid:2);(cid:30)0(cid:30) D1g,where x OF 0 themap(cid:30) 7!(cid:30)0 istheRosatiinvolutioninducedby(cid:21) . 0 Let3 denotethesetoftheisomorphismclassesofpolarizedabelian O -varieties x F .A;(cid:21);(cid:19)/ofdimension goverk suchthat [5] Supersingularabelianvarieties 377 (i) the Dieudonne´ module M.A/ is isomorphic to M.A / as quasi-polarized 0 Dieudonne´ O ⊗Z -modules,and F p (ii) the Tate module T.A/ is isomorphic to T.A / asnon-degenerate alternating l l 0 O ⊗Z-modulesforalll 6D p. F l Thecondition (i) implies that A issupersingular. Let30 bethesubset of3 that x x consistsofobjects.A;(cid:21);(cid:19)/suchthat (iii) thereexistsanelement(cid:30) 2Hom .A ;A/⊗Qsuchthat(cid:30)(cid:3)(cid:21)D(cid:21) . OF 0 0 THEOREM 2.1 ([11, Theorem 10.5]). There is a natural bijection of pointed sets between30 andG .Q/nG .A /=G .ZO/. x x x f x PROPOSITION2.2. Let.Ai;(cid:21)i;(cid:19)i/,i D1;2betwosupersingularpolarizedabelian O -varietiesoverk. Thenthereexists’ 2Hom .A ;A /⊗Qsuchthat’(cid:3)(cid:21) D(cid:21) . F OF 1 2 2 1 Thatis,thecondition(iii)ofSubsection2.4isautomatic. PROOF. Choose an isogeny ’ V A1 ! A2. By Noether-Skolem’s theorem, ’ can be chosen to be O -linear. Let (cid:21)0 VD ’(cid:3)(cid:21) and (cid:3) and (cid:3)0 be the Rosati involutions F 1 2 1 1 inducedby(cid:21) and (cid:21)0 on E VD End.A /⊗Q, respectively. By[12, Satz1.1], there 1 1 1 1 existsapositiveelementc 2 E1(cid:2) withc D c(cid:3)1 suchthat x(cid:3)01 D c−1x(cid:3)1cforallx 2 E1. Asx 2 F,cliesinC VDEnd .A /⊗Q. OF 1 Let P be the the algebraic variety over Q defined by fX 2 C;X(cid:3)1X D cg. It is atorsor under the algebraic group G1 VD fg 2 C(cid:2);g(cid:3)1g D 1g overQ byleft action. Henceitformsanelement(cid:24) inH1.Q;G /. By[5,Lemma2.11],P.R/6D;. SinceG 1 1 issemi-simpleandsimply-connected, H1.Q ;G / D0. Therefore(cid:24) islocallytrivial p 1 everywhere. BytheHasseprinciplefor G ,(cid:24) istrivial. Thenthereexistsanelement 1 g 2 C.Q/ such that g(cid:3)1g D c. Replacing ’ by ’g, we have (cid:3)1 D (cid:3)01, hence that (cid:21)0 D q(cid:21) for some q 2 Q(cid:2). Note that q is positive. This follows from the fact 1 1 thatthepolarizationslieinthepositiveconeoftheNe´ron-SeverigroupNS.A /⊗R. 1 Therefore q is a norm of C and we can find a ’ 2 Hom .A ;A /⊗Q such that OF 1 2 ’(cid:3)(cid:21) D(cid:21) . Thiscompletestheproof. 2 1 COROLLARY2.3. 30x D3x. LEMMA2.4. Let.A;(cid:21);(cid:19)/ 2 3x andTcU bethe corresponding double coset. Then Aut.A;(cid:21);(cid:19)/ ’0 ,where0 VD G .Q/\cG .ZO/c−1. c c x x PROOF. LetG0 bethegroupschemeoverSpecZattachedto.A;(cid:21);(cid:19)/definedasin Subsection2.4. Thatis,foranycommutativering R, G0.R/Df(cid:11) 2.End .A/⊗ R/;(cid:11)0(cid:11) D1g; OF 378 Chia-FuYu [6] wherethemap(cid:11) 7!(cid:11)0 istheRosatiinvolutioninducedby(cid:21). Choose a map (cid:30) 2 Hom .A ;A/⊗Q such that (cid:30)(cid:3)(cid:21) D (cid:21) . Then the element OF 0 0 c 2 G .A /hastheproperty x f ((cid:3)) (cid:30)c 2Isom..A .l/;(cid:21) ;(cid:19) /;.A.l/;(cid:21);(cid:19)//; 8l: l 0 0 0 Notethat(cid:11) 2Aut.A;(cid:21);(cid:19)/ifandonlyif(cid:11) 2 G0.Q/and(cid:11) 2Aut.A.l/;(cid:21);(cid:19)/foralll. l Themap(cid:30)givesanisomorphismG .Q/! G0.Q/whichsends(cid:12)to(cid:30)(cid:12)(cid:30)−1 DV(cid:11). x From((cid:3)),wehave(cid:11) 2 G0.ZO/ifandonlyif.(cid:30)c/−1(cid:11).(cid:30)c/2 G .ZO/. Hence,(cid:11) 2 G0.ZO/ x ifandonlyifc−1(cid:12)c 2 G .ZO/. Thiscompletestheproof. x X COROLLARY2.5. mass.3x/ VD #Aut.1A;(cid:21);(cid:19)/ Dmass.Gx.ZO//. .A;(cid:21);(cid:19)/23x 2.5. The semi-simple algebra C VD End .A /⊗Q is the centralizer of F in x OF 0 thesimplealgebra M .End0.E//,where E isasupersingularellipticcurve. Wehave g C ’ M .B/,where B isaquaternionalgebraoverthetotallyrealfield F ramifiedat x m allrealplacesandunramifiedatallprimesnotdividing p. Sincethelocalinvariantsof thecommutantC coincideswiththoseofF⊗ End0.E/,wehaveB ’ F⊗ End0.E/. x Q Q Therefore, C ⊗R’ M .H/; C ⊗Q ’ M .F ⊗Q/; l 6D p x m Y x l 2mY l C ⊗Q ’ M .B /(cid:2) M .F /; x p m 2m jp;g Vodd p jp;g Veven p p p p p where g VD TF V Q U. The Rosati involution induces the standard involution on p M .H/ pand M p.B /, which we will denote by (cid:3). It also induces the symplectic m m involutionon M .pF ⊗Q/and M .F /. Therefore,wehave 2m l 2m p G .R/’fg 2 M .H/;g(cid:3)g D1g; G .Q/’Sp .F ⊗Q/; l 6D p x m Y x Yl 2m l G .Q /’ G (cid:2) Sp .F /; x p 2m jp;g Vodd p jp;g Veven p p p p p whereG Dfg 2 M .B /;g(cid:3)g D1g. Wewillchoosesuchisomorphismsandreplace m ’byD.p p LEMMA2.6. Thereexistaleft B-module V,aquaternionHermitianfrom’ on V, and a maximal lattice L in the sense of Shimura (see Subsection 2.1) such that G’ ’ G overQand K definedinSubsection2.1is x Y 0 Y Y K D Sp .O ⊗Q/(cid:2) K (cid:2) Sp .O /; 0 2m F l 0; 2m l6Dp jp;g Vodd p jp;g Veven p p p p p where O istheringofintegersin F and K Dfg 2 M .O /;g(cid:3)g D1g. 0; m B p p P p p PROOF. LetV D B(cid:8)g with’.x;y/ D xiyNi(cid:27) andlet L D OB(cid:8)g. [7] Supersingularabelianvarieties 379 2.6. The computation of mass.G .ZO// is to relate with the mass of the standard x one, K ,andthentoapplyShimura’smassformula. 0 ForanytwoopencompactsubgroupsK ;K ofG .A /,ofG .Q /,orofG .Q/, 1 2 x f x p x l wedefinearationalnumber(cid:22) .K =K /with(cid:15)D f; p orl inthreerespectivecases, (cid:15) 2 1 by (cid:22) .K =K /VD TK V K \K U−1TK V K \K U: (cid:15) 2 1 1 1 2 2 1 2 Wehavethefollowingproperties ( TK V K U if K (cid:26) K ; (i) (cid:22) .K =K /D 2 1 1 2 (cid:15) 2 1 TK V K U−1 if K (cid:27) K : Q 1 2 Q 1 2 (ii) If K D K and K D K , where l runs over all primes of Q, then 1 Q l 1;l 2 l 2;l (cid:22) .K =K /D (cid:22).K =K /. f 2 1 l l 2;l 1;l (iii) mass.K /D(cid:22) .K =K /mass.K /. 1 f 2 1 2 FromCorollary2.5,wehave (6) mass.3 / D(cid:22) .K =G .ZO//mass.K /: x f 0 x 0 Iflisprimetothedegreeofthepolarization(cid:21) ,thenG .Z/isisomorphictoaproduct 0 x l ofSp .O /and(cid:22).K =G .Z//D1. Therefore,wehave 2m v l 0;l x l ( ) Y (7) mass.3 / D (cid:22).K =G .Z// mass.K /: x l 0;l x l 0 lDp;orljdeg(cid:21)0 THEOREM2.7. Letnotationbeasabove. Ifm D1ordeg(cid:21)0isapowerof p,thenwe have the simplified mass formula mass.3 / D (cid:22) .K =K /mass.K /, where K x p 0;p M0 0 M0 isthegroupofautomorphismsofthequasi-polarizedDieudonne´ O ⊗Z -moduleM F p 0 attachedto x. Asaconsequence,thefollowingcorollaryisageneralization oftheDeuringmass formula. Recently, Ekedahl and van der Geer [3] compute the intersections of cy- cle classes on the moduli space . They obtained this as a consequence of the g A Hirzebruch-Mumfordproportionalityprinciple. COROLLARY2.8. Let3bethesetoftheisomorphismclassesofprincipallypolar- izedsuperspecialabelianvarietiesoverk ofdimensiong. Then ( ) X 1 .−1/g.gC1/=2 Yg Yg (cid:8) (cid:9) D (cid:16).1−2k/ .pk C.−1/k : #Aut.A;(cid:21)/ 2g .A;(cid:21)/23 kD1 kD1 380 Chia-FuYu [8] PROOF. Takex D.A0;(cid:21)0/tobeaprincipallypolarizedsuperspecialabelianvariety overk ofdimension g. NotethattheDieudonne´ module M ofx isisomorphictothe 0 product of g copies of separably quasi-polarized rank two supersingular Dieudonne´ modules. It follows that 3 D 3 and the group K of the automorphisms of M x M0 0 is K D f(cid:11) 2 M .O /;(cid:11)(cid:3)(cid:11) D 1g, where B is the quaternion division algebra M0 g Bp p overQ . Therefore,weobtainmass.3/Dmass.K /andfinishtheproofby(4). p 0 3. SuperspecialpointsofHBtypeandthemassformula We keep the notations in the previous section, except that we denote the totally realfield by F andreserve thesymbol F for the Frobenius operator onaDieudonne´ module. Let beaprimeofO overp,andlete and f denotetheramificationdegree F andresidue dpegreeof ,respectively. Intherepst ofthpis paper, wewillonly treat the Hilbert-Blumenthalcapses,namelym D1andd D g. Let VD O ⊗Z D(cid:8) . F p jp O p Op 3.1. We first recall the classification of superspecial quasi-polarized Dieudonne´ -modules[10]. Let x D .A ;(cid:21) ;(cid:19) /beasuperspecial polarizedabelian O -variety 0 0 0 F Oover k and let M be its covariant Dieudonne´ module. We have M D (cid:8) M and 0 0 jp willdescribe M foreach . p p LetebetheLpietypeofpM anda bethea-typeof M . Werecalltheirdefinitions in[10,Section1]below: p p M e.M / D.fe1i;e2ig/i2Z=f Z () Lie.M /’ kT(cid:25)U=.(cid:25)e1i/(cid:8)kT(cid:25)U=.(cid:25)e2i/ p p p i2Z=f Z M p a.M / D.fa1i;a2ig/i2Z=f Z () M =.F;V/M ’ kT(cid:25)U=.(cid:25)a1i/(cid:8)kT(cid:25)U=.(cid:25)a2i/; p p p p i2Z=f Z p where(cid:25) isauniformizerof O andtheright-handsidesareisomorphismsof O ⊗ Z p k ’(cid:8) kT(cid:25)U=.(cid:25)e /-moduples. p i2Z=f Z p As M ipssuperspecial,eisequaltoa andithastheform p .fe ;e g;fe −e ;e −e g;fe ;e g;:::/ 1 2 1 2 1 2 p p forsomeintegerse ,e with0 (cid:20) e (cid:20) e (cid:20) e ;see[10,Section2]. When f isodd, 1 2 1 2 it satisfies an additional condition e Ce Dpe . We say M is of type .ep;e / for 1 2 1 2 convenience. p p Let −1 D .(cid:25)−d/ be the inverse of the different of over Z . There is a p uniqueDWp⊗ -bilinear pairing .(cid:1);(cid:1)/ V M (cid:2) M ! WO⊗p such that hx;yi D Tr .(cid:25)−Od.px;y//. Wehave O ⊗W Dp(cid:8) p Wi bytheOapctionof ur andthis W⊗ =W i2Z=f Z alsogOipvesthedecomposition M Dp(cid:8) Mi. p Op i2Z=f Z p p p [9] Supersingularabelianvarieties 381 LEMMA3.1. (1) If f is even, then there is a Wi-basis Xi;Yi for Mi for each i 2Z=f Zsuchthat p p ( p (cid:25)n ifi isodd; (i) .X ;Y/D i i (cid:25)nCe −e1−e2 ifi iseven; p foralli 2Z=f (Zandsomen 2Z. ( (ii) FX Dp −(cid:25)e1YiC1 ifi isodd; FY D v(cid:25)e2XiC1 ifi isodd; i −(cid:25)ep−e2YiC1 ifi iseven; i v(cid:25)ep−e1XiC1 ifi iseven; wherev(cid:25)e D p. p (2) If f is odd, then there is a Wi-basis X ;Y for Mi for each i 2 Z=f Z such i i that p p p (i) .X ;Y/D(cid:25)n forsomen 2Z. i i (ii) FXi D−(cid:25)e1YiC1;FYi Dv(cid:25)e2YiC1 fori 2Z=f Z,wherev(cid:25)ep D p. (3) Inparticular, if the pairing .(cid:1);(cid:1)/ is perfect and pM satisfies the Rapoport con- dition(inthiscase, M isoftype.0;e /),thenthereexisptsa Wi-basisfX ;Ygof Mi i i foreachi 2Z=f Zsucphthat p p p (i) Y 2.VM/i and.X ;Y/ D1, i i i (ii) FX D−Y ; FY D pX , i iC1 i iC1 foralli 2Z=f Z. p PROOF. See[10,Lemmas4.5–4.6]. LetF0 betheuniquequadraticunramified extensionof F and(cid:28) bethegenerator ofGal.Fp0=F /. p p p LEMMA3.2. Let KM bethegroupofautomorphismsofthequasi-polarizedDieu- donne´ -module M .p Op p (1) Iftheresiduedegree f iseven,then (cid:26)(cid:18) p (cid:19) (cid:27) a b K ’ 2SL .O /;c (cid:17)0 mod (cid:25)e2−e1 : M c d 2 F p p (2) Iftheresiduedegree f isodd,then p (cid:26)(cid:18) (cid:19) (cid:27) a b KM ’ (cid:25)e2−e1b(cid:28) a(cid:28) 2SL2.OF0 / : p p PROOF. Let(cid:30) 2 KM . ChooseaWi-basisfXi;Yigfor Mi asinLemma3.1. Write (cid:18) p(cid:19) (cid:18) (cid:19) (cid:18) (cid:19) p (cid:30).X / X a b i D A i ; A D i i 2GL .Wi/: (cid:30).Y/ i Y i c d 2 i i i i 382 Chia-FuYu [10] It follows from .(cid:30).X /;(cid:30).Y// D .X ;Y/ that A 2 SL .Wi/. Note that we have i i i i i 2 F2.X / D −pX and F2.Y / D −pY foralli. Thecondition (cid:30)F2 D F2(cid:30) gives i iC2 i iC2 A D A.2/ foralli 2Z=f Z,wherewewrite A.n/ for A(cid:27)n. iC2 i (1)If f iseven,thenfApgaredeterminedby A and A ,and A ;A 2 SL .O /. i 0 1 0 1 2 F Wehave p p (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) F.X0/ D J X1 ; J D 0 −(cid:25)ep−e2 ; (cid:18)F.Y0/(cid:19) 1(cid:18)Y1(cid:19) 1 (cid:18)v(cid:25)ep−e1 (cid:19)0 F.X1/ D J X2 ; J D 0 −(cid:25)e1 : F.Y1/ 0 Y2 0 v(cid:25)e2 0 The condition F(cid:30) D (cid:30)F gives J A D A.1/J and J A.1/ D A J . These give the 1 1 0 1 0 0 1 0 relations a Dd.1/; d Da.1/; c.1/ D−v(cid:25)e2−e1b ; c D−v(cid:25)e2−e1b.1/: 1 0 1 0 0 1 1 0 Weseethat A1 isdeterminedby A0 andc0 (cid:17)0 mod (cid:25)e2−e1. (2)If f isodd,thenfAigaredeterminedby A0 and A0 2SL2.OF0 /. Wehave p (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) p F.X0/ D J X1 ; J D 0 −(cid:25)e1 : F.Y0/ Y1 v(cid:25)e2 0 Applying F(cid:30) D(cid:30)F,wehave JA D A.1/J. As A D A.f C1/,thisequationgives 1 0 1 0p d D a(cid:28); c D−v(cid:25)e2−e1b(cid:28): 0 0 0 0 As−visanormofsomeelementin O(cid:2) (over O(cid:2) ),wechooseanisomorphism F0 F (cid:26)(cid:18) p (cid:19) p (cid:27) a b KM ’ (cid:25)e2−e1b(cid:28) a(cid:28) 2SL2.OF0 / : p p Thiscompletestheproof. 3.2. Itremainstocomputethelocalterm(cid:22) .K =K /. Wewriteq for N. /,the 0; M cardinalityoftheresiduefieldk. /. p p p p When f is even, KM D 00.(cid:25)pe2−e1/ is anopencompact subgroup ofSL2.F /. If e De ,thepn(cid:22) .K =Kp /D1;ife >e ,then p 1 2 0; M 2 1 p p p (cid:22) .K0; =KM /D#P1.OF =(cid:25)e2−e1/Dqe2−e1−1.q C1/: p p p p Considernowthecasewhere f isodd. Put (cid:26)(cid:18)p (cid:19) (cid:27) a b K.n/VD (cid:25)nb(cid:28) a(cid:28) 2SL2.OF0 / : p

Description:
Jul 1, 2003 A geometric mass concerning supersingular abelian varieties with real formula reduces to a result of Ekedahl and van der Geer [3] obtained
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.