ebook img

Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States PDF

738 Pages·2019·7.799 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States

Birkhäuser Advanced Texts Basler Lehrbücher Pavol Quittner Philippe Souplet Superlinear Parabolic Problems Blow-up, Global Existence and Steady States Second Edition BirkhäuserAdvancedTextsBaslerLehrbücher Serieseditors StevenG.Krantz,WashingtonUniversity,St.Louis,USA ShrawanKumar,UniversityofNorthCarolinaatChapelHill,ChapelHill,USA JanNekováˇr,Sorbonne Université,Paris,France Moreinformationaboutthisseriesathttp://www.springer.com/series/4842 Pavol Quittner • Philippe Souplet Superlinear Parabolic Problems Blow-up, Global Existence and Steady States Second Edition Prof. Dr. Pavol Quittner Prof. Dr. Philippe Souplet Department of Applied Mathematics Laboratoire Analyse Géométrie and Statistics et Applications Comenius University Université Paris 13 – Sorbonne Paris Cité Mlynská Dolina CNRS UMR 7539 842 48 Bratislava 99, av. Jean Baptiste Clément Slovakia 93430 Villetaneuse France ISSN 1019-6242 ISSN 2296-4894 (electronic) Birkhäuser Advanced Texts Basler Lehrbücher I SBN 978-3-030-18220-5 ISBN 978-3-030-18222-9 (eBook) https://doi.org/10.1007/978-3-030-18222-9 © Springer Nature Switzerland AG 2007, 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Contents Introduction to the first edition........................................ xi Introduction to the second edition ..................................... xiv 1. Preliminaries.......................................................... 1 I. MODEL ELLIPTIC PROBLEMS 2. Introduction........................................................... 7 3. Classical and weak solutions........................................... 7 4. Isolated singularities................................................... 12 5. Pohozaev’s identity and nonexistence results........................... 18 6. Homogeneous nonlinearities............................................ 21 7. Minimax methods..................................................... 30 8. Liouville-type results................................................... 36 1. Statements of the Liouville-type results............................. 37 2. Proofs of Liouville-type theorems for elliptic inequalities............. 40 3. Proof of Theorem 8.1(i) based on integral bounds, and related singu- larity estimates..................................................... 42 4. Proofs of Liouville-type theorems based on moving planes........... 49 9. Positive radial solutions of ∆u+up =0 in Rn.......................... 59 10. A priori bounds via the method of Hardy-Sobolev inequalities.......... 65 11. A priori bounds via bootstrap in Lp-spaces............................. 71 δ 12. A priori bounds via the rescaling method............................... 75 13. A priori bounds via moving planes and Pohozaev’s identity............. 78 II. MODEL PARABOLIC PROBLEMS 14. Introduction........................................................... 85 15. Well-posedness in Lebesgue spaces..................................... 85 16. Maximal existence time. Uniform bounds from Lq-estimates............ 98 17. Blow-up............................................................... 104 18. Fujita-type results..................................................... 113 19. Global existence for the Dirichlet problem.............................. 124 1. Small data global solutions......................................... 124 Asymptotic stability of the zero solution......................... 124 Potential well theory............................................ 129 2. Structure of global solutions in bounded domains................... 135 3. Diffusion eliminating blow-up....................................... 141 v vi Contents 20. Global existence for the Cauchy problem............................... 146 1. Small data global solutions......................................... 146 2. Global solutions with exponential spatial decay..................... 154 3. Asymptotic profiles for small data solutions......................... 156 4. Small data in scale-invariant Morrey spaces......................... 168 5. Blow-up for large Morrey norm and the separation problem......... 170 21. Parabolic Liouville-type results........................................ 173 22. A priori bounds........................................................ 188 1. A priori bounds in the subcritical case.............................. 189 2. Boundedness of global solutions in the supercritical case............. 194 3. Global unbounded solutions in the critical case...................... 200 4. Estimates for nonglobal solutions................................... 205 5. Partial results in the supercritical case for nonconvex domains....... 207 23. Blow-up rate.......................................................... 210 1. The lower estimate................................................. 210 2. The upper estimate: summary ..................................... 212 3. The upper estimate for time-increasing solution..................... 215 4. The upper estimate in the subcritical case: the method of backward similarity variables ................................................. 217 5. The upper estimate for pS ≤p<pJL: intersection-comparison ...... 222 6. Some other applications of backward similarity variables ............ 227 24. Blow-up set and space profile.......................................... 233 1. Single-pointblow-upforradialdecreasingsolutionsandfirstestimates of the space profile................................................. 233 2. Properties of the blow-up set....................................... 239 3. Refined single-point blow-up space profiles.......................... 242 25. Self-similar blow-up behavior.......................................... 244 1. Space-time profile in similarity variables in the subcritical case...... 244 2. Refined space-time blow-up behavior for radially decreasing solutions. 252 3. Other blow-up profiles in the sub- and supercritical cases............ 265 26. Universal bounds and initial blow-up rates............................. 269 27. Complete blow-up..................................................... 286 28. Applications of a priori and universal bounds........................... 300 1. A nonuniqueness result............................................. 300 2. Existence of periodic solutions...................................... 304 3. Existence of optimal controls....................................... 305 4. Transition from global existence to blow-up and stationary solutions. 306 5. Decay of the threshold solution of the Cauchy problem.............. 311 6. Parabolic Liouville-type theorems for radial solutions................ 318 29. Decay and grow-up of threshold solutions in the super-supercritical case 320 Contents vii III. SYSTEMS 30. Introduction........................................................... 327 31. Elliptic systems........................................................ 327 1. A priori bounds by the method of moving planes and Pohozaev-type identities........................................................... 329 2. Liouville-type results for the Lane-Emden system................... 336 2a. Liouville-type results for other systems.............................. 341 3. A priori bounds by the rescaling method............................ 343 4. A priori bounds by the Lp alternate bootstrap method.............. 346 δ 32. Parabolic systems coupled by power source terms...................... 352 1. Well-posedness and continuation in Lebesgue spaces................. 353 2. Blow-up and global existence....................................... 358 3. Fujita-type results.................................................. 360 4. Blow-up asymptotics............................................... 364 33. The role of diffusion in blow-up........................................ 369 1. Diffusion preserving global existence................................ 370 Systems with dissipation of mass................................ 370 Systems of Gierer-Meinhardt type............................... 384 2. Diffusion inducing blow-up.......................................... 389 Systems with dissipation of mass and unequal diffusions.......... 389 Systems with dissipation of mass, equal diffusions and mixed boundary conditions......................................... 394 Systems with equal diffusions and homogeneous Neumann bound- ary conditions................................................ 397 Diffusion-induced blow-up for other systems..................... 400 3. Diffusion eliminating blow-up....................................... 402 IV. EQUATIONS WITH GRADIENT TERMS 34. Introduction........................................................... 405 35. Well-posedness and gradient bounds................................... 406 36. Perturbations of the model problem: blow-up and global existence...... 411 37. Fujita-type results..................................................... 422 38. A priori bounds and blow-up rates..................................... 430 39. Blow-up sets and profiles............................................... 441 40. Diffusive Hamilton-Jacobi equations and gradient blow-up on the bound- ary.................................................................... 448 1. Gradient blow-up and global existence.............................. 448 2. Asymptotic behavior of global solutions............................. 451 3. Space profile of gradient blow-up.................................... 457 4. Time rate of gradient blow-up...................................... 463 viii Contents 41. An example of interior gradient blow-up................................ 472 V. NONLOCAL PROBLEMS 42. Introduction........................................................... 475 43. Problems involving space integrals (I).................................. 475 1. Blow-up and global existence....................................... 476 2. Blow-up rates, sets and profiles..................................... 479 3. Uniform bounds from Lq-estimates.................................. 492 4. Universal bounds for global solutions................................ 493 44. Problems involving space integrals (II)................................. 496 1. Transition from single-point to global blow-up....................... 496 2. A problem with control of mass..................................... 501 3. A problem with variational structure................................ 510 4. A problem arising in the modeling of Ohmic heating................ 511 45. Fujita-type results for problems involving space integrals............... 517 46. A problem with memory term.......................................... 521 1. Blow-up and global existence....................................... 521 2. Blow-up rate....................................................... 523 APPENDICES 47. Appendix A: Linear elliptic equations.................................. 527 1. Elliptic regularity................................................... 527 2. Lp-Lq-estimates.................................................... 529 3. Some elliptic operators in weighted Lebesgue spaces (I)............. 532 4. Some elliptic operators in weighted Lebesgue spaces (II)............. 536 48. Appendix B: Linear parabolic equations................................ 541 1. Parabolic regularity................................................ 541 2. Heat semigroup, Lp-Lq-estimates, decay, gradient estimates......... 542 3. Weak and integral solutions......................................... 547 49. Appendix C: Linear theory in Lp-spaces and in uniformly local spaces.. 551 δ 1. The Laplace equation in Lp-spaces.................................. 552 δ 2. The heat semigroup in Lp-spaces.................................... 554 δ 3. Some pointwise boundary estimates for the heat equation........... 556 4. Proof of Theorems 49.2, 49.3 and 49.7.............................. 560 5. The heat equation in uniformly local Lebesgue spaces............... 564 6. The heat equation in Morrey spaces................................. 566 50. Appendix D: Poincar´e, Hardy-Sobolev, and other useful inequalities.... 567 1. Basic inequalities................................................... 567 2. The Poincar´e inequality............................................ 568 3. Hardy and Hardy-Sobolev inequalities.............................. 570 Contents ix 51. AppendixE:Localexistence, regularityandstabilityforsemilinearpara- bolic problems........................................................ 572 1. Analytic semigroups and interpolation spaces...................... 572 2. Local existence and regularity for regular data..................... 576 3. Stability of equilibria.............................................. 591 4. Self-adjoint generators with compact resolvent..................... 594 5. Singular initial data............................................... 601 6. Uniform bounds from Lq-estimates................................. 611 7. An elementary proof of local well-posedness for problem (14.1) in L∞(Ω)............................................................ 613 52. Appendix F: Maximum and comparison principles. Zero number ...... 614 1. Maximum principles for the Laplace equation...................... 615 2. Comparison principles for classical and strong solutions............ 616 3. Comparison principles via the Stampacchia method................ 620 4. Comparison principles via duality arguments....................... 622 5. Monotonicity of radial solutions.................................... 626 6. Monotonicity of solutions in time.................................. 627 7. Systems and nonlocal problems.................................... 629 8. Zero number...................................................... 634 53. Appendix G: Dynamical systems...................................... 636 53a. Appendix Ga: Summary of positive radial steady states and self-similar profiles of (18.1)...................................................... 640 54. Appendix H: Methodological notes.................................... 644 55. Appendix I: Selection of open problems............................... 657 Bibliography.......................................................... 661 List of Symbols....................................................... 717 Index................................................................. 719

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.