Astronomy&Astrophysicsmanuscriptno.SN10ev (cid:13)c ESO2016 January29,2016 Supernova 2010ev: A reddened high velocity gradient type Ia ⋆ supernova ClaudiaP.Gutie´rrez1,2,3,SantiagoGonza´lez-Gaita´n1,2,Gasto´nFolatelli4,GiulianoPignata5,1,JosephP.Anderson3, MarioHamuy2,1,NidiaMorrell6,MaximilianStritzinger7,StefanTaubenberger8,9,FilomenaBufano1,5,10,Felipe OlivaresE.1,5,JoshuaB.Haislip11,andDanielE.Reichart11 1 MillenniumInstituteofAstrophysics,Casilla36-D,Santiago,Chile, 6 2 DepartamentodeAstronom´ıa,UniversidaddeChile,Casilla36-D,Santiago,Chile 1 3 EuropeanSouthernObservatory,AlonsodeCo´rdova3107,Casilla19,Santiago,Chile 0 e-mail:[email protected] 4 InstitutodeAstrof´ısicadeLaPlata(IALP,CONICET),Argentina 2 5 DepartamentodeCienciasFisicas,UniversidadAndresBello,Avda.Repu´blica252,Santiago,Chile n 6 CarnegieObservatories,LasCampanasObservatory,Casilla601,LaSerena,Chile a 7 DepartmentofPhysicsandAstronomy,AarhusUniversity,NyMunkegade120,DK-8000AarhusC,Denmark J 8 Max-Planck-Institutfu¨rAstrophysik,Karl-Schwarzschild-Str.1,85741Garching,Germany 8 9 EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748Garching,Germany 2 10 INAF-OsservatorioAstrofisicodiCatania,ViaSantaSofia,78,95123,Catania,Italy 11 UniversityofNorthCarolinaatChapelHill,CampusBox3255,ChapelHill,NC27599-3255,USA ] E Preprintonlineversion:January29,2016 H ABSTRACT . h p Aims.WepresentandstudythespectroscopicandphotometricevolutionofthetypeIasupernova(SNIa)2010ev. - Methods.Weobtainandanalyzemulti-bandopticallightcurvesandoptical/near-infraredspectroscopyatlowandmediumresolution o spanningfrom−7daysto+300daysfromtheB-bandmaximum. r Results.A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light curve shape of ∆m (B) = t 15 s 1.12±0.02andastretch s = 0.94±0.01sufferingsignificantreddening.Fromphotometricandspectroscopicanalysis,wededuce a acolorexcessof E(B−V) = 0.25±0.05andareddening lawofR = 1.54±0.65. Spectroscopically, SN2010ev belongstothe [ broad-lineSNIagroup,showingstrongerthanaverageSiiiλ6355absvorptionfeatures.WealsofindthatSN2010evisahigh-velocity 1 gradientSN,withv˙Si =164±7kms−1d−1.ThephotometricandspectralcomparisonwithothersupernovaeshowsthatSN2010ev v hassimilarcolorsandvelocitiestoSN2002bo andSN2002dj. Theanalysisofthenebularspectraindicatesthatthe[Feii]λ7155 3 and[Niii]λ7378linesareredshifted,asexpectedforahighvelocitygradientsupernova.Allthesecommonintrinsicandextrinsic propertiesofthehighvelocitygradient(HVG)grouparedifferentfromthelowvelocitygradient(LVG)normalSNIapopulationand 6 suggestsignificantvarietyinSNIaexplosions. 8 7 Keywords.stars:supernovae:general stars:supernovae:individual:SN2010ev 0 . 1 0 1. Introduction els considered are: the single degenerate (SD) (Nomoto, 1982; 6 Iben&Tutukov, 1984), and the double degenerate (DD) sce- 1 Type Ia supernovae (SNe Ia) play an important role in stellar nario(Iben&Tutukov, 1984;Webbink, 1984). Inthe former,a : evolutionandinthechemicalenrichmentoftheuniverse,aswell v whitedwarfaccretesmatterfromthecompanionwhichcanbea i asin the determinationof extragalacticdistances,thanksto the sub-giantormainsequencestar,whileinthelattertheSNispro- X relationbetweenthedeclinerateofthelightcurveanditspeak ducedbythe mergingoftwo white dwarfs. SNe Ia are thought r luminosity (Phillips, 1993; Hamuyetal., 1996; Phillipsetal., to explode near the Chandrasekhar mass, although recent sim- a 1999) and between color and peak luminosity (Tripp, 1998). ulationsof sub-Chandrasekharmass explosionshavebeen suc- SNe Ia representa homogeneousclass andare thoughtto arise cessfulforbothscenarios(Simetal.,2012;Kromeretal.,2010; from the thermonuclear explosion of a carbon-oxygen white- Pakmoretal.,2012). dwarf either triggered by the interaction with the companion The study of SN Ia spectral and photometricparametersin in a close binary system (Hoyle&Fowler, 1960) or by direct bothearlyandlateepochscangivekeyindicationsaboutthena- collisions of white dwarfs. (Raskinetal., 2009). In the leading tureoftheexplosion.StudiesofSNIaspectroscopicproperties scenario of a close binary system, the nature of the explosion reveal significant diversity among the population.Benettietal. and of the companion star are still debated. Two of the mod- (2005) defined a sub-classification of SNe Ia based on expan- sion velocities, line ratios and light curve decline rates. They ⋆ This paper includes data gathered with the Du Pont Telescope at classified the SN Ia population in three different sub-groups: LasCampanasObservatory,Chile;andtheGeminiObservatory,Cerro High Velocity Gradient (HVG), Low Velocity Gradient (LVG) Pachon,Chile(GeminiProgramGS-2010A-Q-14).Basedonobserva- and FAINT objects. A parallel classification was proposed by tionscollectedattheEuropeanOrganisationforAstronomicalResearch Branchetal. (2006) based on absorption equivalent widths of intheSouthernHemisphere,Chile(ESOProgramme085.D-0577) 1 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. Siii λ5972 and λ6355 lines at maximum, which defines four subtypes:Core-Normal(CN),Broad-Line(BL),Cool(CL)and ShallowSilicon(SS).Wangetal.(2009)classifiedtheirSNeIa sample in two groupsbased on the blueshiftedvelocityof Siii absorptionlinesatmaximum:Normalvelocity(NV;v ∼ 10500 km s−1) and High velocity (HV; v ≥ 12000 km s−1) SNe. Contemporary analyses of large samples of SNe Ia spectra (e.g Branchetal., 2009; Blondinetal., 2012; Silvermanetal., 2012; Silverman&Filippenko, 2012; Silvermanetal., 2013; Folatellietal., 2013) have confirmedthis diversity and suggest thatitcouldbekeytounderstandtheexplosionmechanism(s).In fact,Maedaetal.(2010a)proposedanexplanationinwhichve- locitygradientsvaryasaconsequenceofdifferentviewingdirec- tions towards an aspherical explosion scenario. Nebular [Feii] λ7155and[Niii]λ7378Ålinesareredshiftedandaregenerally associatedwithHVGSNe,whileblueshiftedlinescorrespondto LVGSNe. Recentobservationalevidencesuggeststhepresenceofcir- cumstellar material(CSM) aroundSN Ia progenitors,which in principle could favor the SD model (Raskinetal., 2013), but someDDmodelshavealsopresentedCSM (Shenetal.,2013). Inobservedspectra,thetemporalevolutioninthenarrowNaID Fig.1.FindingchartshowingthepositionofSN2010evandthat lineshasbeenattributedtoCSM(Patatetal.,2007;Simonetal., ofthelocalsequencestarsusedforphotometriccalibration.The 2009;Blondinetal.,2009),aswellasthefactthattheyhavean image was taken with PROMPT1 and covers an area of about excessofblueshifts(Sternbergetal.,2011;Maguireetal.,2013; 8′×7′.Thecrosshairindicatesthepositionofthesupernova. Phillipsetal.,2013). IthasbeensuggestedthatsuchnearbyCSMcouldaffectthe colors of SNe Ia (Goobar, 2008; Fo¨rsteretal., 2013), although pixel scale = 0.6′′per pixel). With PROMPT1, SN 2010evwas other studiessuggestthat the dust responsibleforthe observed observed with the B, V, R and I Johnson-Kron-Cousinsfilters, reddeningofSNeIaispredominantlylocatedintheinterstellar with PROMPT3 itwas observedwith Bfilter and theSloan u′, medium(ISM)ofthehostgalaxiesandnotintheCSM associ- g′ filters, and in PROMPT5 using V, R and I and r′, i′ and z′ atedwiththeprogenitorsystem(e.gPhillipsetal.,2013). In this paper we present the optical photometry and optical/near-infraredspectroscopyofSN2010ev,aredSNwith Table1.MainparametersofSN2010evanditshostgalaxy normal brightness. We discuss its characteristics and we com- pareitwithothersimilar events.Thepaperisorganizedasfol- Hostgalaxy NGC3244 lows: A description of the observations and data reduction are Hostgalaxytype SA(rs)cd⋆ presentedinsection2.Thephotometryandspectroscopyarean- Redshift 0.0092⋆ Distancemodulusµ 32.31±0.60⋆ alyzedinsection3.Insection4wepresentthediscusion,andin RA 10h25m28s.99 section5theconclusions. SN Dec −39◦49′51′.′2 SN E(B−V) 0.092mag∗ Gal E(B−V) 0.25±0.05mag† Host 2. Observationsanddatareduction ∆m (B) 1.12±0.02• 15 Stretchfactor(B) 0.94±0.01N SN2010evwasdiscoveredbytheChileanAutomaticSupernova B epoch(JD) 2455384.60• max Search (CHASE) program on June 27.5 UT (Pignataetal., B epoch(UT) 2010July7.1 2010) in the spiral galaxy NGC 3244 (α = 10h25m28s.99, Bmax 14.94±0.02• max δ = −39◦49′51′.′2).TheSNlies1′.′6Eastand12′.′4Southofthe V 14.98±0.02• max center of the host galaxy (see Figure 1). Optical spectra of the V epoch(JD) 2455383.60• max SN 2010ev were obtained 3 days after discovery on June 30.9 Rmax 14.45±0.02• UT with the GeminiSouth (GMOS-S) telescope by Stritzinger Rmaxepoch(JD) 2455385.60• (2010).ThespectrumrevealedthatSN2010evwasayoung(∼ Imax 14.56±0.02• I epoch(JD) 2455382.60• 7 days before maximum)SN Ia. Details on SN 2010evand its max γ 1.63±0.03△ host-galaxypropertiesaresummarisedinTable1. B γ 1.15±0.02△ V γ 1.16±0.05△ R γ 0.83±0.02△ I 2.1.Opticalphotometry ⋆ NED(NASA/IPACExtragalacticDatabase). • ObtainedwithSNooPy. Optical imaging of SN 2010ev was acquired with the ∗ Schlegeletal.(1998). PROMPT1, PROMPT3 and PROMPT5 telescopes located at † See§3.6 Cerro Tololo Interamerican Observatory, FORS2 at the ESO N ObtainedbySiFTO. Very Large Telescope (VLT) and IMACS at Las Campanas △ Late-timedecline γ [Magnitudes per 100 days] between 175 and Observatory. The PROMPT telescoples are equipped with an 290days. Apogee Alta U47 E2V CCD47-10 CCD camera (1024×1024, 2 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. filters. (Blondinetal.,2015,hereafter“B15”2).Hsiaoetal.(2007)use Since the PROMPT cameras operate between -20 and -30 a sample of 28SNe Ia to characterizethe spectralfeaturesand degrees Celsius, all optical images were dark subtracted to re- identify patterns in the data with principal componentanalysis move the dark current. After flat-field corrections all images (PCA). Overall, these SNe show normal features. Meanwhile, takenwithagivenfilterwereregisteredandstackedinorderto the B15 model is the result of a 1D non-local thermodynamic produceafinaldeeperimage.PSFphotometryofthesupernova equilibrium radiative transfer simulation of a Chandrasekhar was computed relative to a sequence of stars located close to massdelayed-detonationmodelwith0.51M of56Nithatclosely ⊙ theSNbutnotcontaminatedbyhostgalaxylight(seeFigure1). matches SN 2002bo. This model provides a reference for un- The photometricsequence itself was calibrated to the standard derstanding SNe Ia similar to that prototype, as is the case for JohnsonKron-CousinsandSloanphotometricsystemsusingob- SN2010ev.Thus,wecompareourresultswiththeH07template servationsofphotometricstandardstars(Landolt1992;Landolt andtheB15model. 2007; Smithetal. 2002), respectively.The BVRI and u′g′r′i′z′ magnitudesofthelocalsequencearereportedinTableA.1. 3.1.Lightcurves Given that SN 2010ev exploded in a region of significant backgroundgalaxyflux, it was necessary to apply galaxy tem- SN 2010ev was observed in BVRI and u′g′r′i′z′ bands. We platesubtractionstoalloftheopticalimages.Threetemplateim- have performed light curve fits to the multi-wavelength pho- agesforeachfilterwereacquiredwiththePROMPTtelescopes tometry of SN 2010ev. For this purpose, we use SNooPy between 2012 January 24–30, i.e. more than 565 days after B (Burnsetal.,2011)andSiFTO(Conleyetal.,2008)lightcurve maximumbrightness.Thismakesusconfidentthattheresidual fitters.Figure2showsthe BVRI andu′g′r′i′z′ lightcurveswith SNfluxonthetemplateimagesisnegligible.Eachfluxmeasure- both fits. This SN shows a normal decline rate, ∆m (B) = 15 mentwascomputedasaweightedaverageofthevaluesobtained 1.12±0.02andastretchparameters=0.94±0.01.This∆m (B) 15 fromthethreetemplates.Toaccountfortheerrorintroducedby is similar to those foundin highvelocitygradientSNe (HVG), thetemplatesweaddinquadraturethermsfluxcomputedfrom such as SN 2002bo (∆m (B) = 1.13± 0.02) and SN 2002dj 15 the three measurements with errors obtained from the PSF fit- (∆m (B)=1.08±0.02). 15 tingandfluxcalibration.InTableA.2,wereportthe BVRI and u′g′r′i′z′ photometry of SN 2010ev, together with their uncer- tainties. Light curves of SN 2010ev 2.2.Opticalandnearinfraredspectroscopy 14 Opticalspectrawereobtainedat16epochsspanningphasesbe- tween −6 and +270 days with respect to B-band maximum. These observations were acquired with four different instru- 16 ments:X-ShooterandFORS2attheESOVeryLargeTelescope (VLT), GMOS-S at the Gemini Observatory and the WFCCD at the du Pont Telescope of the Las Campanas Observatory. 18 NearinfraredspectrawereobtainedwithX-Shootercovering9 epochsfrom−6to+15days.Alogofthespectroscopicobser- vationsofSN2010evisreportedinTable2. DatareductionforGMOS-S,WFCCDandFORS2wereper- 20 formedwithIRAF1usingthestandardroutines(biassubtraction, flat-fieldcorrection,1Dextraction,andwavelengthcalibration), while for X-Shooter the dedicated pipeline (Modiglianietal., 22 SNooPy 2010) was employed for most of the process, leaving the tel- SiFTO luricline correctionandflux calibrationtobe donewith IRAF. ToremovethetelluricopticalandNIRfeatures,theSNspectrum 0 20 40 60 80 was divided by the standard star spectrum observedduring the samenight.TheSNspectrawereflux-calibratedusingresponse curvesacquiredfromthespectraofstandardstars. Fig.2. BVRI and u′g′r′i′z′ light curves of SN 2010ev. The 3. Results SNooPy fits are shown in solid lines while the SiFTO fits in dotted lines. The light curves have been shifted by the amount Inthissectionweshowthespectralandphotometricresultsob- showninthelabel. tainedforSN2010ev.Theprincipalmeasurementsarecompared withotherwell-studiedSNeIathathavesimilarcharacteristics, such as colors, line ratios and velocities. In order to interpret UsingSNooPyweobtainapeak B-bandmagnitude Bmax = our observationsand results, we compare them with the Hsiao 14.94 ± 0.02 on JD = 2455384.60 ± 0.30 (2010 July 7.1 SNIaspectraltemplate(Hsiaoetal.,2007,hereafter“H07”)and UT), which indicates that SN 2010ev was observed in BVRI synthetic spectra computed from a delayed-detonation model and u′g′r′i′z′ from −7.5 to 289.5 days with respect to maxi- mumlight.ThepeakVRI magnitudesareV = 14.98±0.02, max 1 IRAF is distributed by the National Optical Astronomy Rmax = 14.45±0.02andImax = 14.56±0.01,thatoccurat−1, Observatories (NOAO), which are operated by the Association of Universities for Research in Astronomy (AURA), Inc., under 2 Synthetic spectra obtained from: https://www- cooperativeagreementwiththeNationalScienceFoundation. n.oca.eu/supernova/snia/sn2002bo.html 3 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. Table2.SpectroscopicobservationsofSN2010ev. UTdate M.J.D. Phase⋆ Range Telescope Arm/Grism• [days] [Å] +Instrument∗ 2010/06/30 55378.47 -6.1 3590-9640 GEM+GM B600-500&R600-750 2010/06/30 55378.48 -6.1 3500-25000 VLT+XS UV/VIS/NIR 2010/07/01 55379.49 -5.1 3580-9640 GEM+GM B600-500&R600-750 2010/07/03 55380.54 -4.1 3500-25000 VLT+XS UV/VIS/NIR 2010/07/04 55382.48 -2.1 3500-25000 VLT+XS UV/VIS/NIR 2010/07/05 55383.48 -1.1 3500-25000 VLT+XS UV/VIS/NIR 2010/07/06 55384.48 -0.1 3500-25000 VLT+XS UV/VIS/NIR 2010/07/07 55385.48 0.9 3500-25000 VLT+XS UV/VIS/NIR 2010/07/07 55385.49 0.9 3600-9212 DP+WF blue 2010/07/09 55387.49 2.9 3500-25000 VLT+XS UV/VIS/NIR 2010/07/11 55389.49 4.8 3635-9212 DP+WF blue 2010/07/13 55391.48 6.9 3500-25000 VLT+XS UV/VIS/NIR 2010/07/21 55399.50 14.9 3500-25000 VLT+XS UV/VIS/NIR 2010/07/26 55404.48 19.9 3590-8960 GEM+GM B600-500&R600-750 2010/12/31 55561.49 176.9 3600-10500 VLT+FS 300V 2011/04/03 55654.49 269.9 3600-10500 VLT+FS 300I+OG590 ⋆ RelativetoBmax(MJD=2455384.60) ∗ GEM:GeminiObservatory,GM:GMOS-S,VLT:VeryLargeTelescope,XS:X-Shooter,DP:DuPontTelescope,WF:WFCCD,FS:FORS2. • X-ShooterarmwavelengthrangesareUV[3000-5600]Å,VIS[5500-12200]Å,andNIR[10200-25000]Å. 1 and−2dayswith respectto Bmax. The I andi′ bandsshowa 0.1M⊙ of 56Ni synthesized during the explosion. Since these secondarymaximumat∼20−25daysafterBmaximum,while SNehavesimilarpeakbolometricluminosity(see§4.1),thedi- Randr′ bandsshowashoulderatthosetimes.Themainphoto- versityseeninFigure3couldbeattributedtoonlysmallchanges metricparametersofSN2010evarereportedinTable1. in56Nimass,whichalsoaffectthetemperatureandionization. DuringthenebularphasetheBVRImagnitudesfollowalin- ear decline due to the exponentially decreasing rate of energy inputbyradioactivedecay:1.63±0.03,1.15±0.02,1.16±0.05, 0.83±0.02magnitudesper100days,respectively.Theslopeof the BlightcurveishigherthatthosefoundbyLairetal.(2006) butlowerthatthoseintheV,RandIbands.Despitethesediffer- 1.5 ences,thesedeclineratesareconsistentwithotherwellstudied 1 SNeIa(e.g.,Stanishevetal.2007;Leloudasetal.2009),which showthesameslowerdeclineintheIband. 0.5 SN 2010ev SN 2002dj - B15 0 SN 2002er SN 2002bo 3.2.ColorCurves The (B− V), (V − R) and (V − I) color curves of SN 2010ev 0.5 arecomparedinFigure3withSN2002bo(Benettietal.,2004), SN 2002dj(Pignataetal., 2008) andSN 2002er(Pignataetal., 2004),aswellasthedelayed-detonationB15model(greylines) 0 forSN 2002bo.ThecolorshavebeencorrectedforMilkyWay (MW) extinction exclusively. The B15 model colors were ob- tainedwithsyntheticphotometrybyintegratingthemodelspec- 1 tralenergydistributions(SEDs). 0.5 Atmaximum,theseSNeallhaveredderB−Vcolorsthanthe typicalaverageSN Iacolor(B−V ∼ 0),asrepresentedbythe 0 B15 model. Before maximum, SN 2002bo has redder (B−V) -0.5 colors than SN 2010ev, but around 20 days they have similar colors. Meanwhile, SN 2002dj and SN 2002er are bluer at all -20 0 20 40 60 80 phases. The B15 model is bluer in B − V than all SNe at all epochsindicatingthehighreddeninginthelineofsightwithin thehostgalaxiesoftheseSNe.ThisistruewhenusingtheH07 Fig.3. Color evolution of SN 2010ev compared with high ve- templateaswell. locity gradient (HVG) SNe Ia: SN 2002bo, SN 2002dj and Thepeakofthe(B−V)colorevolutionhappensaround30 SN 2002er. The SN colors have been dereddened for MW ex- days,comparedtoaround26daysintheB15model.Thisevolu- tinctiononly.WealsoshowthecolorsoftheB15modelwithout tionissimilarin(V−R)and(V−I).Thedifferenceinthetimeof extinction(solidgreyline)andwiththehostextinction(dashed (B−V)maximumandthecolorevolutionhaveshowntobevery greyline)obtainedinsection3.6. important for SNe Ia (Burnsetal., 2014; Fo¨rsteretal., 2013). AccordingtoBlondinetal.(2015)ashiftof5daysearlier/later in the (B− V) maximum correspond to a decrease/increase of 4 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. Optical spectra of SN 2010ev -6.1 d -6.1 d -5.1 d -4.1 d -2.1 d -1.1 d -0.1 d 0.9 d 0.9 d 2.9 d 4.8 d 6.9 d 4.9 d 19.9 d 4000 6000 8000 Fig.4.SpectroscopicsequenceofSN2010evrangingfrom−6.1to19.9daysaroundB-bandmaximum.Eachspectrumhasbeen correctedforMilkyWayreddeningandshiftedbyanarbitraryamountforpresentation.Weshowlowresolutionspectrainblueand mediumresolutionspectrainblack.Thephasesarelabeledontheright. 3.3.Opticalspectralevolution turenearλ7600,Oiλ7774Åisalsodetected.ThenarrowNaiD and Caii H & K from the host galaxy and the MW, as well as 3.3.1. Earlyphases diffuseinterstellarbands(DIBs)atλ5780andλ6283Åarealso present,whichsuggestsignificantreddening. Figure4showstheopticalspectraevolutionofSN2010evfrom In Figure 5 the optical spectrum of SN 2010ev at approxi- -6.1 to 19.9 days. The spectra show that SN 2010ev is a nor- mately−4daysfromB-bandmaximumiscomparedatthesame mal SN Ia with very prominent Siii λ6355 Å absorption. Pre- epoch with SNe with very prominent Siii λ6355 Å absorption maximumspectraexhibitcharacteristicP-Cygniprofilesof Siii andsimilarcolors,suchasSN2002boandSN2002dj.TheH07 λ4130, λ5972 and λ6355; Caii H & K λ3945 and IR triplet templateandB15modelarealsoshownforcomparison.Ascan λ8579;Siiλ5449andλ5622Å.OtherlinessuchasMgiiλ4481 be seen, SN 2010evshowsstronger Siii λ6355absorptionfea- Å,andsomeblendscausedbyFeiiinthe4500to5500Årange turescomparedwithSN2002boandSN2002dj,andsimilarities areclearlyvisible.Despitecontaminationfromthetelluricfea- inlineslikeCaiiandSii.SincetheB15modeliswellmatched 5 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. 03du 05cf 90N 94D 84A 02er 02dj 02bo 10ev B15 H07 H07 (-4.5d) B15 (-4.5d) 2010ev (-4.1d) 2002dj (-4d) 2002bo (-3.7d) 2010ev (-4.1d) 4000 6000 8000 Fig.5. Comparison of pre-maximum (around −4 days) spectra Fig.6.EvolutionofR(Siii)forSN2010evcomparedwithasam- of SN 2010ev, SN 2002bo, SN 2002dj, the H07 template and ple of HVG SNe (blue filled symbols) and LVG SNe (empty B15model.ThespectrahavebeencorrectedbyMWreddening greensymbols).IngreyisshowntheevolutionofR(Siii)forthe andredshift.Epochsaremarkedintheplot. B15modelandinpinkforH07template. with SN 2002bo, their lines widths and the pseudo-continuum andbecomemoretransparent. are very similar, while the H07 template shows smaller ab- sorption lines of Siii λ6355 Å and the Caii IR triplet. The Oi λ7774 Å line is more prominent in SN 2010ev than the other 3.3.2. Latephases SNe, which could suggest either differences in the amount of unburnedmaterial or in the oxygenabundance,producedby C In the nebular phase, two spectra were obtained at ∼177 and burning.Consideringitsvelocity(∼ 14500kms−1),itcouldbe ∼270 days with FORS2. In this phase, the spectrum is mainly attributedtounburntC(Blondinetal.,2015).However,wecan dominated by forbidden lines of iron-group elements: [Feii], notconfirmthelatterusingthepossiblepresenceofCiiduetoa [Feiii], [Niiii], [Niiii] and [Coii], which were identified in lackofveryearlyspectra. SN 2010ev (see Figure 7). The spectra also show typical lines At maximum, the ratio of the depth of the Siii λ5972 of an Hii region at the SN site such as Hα, [Nii], and [Sii]. and λ6355 absorption features, R(Siii) (Nugentetal., 1995) The strongest feature at this epoch is the blend of [Feiii] lines is R(Siii)= 0.20 ± 0.03, while the pseudo-equivalent widths at λ4701 Å (Maedaetal., 2010b). The velocity offset of peak (pEWs)give150.80±1.21Åand15.91±0.72Å respectively. emissionshowsasignificanttemporalchangefrom1300±100 Based on the strength of the Siii lines defined by Branchetal. km s−1 at 177 days to 490± 20 km s−1 at 270 days from the (2006), SN 2010ev is a Broad-Line (BL) SN. The evolution rest position. This behavior is consistent with that found by of R(Siii) of SN 2010ev is compared in Figure 6 with HVG Maedaetal. (2010b) for a sample of 20 SNe Ia with late-time and low velocity gradient (LVG, Benettietal. 2005) SNe. As nebular spectra and different velocities, light-curve widths and can be seen, SN 2010evshowsa dramaticdecline beforemax- colors. Meanwhile, the FWHM velocities show the opposite imum from R(Siii)= 0.40 at −6 days to R(Siii)= 0.20 around trend: At 177 days, the FWHM=14800± 300 km s−1 and in- maximum. Then, it shows a flat evolution, which is consistent creasesto16400±600kms−1at270days.Takinganaverageof withHVGSNe.Thisbehaviorreflectslowertemperaturesbefore the relation derivedby Mazzalietal. (1998) and more recently maximuminthespectrum-formingregion,whichthenincrease. by Blondinetal. (2012), we can infer ∆m15(B) = 1.10±0.03 Figure 6 also shows the evolution of R(Siii) for H07 template based on the FWHM velocities of [Feiii] at t > 200d, which andB15model.TheB15modelisconsistentwiththeevolution is consistent with the one obtained with SNooPy. However, it oftheHVGSN2002bo;meanwhile,theevolutionofH07tem- shouldbenotedthatthisrelationisnotsignificantwhensublumi- plateshowsabehaviorsimilartoLVGSNe. nouseventsareexcluded(Blondinetal.,2012;Silvermanetal., Aftermaximum,theCaiiIRtriplet(Figure4)becomesvery 2013). prominent,whiletheSiiiλ5972andSiilinesfaderapidly.The Other lines in the spectra seem to have no significant evo- Sii linesare notdetectable∼ 2 weeksaftermaximumwhereas lution, exceptthe emission lines near ∼ 6000Å, which appear Siiiλ6355isvisiblefor∼ 20days.At14daysaftermaximum todecreasewithtime,andtheblendof [Feii]λ7155and[Niii] the Oi λ7774 line disappears and Caii H & K decreases λ7378featuresthatdevelopadouble-peakedprofile. significantly.Ataround20dayslinesfromiron-groupelements In Figure 7 the nebular spectra of SN 2010ev are com- start to dominate the spectrum, as the SN ejecta layers expand pared with SN 2003du (Stanishevetal., 2007) and SN 2002dj 6 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. 6 4 2 0 4000 6000 8000 Fig.7.NebularspectraofSN2010evtakenat177and270dayscomparedwithSN2003du,andSN2002djaround270days.The spectrahavebeencorrectedforredshiftandnormalizedwithrespecttotheSN2010evfluxinV-band(andshiftedbyanarbitrary constant).Themainfeatureshavebeenlabeled,whiletheepochsandtheSNnameareshownontheright.Thedashedlinesarethe restpositionof[Feii]λ7155and[Niii]λ7378 (Pignataetal.,2008)around270days.The∼ 4700Åfeatureis (2007)suggestthatthelineisSiiii.Ciλ10693isnotdetectedin similar in SN 2010ev and SN 2002dj, although slightly more ourspectra,butpossiblycontributestoMgiiλ10927. pronounced in the latter. In SN 2003du this feature appears to be stronger. Also, the [Feii] λ7155 and [Niii] λ7378 lines are blueshifted. This shift may suggest an asymmetry during the initial deflagration of the explosion in the direction away The H-bandbreakratio (R = f /f ) definedby Hsiaoetal. from the observer (Maedaetal., 2010a). At 270 days, we find 1 2 v = 2150 ± 220 km s−1, inferred from the average of the (2013) as the ratio between the maximum flux level redwards neb Dopplershiftsoftheemissionlinesof[Feii]λ7155and[Niii] of 1.5 µm (f1) and the maximum flux just bluewards of 1.5 µm (f ), can be seen in the spectra of SN 2010ev at 2.9 days. λ7378. Redshifted nebular velocities have been seen to relate 2 The break at this epoch increases from R = 1.26 ± 0.14 to with HVG and reddercolors(Maedaetal., 2011;Fo¨rsteretal., 2012) and with narrow Nai D equivalent width (Fo¨rsteretal., 2.14± 0.11 at 6.9 days and takes the maximum value at 14.9 days (R = 3.11 ± 0.09). Hsiaoetal. (2013) found that this 2012).WeconfirmthesetrendswithSN2010ev. parameter appears to peak uniformly around 12 days past B-bandmaximum,andthatitiscorrelatedwith∆m (B).Using 15 3.4.NIRSpectralevolution the mean decline rate estimated by Hsiaoetal. (2013) for a sample of SNe Ia, we measure the ratio at 12 days and find TheNIRspectraofSN2010evbetween−6to15dayswithre- R = 3.39±0.15, which corresponds well with our ∆m (B) 12 15 specttoB arepresentedinFigure8.Theearlyspectrashowa estimate(Hsiaoetal.2013,Figure11). max bluepseudo-continuumwithaweakfeatureat∼10500Å which At6.9daysthespectrumshowsemissionfeaturespresentat correspondstoMgiiλ10927(Wheeleretal.,1998).Thestrength 15500 Å and 17500 Å. These features are attributed to blends ofthisfeatureseemstobeconstantwithtime,whileotherlines ofirongoupelements:Coii,FeiiandNiii(Wheeleretal.1998; are getting stronger.Near ∼ 16500Å a weak feature is clearly Marionetal. 2003). Above 20000 Å, lines of Coii dominate visible, which has been identified as Siii by Galletal. (2012) the spectrum (Marionetal., 2009). The presence of these lines and as Feiii by Hsiaoetal. (2013). Near ∼ 20800Å we detect meansthatthespectrum-formingregionhasrecededenoughto afeaturewhichhasnotbeenclearlyidentified,butaccordingto reachtheirongroupdominatedregion. Benettietal.(2004)thislineisduetoSiii,whileStanishevetal. 7 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. NIR spectra -6.1 d of SN 2010ev -4.1 d -2.1 d -1.1 d -0.1 d +0.9 d +2.9 d +6.9 d +14.9 d 1.0 1.5 2.0 2.5 Fig.8.NIRSpectraofSN2010evtakenbetween∼ −7and∼15dayswithX-Shooter.Thespectraaredisplayedinlogscale.Each spectrumhavebeencorrectedforredshiftandshiftedbyanarbitraryamountforpresentation.Thephasesarelabeledontheleft. 3.5.Expansionvelocities findingsofHsiaoetal.(2013),whoshowthatthevelocityisre- markably constant after a short period of decline in very early The analysis of the spectra indicate large and rapidly decreas- phases.After1daypastmaximum,theMgiifeatureisdifficult ing expansion velocities due to the rapidly receding spectrum- tomeasureduetotheblendwithotherlines. forming region to deeper layers with time. In Figure 9, we From the velocity evolution of Siii λ6355 between max- presentthevelocityevolutionforselectedlinesofSiii,Caii,Sii imum and 20 days, we obtain a velocity gradient of v˙ = Si andMgii.Itclearlyshowsthattheexpansionvelocityof Caiiis 164±7 km s−1 d−1, whichplacesSN 2010evamongthe HVG higherthanSiii.TheSiiiminimumevolvesfrom14800kms−1 group (Benettietal., 2005). This result is comparable with the at-7daysto10200kms−1 at19days,whileatthesameepoch definitions of velocity gradient put forward by Blondinetal. CaiiH&Kdecreasefrom20100to14000kms−1 andtheCaii (2012) and Folatellietal. (2013). In the former we obtain IR triplet from 17000 to 11900 km s−1. This implies that the ∆v /∆t =166±14kms−1d−1,whileinthelatterwefind Caiilinesmostlyformintheoutershelloftheejecta,whileSii, ∆vabs(Si)[=+0,3+1201]0±183kms−1.Tobeconsistentwiththeunits, 20 whichhasahigherionizationpotential,formsindeeperlayers, we dividethislast valueby20 daysandwe obtain160.5±9.2 resultinginlowerabsorptionvelocities(11400at-7daysto8600 kms−1d−1.SincetheSiiivelocityinSN2010evisquasi-linear, kms−1at5daysandthendisappears).Meanwhile,Mgiiλ10900 allthreegradientsagreewitheachother. Åshowsanearlyconstantvelocity,whichisconsistentwiththe 8 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. CaII H & K 3945 2010ev SiII 4130 2009Y SII 5449 2006X SII 5622 2005cf SiII 5972 2004dt SiII 6355 CaII IR 8578 2003du Mg IR 10927 2002dj 2002bo 1994D B15 Model H07 Template Fig.9.Evolutionof expansionvelocitiesof SN 2010evderived Fig.10.Siiiλ6355expansionvelocityevolutionofSN 2010ev fromthemaximumabsorptionsofdifferentlines. derivedfromtheminimumoftheabsorptionline,comparedwith otherSNe:SN2009Y,SN2006X(Wangetal.,2008),SN2005cf (Pastorelloetal., 2007), SN2004dt (Altavillaetal., 2007), InFigure10wecomparethetimeevolutionoftheexpansion SN2003du (Stanishevetal., 2007), SN2002dj (Pignataetal., velocityofSiiiλ6355witheightwellstudiedSNeIa.Itcanbe 2008), SN2002bo (Benettietal., 2004), SN1994D (Patatetal., 1996),H07template,andB15model. clearlyseenthatthevelocityevolutionofSN2010ev,SN2002bo and SN 2002djare consistent with the HVG class. In contrast, SN 1994D and SN 2005cf belong to the LVG group. Table 3 3.6.Extinctionfromthelight-curve showsthevelocitygradientfortheseSNemeasuredindifferent ways.SN2010evhasoneofthehighestv˙Sivalue.Figure10also ThenatureofredcolorstowardsSNIaisstilldebated.Itisnot showsthe velocityevolutionfor H07templateandB15 model. clear what is intrinsic to the SN and what is due to reddening Asnotedabove,theB15modelgivesbetteragreementwithour frommaterialinthelineofsight.Recentclaimsofcircumstellar SN, while the H07 templete gives better results for the LVG interaction have fed the question of whether their color evolu- group. tion and the atypical inferred host extinction laws actually re- latetonearbymaterialejectedclosetoexplosion.Inthissection weexploredifferentmethodstoestimatethereddeningandex- Table3.VelocitydeclineforthesampleusedinFigure10.The tinctionlawtowardsSN2010ev,aswellasanyotherevidences secondcolumnisthemeanvelocitydeclinebetweenmaximum for CSM from a photometric perspective. The B − V color at and +10 days (Blondinetal., 2012). The third column is es- B obtained from SiFTO is 0.29±0.06. This value is above max timated in the same way but between maximum and 20 days thetypicalvaluesofthetypeIaSNewhichhavecoloratmaxi- (Folatellietal., 2013). The last column is derived doing a fit mumbetween−0.2 < B−V < 0.2(e.gGonza´lez-Gaita´netal., between maximum and the last available value (Benettietal., 2014),sothatthehost-galaxyextinctionappearstobesignificant 2005). fromaphotometricpointofview.Withtherelationproposedby Phillipsetal. (1999), using the maximum-light colors we esti- SN ∆vabs/∆t[+0,+10] ∆v20(Si)/20 v˙Si⋆ mate E(B−V)Host = 0.26±0.07.Thisresultisconsistentwith [kms−1d−1] [kms−1d−1] [kms−1d−1] thevalueobtainedthroughtherelationofFolatellietal.(2010): 2003du 17 33 31 E(B−V) =0.29±0.05andwithE(B−V) =0.29±0.02 Host Host 2005cf 52 54 35 givenbySNooPy.WesummarizethesefindingsinTable4. 1994D 64 54 39 Extensiveevidence(e.gRiessetal.,1996;Elias-Rosaetal., 2009Y 96 86 125 2006;Conleyetal.,2007;Krisciunasetal.,2007;Goobaretal., 2002bo 122 115 110 2014) suggests that at least some SNe Ia suffer from a lower 2002dj 145 132 86 2010ev 166 160 164 characteristicRV reddeninglawthantheGalacticaveragevalue 2006X 235 179 123 of RV = 3.1 (Fitzpatrick&Massa, 2007). It has been claimed 2004dt 244 245 160 that such variation could be attributed to CSM near the super- nova(Wang,2005;Goobar,2008;Amanullah&Goobar,2011). ⋆ Taken fromMaedaetal.(2010a),except thevalue ofSN2010ev, Infact,thereisanintriguingtrendoflowR ’sandhighextinc- V whichwasestimatedinthiswork. tion towards SNe (Mandeletal., 2011; Kawabataetal., 2014) which raises the question of whether interstellar extinction to- wards extragalactic sites with large amounts of dust is differ- 9 Gutie´rrezetal.:SN2010ev:AreddenedHVGSN. Table4.LineofsightextinctionA ,reddeninglawR andcolorexcessE(B−V)forSN2010evaccordingtodifferentspectroscopic V V andphotometrictechniques. A R E(B−V) Reference V V MILKYWAY 0.28±0.06⋆ ··· ··· MWdustextinctionmaps(Schlafly&Finkbeiner,2011) ··· ··· 0.147±0.003 EW(NaiD)viaTurattoetal.(2003) ··· ··· 0.169±0.034 EW(NaiD)viaPoznanskietal.(2012) 0.28±0.02 ··· ··· MWNaiDcolumndensity(Phillipsetal.,2013) HOST ··· ··· 0.26±0.07 MaximumlightcolorsviaPhillipsetal.(1999) ··· ··· 0.29±0.05 MaximumlightcolorsviaFolatellietal.(2010) ··· ··· 0.29±0.02 SNooPyfit(Burnsetal.,2011) 0.50+0.17 1.54+0.57 ··· MCMClight-curvefit(Phillipsetal.,2013;Burnsetal.,2014) −0.19 −0.59 – 1.54±0.65 0.25±0.05 Colorexcessfit(thiswork) ··· ··· 0.107±0.008 EW(NaiD)via(Turattoetal.,2003) ··· ··· 0.085±0.050 EW(NaiD)via(Poznanskietal.,2012) 0.38±0.02 ··· ··· NaiDcolumndensity(Phillipsetal.,2013) ··· ··· 0.53±0.09 EW(DIB)λ5780Åvia(Lunaetal.,2008) 1.18±0.01 ··· ··· EW(DIB)λ5780Å(Phillipsetal.,2013) ··· ··· 0.50±0.04 EW(DIB)λ6283Åvia(Lunaetal.,2008) 0.24±0.03 ··· ··· Kicolumndensity(Phillipsetal.,2013) ··· .2 ··· Continuumpolarization(Zelayaetal.,2015) ⋆ TheerroriscalculatedfromthedifferencewithSchlegeletal.(1998). ent from the Milky Way (MW), or if some nearbymaterial af- fectsthe colorof SNe Ia in such a way as to mimic thiseffect. 0.5 SN2010evisreddenedandisthusagoodcandidateforlowR . V CCM MW In order to estimate a reddening law for SN 2010ev, we CCM Rv= 1.53+/-0.64 calculate the color excesses at maximum at different wave- Goobar p=-1.6+/-0.48 SALT2 c=0.19+/-0.01 lengths to fit them to various reddening laws in a similar way toFolatellietal.(2010).Firstly,weobtaincolors(V −X)at B- bandmaximumlightfor bands X = u′,B,g′,r′ and i′ obtained fromourSiFTOfit.ThesecolorshavebeenK-correctedthrough 0 the H07 template warped to the observed photometric colors, andthencorrectedforMWextinction.Toobtaincolorexcesses weuseintrinsiccolorsfromboththeH07templateandtheB15 model. The resulting colorexcessesusing intrinsic colorsfromthe B15 model are shown in Figure 11, where we also show dif- -0.5 ferent reddening law fits. The best reddening law we find for Cardellietal. (1989), modifiedby O’Donnell(1994) (CCM) is R =1.54±0.65withE(B−V)=0.25±0.05,whichisconsis- v tentwiththemodelbyFitzpatrick(1999)(R =1.72±0.60),and v is also consistent with the reddeninglaw of Goobar (2008) for 1 1.5 2 2.5 3 circumstellardust.ThereddeninglawofSN2010evisdifferent from standard values for the MW and is consistent with other valuesofreddenedSNe.Thisarguesfordifferentdustproperties suchassizeintheCSMorISMaroundtheSN,oracombination Fig.11.Color excesses E(V −X) vs 1/λforSN 2010ev.Lines of normal dust from CSM and ISM (Foleyetal., 2014). If we arefitstotheexcesseswithastandardR =3.1(solidblack)and weretousetheintrinsiccolorsoftheH07templateinstead,the v free R = 1.54 (black dotted) Cardellietal. (1989) extinction R obtainedwouldbeevenlower.SuchalowR forSN2010ev v V V law,aGoobar(2008)law(bluedashed)andaSALT2colorlaw has recently also been constrained by Burnsetal. (2014) who (Guyetal.,2007)fit(dotteddashedred). applied a detailed Baysian analysis to a large sample of SN Ia lightcurves.They obtainedR = 1.54+0.57 and A = 0.50+0.17 V −0.59 V −0.19 whichyieldsE(B−V)=0.32,consistentwithourapproach.One canseethattheu′bandiscrucialtodifferentiatebetweendiffer- vestigatetheevolutionofthereddeninglaw.Wedonotfindany entreddeninglawvalues.TheNIRcouldhelptoconstrainthese significant change for R nor E(B − V) between −4 and +15 V estimatesfurther,howeverwedonothaveNIRphotometry. daysfrommaximum.Thisarguesfornoevolutionandtherefore We did similar fits to data at other epochs, in order to in- no nearby dust. We note that for SN 2014J, a highly redenned 10