ebook img

Superdiffusion revisited in view of collisionless reconnection PDF

0.77 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Superdiffusion revisited in view of collisionless reconnection

ManuscriptpreparedforAnnalesGeophysicæ withversion3.2oftheLATEXclasscopernicus.cls. Date: 12May2014 Superdiffusion revisited in view of collisionless reconnection 4 R.A.Treumann∗1,2andW.Baumjohann3 1 0 1DepartmentofGeophysicsandEnvironmentalSciences,MunichUniversity,Munich,Germany 2 2DepartmentofPhysicsandAstronomy,DartmouthCollege,HanoverNH03755,USA y 3SpaceResearchInstitute,AustrianAcademyofSciences,Graz,Austria a M ∗VisitingtheInternationalSpaceScienceInstitute,Bern,Switzerland 9 Abstract. The concept of diffusion in collisionless space whereclassicaldiffusionispracticallyinhibitedonallphys- ] h plasmas like those near the magnetopause and in the geo- icallyinterestingprocesses. (Thelessinterestingcaseγ<1 p magnetictailduringreconnectionisreexaminedmakinguse would refer to subdiffusion.) One of those processes is re- 35 - ofthedivisionofparticleorbitsintowaitingorbitsandbreak- connection, the dominant mechanism for plasma and mag- e c5 outsintoballisticmotionlyingatthebottom,forinstance,of neticfieldtransportacrossmagneticboundariesrepresented a Lévy flights. The rms average displacement in this case in- bythincurrentsheets/layers. p creases with time, describing superdiffusion, though faster Reconnectionhastheenormousadvantageoverglobaldif- s . than classical, is still a weak process, being however strong 40 fusionofbeinglocalized,withthemainphysicsofmagnetic s enough for supporting fast reconnection. Referring to two mergingandplasmamixingtakingplaceinanextraordinar- c i kindsofnumericalparticle-in-cellsimulationswedetermine ily small spatial region the linear size shorter than the elec- s10 y theanomalousdiffusioncoefficient,theanomalouscollision troninertiallength<λe=c/ωe. Inthisnote,basedonavail- h frequencyonwhichthediffusionprocessisbased,andcon- able numerical simulations, we demonstrate by estimating p structarelationbetweenthediffusioncoefficientsandthere- theanomalouscollisionfrequencyν thatmagneticmerging 45 a [ sistivescale. Theanomalouscollisionfrequencyfromelec- during reconnection can well be understood as a localized 2 tron pseudo-viscosity in reconnection turns out of being of anomalous diffusion process. This result satisfactorily uni- 15 v the order of the lower-hybrid frequency with the latter pro- fies the two originally different views on plasma transport 9 vidingalowerlimit,thusmakingsimilarassumptionsphys- acrossanapparentlyimpermeableboundarylikethemagne- 1 icallymeaningful. Tentativethoughnotcompletelyjustified topause. 5 50 2 useoftheκdistributionyieldsκ≈6inthereconnectiondif- Anomalous diffusion is also of interest in cosmic ray . fusionregion,andtheanomalousdiffusioncoefficienttheor- physics, where it is frequently described as quasilinear dif- 120 derofseveraltimesBohmdiffusivity. fusion resulting from wave-particle interactions, formulated 0 4 in the Fokker-Planck phase space-diffusion formalism. Un- Keywords. Diffusion, Lévy flights, κ-distribution, Recon- 1 fortunately, most of the observed diffusive particle spectra nection 55 : (cf., e.g. Christon et al., 1989, 1991, for the most elaborate v i observations in near-Earth space) barely exhibit the shapes X resulting from quasilinear diffusion. They turn out power ar25 1 Introduction law both in energy and momentum space, most frequently beingdescribedbestbyso-calledκ-distributions 60 Anomalousdiffusionisthesummaryheadingofallprocesses where the ensemble averaged mean-square displacement (cid:18) x2 (cid:19)−(κ+1+d/2) p(κ|x)=A 1+ (1) (cid:104)x2(cid:105)∝tγ deviates from linear time dependence γ=1 with κ κ(cid:96)2 classical (Einstein) diffusion coefficient D =2Tν /m, cl c with normalization factor A, d dimensionality, and (cid:96) corre- with T temperature, and ν classical binary collision fre- 30 c lation length (cf., e.g., Livadiotis & McComas, 2010, 2011, quency. For γ>1 one speaks of superdiffusion, which is 2013, for an almost complete compilation of the properties of particular importance in the collisionless space plasma ofκ-distributions)withhigh-energy/high-momentumslopes 65 Correspondenceto: R.A.Treumann to which the parameters κ are related. Estimated κ values ([email protected]) from the magnetospheric observations range in the interval 2 R.A.TreumannandW.Baumjohann: Superdiffusion 5<κ<10 (Christon et al., 1991). Such distributions were connection of the above probability spectrum to real space introducedbyVasyliunas(1968), followingasuggestionby distributions,inparticulartoκdistributions,isnon-trivial. S.Olbert,asbestfits.1 Inthetime-asymptoticlimit,κdistri- Thediffusionprocesscanbeenvisagedasconsistingofa 70 butionswereexplicitlyderivedbyHasegawaetal.(1985)and sequenceofnsteps(cf.,e.g.,Treumann,1997)bridgingthe 110 Yoon et al. (2012). Their q-equivalent relation to superdif- timefromt=0tot=t withtheparticlejumpingfromfirst n fusion has also been suggested (Tsallis et al, 1995; Prato waitingtonthwaitingposition,theexpectationvalueofthe & Tsallis, 1999; Bologna et al, 2000; Gell-Mann & Tsallis, latterbecomes 75 2004,andreferencestherein). (cid:90) n (cid:89) Forthepresentpuroposeswemakenodirectuseofthese (cid:104)x2(n)(cid:105)= x2p(n|x)ddx, p(n)= p(i). (3) distributionsasthey,apparently,playnoroleinreconnection. 1 Rather,aswedemonstrate,anomalousdiffusioninreconnec- The nth expectation value is proportional to the random 115 tion results from processes leading to waiting statistics and mean square of the displacement x2 and a power of the causinggyro-viscosity. 80 elapsedtimesequence. WorkinginFourier(ormomentum) spacek,multiplicationoftheprobabilitiesyields 2 Diffusionprocess p(n|k)=pn(k)∝exp(−ankα)∼ p(k(cid:48)) (4) withp(k(cid:48))theprobabilityofthenthtimestep. Hencek(cid:48)= Collisionlessdissipationandrelateddiffusionismediatedin120 kn1/α. Any real space coordinate therefore scales as x→ awidersensebycollisionlessturbulence(cf.,e.g.,Allegrini xn−1/α. Forthereal-spaceprobabilitythisimpliesthat etal.,1996). Herebinarycollisiontimesτ (cid:29)τ byfarex- c a 85 ceed anomalous interaction times. Any real non-collisional p(n|x)ddx −→ p(cid:0)x/n1/α(cid:1)ddx/nd/α (5) diffusion proceeds on times much shorter than classical (in comparison infinite) diffusion times with absolute values of yielding from Eq. (3) for the nth displacement expectation anomalousdiffusioncoefficientsbeingsmall. value 125 The superdiffusion process can be considered as a se- (cid:10)x2(n)(cid:11)=n2/α(cid:104)x2(cid:105) (6) quence of «waiting times» when the particle is in a quasi- 90 stationarytrappedstatefollowedby«breakouts»intoballis- withα<2notpreciselyknownbuttobedeterminedbelow tic motion until the next trapping and waiting period starts fromnumericalsimulations. Themean-squaredisplacement (Shlesinger et al., 1987; Klafter et al., 1990). Such particle shouldbeobtainedfromthesecondmomentoftheunderly- motions are typical, for instance, for Lévy flights (cf., e.g., ingreal-spacedistributionfunction,forinstancetheκdistri- 130 95 Shlesingeretal.,1993). bution,yielding Working in d-dimensions, the probability of a particle to occupy a particular volume element during a process, as- (cid:104)x2(cid:105)=21dκ(κ+1)(cid:96)2 (7) sumed to be caused by some unspecified (nonlinear) inter- anexpressionwewillmaketentative(notfullyjustifiedand action between particles and plasma waves, is most conve- forthepresentpurposesmarginal)useofonlyattheveryend nientlyformulatedinwavenumberspacekwithprobability 100 inapplicationtoreconnection. 135 spectrum p(k)∝exp(−akα), (2) 3 Diffusioncoefficient where a is some positive constant, and 0<α∈R a real In using probability steps n, time has been discretized into number. α≥2 reproduces the classical Gaussian probabil- piecesoffreeflight,waitingandsomekindofinteraction. In 105 ity spectra (Tsallis et al, 1995). Non-Gaussian spectra have theaveragetheinteractioniscoveredbyafictitiousanoma- flatter tails implying α<2, indicating superdiffusion. The lous collision frequency ν . Ordinary binary collision fre- 140 a quencies ν are very small, suggesting a scaling ν (cid:29)ν c a c 1Theoretical attempts of justifying solar wind κ-distributions with the anomalous timescale ν−1=τ (cid:28)τ =ν−1 much a a c c followed, invoking wave-particle interactions with inclusion of less than the collision timescale τ . The diffusion process c residualbinarycollisions(Scudder&Olbert,1979).Statisticalme- takesplaceinatimet<τ .Replacingthetimestepsn→ν t c a chanicalargumentswerebasedonnonextensivestatisticalmechan- themeansquarenthdisplacementbecomes ics(Tsallis,1988;Gell-Mann&Tsallis,2004). Fromkineticthe-145 ory they were identified as collisionless turbulent quasi-stationary (cid:104)x2(t)(cid:105)=(cid:104)x2(cid:105)(ν t)2/α (8) a statesfarfromthermalequilibriumresultingfromanomalouswave- particle interactions (Treumann, 1999a,b). There the role of the With γ=2/α it defines the anomalous diffusion coefficient temperatureT asthermodynamicderivativewasclarified(seealso D whenmultiplyingbyτ−1=ν a a a Livadiotis&McComas,2010).Therelationbetweenthenonexten- siveqandtheκparameterswasgivenfirstinTreumann(1997). Da(d,t)=(cid:104)x2(cid:105)(νat)2/ανa≡Dca(νat)2/α (9) R.A.TreumannandW.Baumjohann: Superdiffusion 3 as a function of time tν . Since ν (cid:29)ν , it is much less which 525000 had high energies and contribute most to the 150 a a c than the classical diffusion coefficient which in this case mean displacement as well as for the high time resolution, wouldcorrespondtofreeflight. Underanomalouscollisions the statistical error of the measurement is smaller than the the free flight is abruptly interrupted and reduced to non- widthofthelineinthisfigure!) 205 stochastic diffusion by the finite anomalous collision fre- Adoptingtheprobabilityspectrumbasedtheorytheexper- quencyν . imentallydeterminedslopeof2/α≈1.17oftheaveragedis- 155 a placementinFigure1tellsthatinthesesimulationsonehad 4 Evolution α≈1.71 (experimental) (10) Estimates of diffusion coefficients respectively γ based on210 avaluesubstantiallyfarawayfromtheGaussianlimitspec- tral slope α=2 and being less than it, thus indicating quite observations in space plasma are not only rare but unreli- strongsuperdiffusion. able. Theysufferfromthepracticalimpossibilityofanysuf- ficiently precise determination of particle displacements as 160 functionoftimeandthesubsequenttransitiontotheasymp- 5 Transitiontocollisionalstate totic state. In addition they are mostly based on quasi- linear theories of particular instabilities (Sagdeev, 1966; Anomalousdiffusionproceedsonafasterthanclassicaltime Liewer & Krall, 1973; Huba et al., 1977; Davidson, 1978; scale with time dependent diffusion coefficient which justi- Sagdeev, 1979; Huba et al., 1981; LaBelle & Treumann,215 165 fies the term superdiffusion. In spite of this, the coefficient 1988; Treumann et al., 1991; Yoon et al., 2002; Matthaeus D =(cid:104)x2(cid:105)ν infrontofthetimefactordeterminingtheab- ca a etal.,2003;Daughtonetal.,2004;Riccietal.,2005;Royter- solutemagnitudeofthediffusionisgenerallysmall. Itdoes shteynetal.,2012;Izutsuetal.,2013)whichdonotproperly not compensate for the absolute smallness of the diffusion accountforanynonlinearinteractions. coefficient. When, after a long time has elapsed the order 220 We therefore refer to high-resolution particle-in-cell sim- 170 of the classical collision time τ , classical diffusion takes c ulations (Scholer et al., 2000) performed in order to deter- overscatteringsomeparticlestolarger,someothersbackto mine the cross-magnetic field diffusion of ions near quasi- smaller displacements and setting the collisionless process perpendicularshocks. TheresultsarecompiledinFigure1. temporarilyoutofwork.Theaveragedisplacementofthevi- Theright-handsideofthefigureshowsonemacro-particle olentlyscatteredparticleswhosedisplacementlinehasbeen 225 orbit arbitrarily selected out of the large number of parti- 175 smeared out suddenly over a large spatial domain may now cles used in the simulation to determine their instantaneous followtheclassicallineartemporaryincrease. displacements from the origins of their trajectories in the One single elapsed binary collision time may not suffice simulationasfunctionofsimulationtimemeasuredinunits to stop the nonlinear collisionless interaction process. The of their identical (energy-independent) gyration frequency widelyscatteredparticlepopulationmaystillhavesufficient 230 ω =eB/m in the total magnetic field, which is the sum 180 ci i freedom to organize again into a softened collisionless dif- of the ambient and the self-consistently generated turbulent fusion which lasts until the next binary collision time has wavemagneticfield. Theparticleshiftsitspositionperpen- passed. During this second collisionless period the slope dicular to the magnetic field from its start point to the end should be flatter than the initial collisionless slope, and af- point in the simulation. It is found in a slowly changing ter statistically sufficiently many periods of elapsed classi- 235 waiting position, performs jumps to new waiting positions, 185 calcollisiontimesnocollisionlessmechanismsrevivesany- andendsupduringafinaljump. Suchanorbititneitheradi- more. Diffusion has by then become completely classical. abaticnorstochastic. ThesesequencesareschematicallyshowninFigure2. TheleftpartoftheFigureshowstheaveragedisplacement, ensemble averaged over the entire particle population, as 190 functionofsimulationtime.Afterperforminganinitialoscil- 6 Discussion lationtheaveragedisplacementssettleintoanaboutsmooth continuously increasing curve of constant slope (cid:104)(∆x)2(cid:105)∝ Waiting statistics offers an approach to anomalous diffu- 240 t1.17. sion in various regions of space plasmas where classical The slope of the final evolution of the average displace- (andneo-classical)diffusionprocessesareinappropriate,vi- mentisclosetobutbynomeansidenticalwithclassicaldif- olently failing to explain the transport of plasma and mag- 195 fusionwhichisshownbytheslopeofthetwostraightlines netic field. Application to numerical simulations near col- in the figure. Though the deviation in the slope is small, it lisionless shocks determined the value of α≈1.71 which 245 is nevertheless substantial and statistically significant, indi- turnsouttobeclosetobutsufficientlyfarbelowitsclassical catingasuperdiffusiveprocesswhichdeviatesfromclassical (Gaussian) limit α=2 for identifying superdiffusion. Su- diffusion. (We should note that, because of the large num- perdiffusioncoefficientsobtainedaresmallbutincreasewith 200 berof∼6.3×106 macro-particlesusedinthesimulationof time. 4 R.A.TreumannandW.Baumjohann: Superdiffusion Ion trajectory 20 Mean Perpendicular Displacement 3 10 start 0 ‘super-diffusion’ 2 10 7_ waiting 〉 ∝ t1 . 1 7 ≈ t6 2x(Δ) ∝ t1 x / λi-20 jumping 〈 shock 1 10 simulation data classical diffusion -40 0 10 end 1 2 3 10 10 10 -60 Time (tω ) -20 0 20 ci y / λ i Fig.1.Two-dimensionalnumericalsimulationresultsofthemeandownstreamperpendiculardisplacementofionsnearaquasi-perpendicular supercriticalshock(shocknormalangleθ=87◦,AlfvénicMachnumberM =4asfunctionofsimulationtime(simulationdatatakenfrom A Scholeretal.,2000,courtesyAmericanGeophysicalUnion). Distancesaremeasuredinioninertiallengthsλ =c/ω withω ionplasma i i i frequency.Left:Theparticledisplacementperformsaninitialdampedoscillationbeforesettlingintoacontinuousdiffusiveincreaseattime about ω t∼40 [in units of the ion gyro frequency ω ]. The further time-evolution deviates apparently only slightly from the classical ci ci (linear) increase of the mean displacement, following a (cid:104)(∆x)2(cid:105)∝(ω t)1.17 power law. (Note that simulation-time limitations did not ci allowmonitoringthelong-timeevolutionoftheensemble-averagedsquaredisplacement,thusinhibitingdeterminationofthefinalstateof thediffusionprocess.) Right:Latetimetrajectoryofanarbitraryionofthesampleused. Theorbitisprojectedintotheplaneperpendicular tothemeanmagneticfieldwhichconsistsofasuperpositionoftheambientandwavemagneticfields.Theionorbitisneitheranundisturbed gyro-oscillationnorasmoothstochastictrajectory. Itconsistsofwaiting(trappedgyrating)partsandpartswhentheionsuddenlyjumps aheadalongdistancecausebysomebriefbutintenseinteractionbetweentheparticleandwavespectrum. Thisbreakoutofgyrationis typicalforrareextremeeventslikethoseinLévyflightsreferredtointhepresentpaper. The present theory is based on constant α for the en- maining constant. Under such circumstances the diffusion 250 tire diffusion process. This might be unrealistic. Real coefficient in Figure 2 never approaches the classical limit 270 powers α[W (t)] will turn out functionals of the time- butsettlesinsteadonitsmuchloweranomalouscollisionless w dependent turbulent wave levels W (t) which are gener- level (cid:10)Dfin(cid:11). The related processes lie outside the present w a ated self-consistently in the underlying turbulent collision- investigation. We may, however, estimate a lower bound lesswave-particleinteraction(foraderivationofthephase- on the average final diffusion coefficient (cid:10)Dfin(cid:11) assuming 255 a spacedistributioninparticularwave-particleinteractionscf., τ ≈ν−1,whichyields 275 f a e.g.,Hasegawaetal.,1985;Yoonetal.,2012,yieldingtime- asymptoticvaluesofthephase-spacepower-lawindexκde- D (cid:46)(cid:10)Dfin(cid:11) (12) pendingonwavepowerW ). ca a w Itmaybeexpectedthat,withincreasingwavelevelW (t), 260 w In the following we list a few practical consequences of anewcollisionlessequilibriumwillbereachedwherethedif- ourtheorywhichfocusononeofthemostinterestingprob- fusionprocess,infinitetimet∼τ ,approachesanothernew f lemsincollisionlessplasmaphysics,themechanismofcol- andapproximatelyconstantdiffusivity lisionlessreconnectionofmagneticfields. 280 lim D (t)−→Dfin(t(cid:38)τ )<D (11) t→τ a a f c f 6.1 Resistivescaleandrelationtoreconnection for ν−1(t=0)(cid:46)τ (cid:28)ν−1, with W (t(cid:38)τ ), α[W (t(cid:38) 265 a f c w f w τf)] both either constant or oscillating around their time- Wemayusetheseargumentstobrieflyinferabouttheresis- averaged mean values (cid:10)Ww(t(cid:38)τf)(cid:11),(cid:10)α(t(cid:38)τf)(cid:11), and the tivescaleLν,aquantityfrequentlyreferredtoindiscussions final average diffusion coefficient (cid:10)Dfin(τ (cid:46)t(cid:46)ν−1)(cid:11) re- of diffusion in presence of current flow. It plays a role in a f c R.A.TreumannandW.Baumjohann: Superdiffusion 5 Diffusion Coefficient Mean Displacement 3 10 1.0 ∝ t1.0 x〈 2 2 Dc 1.17 〈x 2 (t)〉 10 〉 (a D ∝t r / b D 1 . u 0.2 D fin ∝t1.17 10 nit a s ) 0 10 10-2 10-1 100 ν t 10-2 10-1 100 ν t c c Fig.2.SchematichypotheticalevolutionofthediffusioncoefficientforthecasesimulatedinFigure1untilthecollisionalclassicaldiffusion state would have been reached. Time is measured here in classical collision times ν−1. Left: The anomalous increase of the diffusion c coefficientwithtime.Thegrowthofthediffusioncoefficientgraduallycomestorestaftertheclassicalcollisiontimehaselapsed.Dotted:A timedependentnonlinearstationarystateneverapproachingclassicaldiffusion. Right: Timeevolutionoftheaverageparticledisplacement increasinglikeshowninFigure1.Whenapproachingtheclassicalcollisiontime,scatteringofparticlestobothlargerandsmallerdisplace- mentswidenthedisplacementrange,leadingtoareducedincreaseuntilthesecondcollisiontime. Similarlyafterthesecond,third,andthe followingcollisiontimes.Finally,theincreaseofthedisplacementsettlesintolinearintime,implyingclassicalorstationarydiffusion. thediffusiveevolutionofthemagneticfieldwhichfromthe et al., 2002) do not indicate any presence of sufficiently 285 inductionequationisgiveninitssimplestform highwaveamplitudesincollisionlessreconnectionrequired (Sagdeev, 1966, 1979) for the quasilinear generation of ∂B η 315 =∇×V×B+D ∇2B, D = =λ2ν (13) anomalous resistances. Numerical particle-in-cell simula- ∂t m m µ e 0 tions (cf., Treumann & Baumjohann, 2013, for a recent re- TheresistivescaleisdefinedasL2∼D t=λ2νtbeingde- view) confirmed instead that in all cases the main driver ν m e terminedthroughresistivityη=ν/(cid:15) ω2andelectroninertial of fast collisionless reconnection is the electron «pseudo- 0 e viscosity» implied by the presence of non-diagonal terms lengthλ =c/ω ,withplasmafrequencyω . Ittells,atwhat320 290 e e e (Hesse&Winske,1998;Hesseetal.,1999)inthethermally scaleresistivediffusionstartsaffectingtheplasmadynamics. anisotropicelectronpressuretensorP measuredinthesta- It is interesting to know how the resistive scale evolves e tionaryframeofthereconnectingcurrentlayerandaccount- with time in a nonlinearly active though collisionless ing for any subtle finite gyro-radius effects in the dynam- medium. Usingtheexpressionfortheproductν ttoreplace a ics of electrons in the inhomogeneous magnetic field of the νtgives 325 295 electron diffusion region where electrons perform bouncing L (cid:26)D (t)(cid:27)1/2 Speiserorbits. νa ∼ a ∼(ν t)1/α (14) λ D a e ca 6.2 Gyroviscosity for the resistive scale in units of λ , expressed through the e (timedependent)diffusioncoefficientDa.Thisindicatesthat Anexpressionfortheanomalouscollisionfrequencyνa that 300 tushcneatlirele.Dsisati∼ve(cid:10)sDcaafilne(cid:11)inwcrheeanseLswfiνanith∼tλimeeafprpormoaachveaslutehLeνiane<rtλiael330 µtiosVet/qhmueiNvvao,lleuwnmtitethovNeislceocthtsreiotyndeµpnsVseiut(ydo)or-akvniidnscetomhseaittymiciosvleifscocuuolnsadirtyrceoµflelkirisrniion=ng Small (anomalous) resistive scales imply fast magnetic frequencyνm(Huang,1987) diffusion as observed in collisionless systems like in recon- µ =NT/ν or µ =T/mν (15) nection. Since in collisionless plasma there is no resistive V m kin m diffusion, one concludes that any process causing diffusion 305 Formally,thisallowsforthedeterminationofν wheniden- 335 a will readily reduce the resistive scale to values below the tifying µ with the electron volume «pseudo-viscosity» µ V e electroninertialscalecausingcomparablyfastdissipationof (orkinematicpseudo-viscosityµ =µ /Nm )resulting e,kin e e magneticfieldsandfavoringreconnection. from the non-diagonal electron pressure tensor elements, a The remaining problem consists in finding an appropri- quantitywhichcanbedeterminedeitherfromobservationor ate expression for the equivalent anomalous «collision fre- 310 fromnumericalparticle-in-cellsimulations. Thisyields 340 quency» ν under collisionless conditions. Observations a (LaBelle & Treumann, 1988; Treumann et al., 1990; Bale ν ≈NT /µ =T /m µ (16) a e e e e e,kin 6 R.A.TreumannandW.Baumjohann: Superdiffusion withN theplasmadensityandT therelevantelectrontem- Thisvalueismorethanoneorderofmagnitudesmallerthan e perature for the pressure-tensor induced equivalent anoma- theoneofν obtainedabovefromgyro-viscousMHDthe- gv lous collision frequency. Macmahon (1965) derived an ory,rewrittenforelectrons.Still,itsvalueisuncertainforthe 390 MHD form of the full pressure tensor including finite ion- unknowndependenceonmassratioofthereconnectionelec- 345 gyroradiuscontributionsinthelimitofverystrongmagnetic tricfieldE inthesimulations. Assumingthatthisdepen- (cid:107),P fields,barelyapplicabletotheweakmagneticfieldreconnec- denceismoderate,theagreementissurprisinglyreasonable. tionsite. Asimplifiedversionofhisexpressionsneglecting Forthewantedpseudo-viscositythisgives heatfluxeswasgivenbyStasiewicz(1987)basedontheim- µ ≈T /m ν =T /m ν (cid:38)1.25T /m ω (21) plicitassumptionthatinstrongmagneticfieldsthemeanfree395 e,kin e es as e e a e e ce 350 pathisreplacedbytheion-gyroradius. Inviewofreconnec- withthefactorrinthedenominatorcanceling,aformsimilar tion, thisformhasbeenusedbyHau&Sonnerup(1991)in togyro-viscosityforbothsimulation andrealplasmaappli- application to rotational discontinuities (for the role of vis- cations. cositiesinviscousfluidscf.Landau&Lifshitz,1998). Adoptingtheabovenumericalestimateofν ,theanoma- a Inthisform,rewrittenfortherelevantelectrondynamics, lousdiffusioncoefficient 355 400 onehasµ (cid:39)T /m ω ,whichidentifiesν =ν ∼ω as e e e ce a gv ce D (t)=1.65×10−2D (ω t)1.17 (22) anelectrongyro-viscousMHDcollisionfrequencyoftheor- a ca ce der of the electron cyclotron frequency ωce=eB/me – in- increases slowly with time measured in electron cyclotron deed much larger than any Coulomb collision frequency. It periods. suggests that gyro-viscous superdiffusion means Bohm dif- 360 fusion. 6.4 Digressiononκ 6.3 Estimatesoftransportquantities 405 With the last formula we have, in principle, achieved our goal. Instead, use can be made of available numerical simula- However, someonemight wantto know theexplicit form tions (Pritchett, 2005) which quantitatively determined the ofthediffusioncoefficient. Forthisoneneedstodetermine 365 contributionoftheelectron-pressuretensor-inducedpseudo- thecoefficientDca,whichrequiresknowledgeof(cid:104)x2(cid:105)inthe viscositytothedissipativegenerationoftheparallelelectric410 electron exhaust. Since, from the simulations, no informa- field in guide-field reconnection (cf., Treumann & Baumjo- tionisavailableondisplacements,onehastorefertomodel hann, 2013, for a critical discussion). Pritchett (2005) ob- assumptionsforthedistributionfunctionp(x). tained for the maximum non-diagonal pressure-generated Amongthelimitednumberofsuchfunctionsavailableone fieldE intheinnerpartofthereconnectionsite(orelec- mayadopttheκdistributionEq. (1),eventhoughitisrather 370 (cid:107),P tronexhaustregion) 415 improbablethatinthetinyreconnectionregionandforthere- strictedreconnectiontimeanystationaryκdistributionswill E = (eN)−1|∇·P | (cid:46) 0.4V B (17) havesufficienttimetoevolve. (cid:107),P e A 0 Nevertheless,intheabsenceofanybetterchoice,onemay where N,B0,VA are the respective density, magnetic field tentatively evoke the relation α/2=κ(κ+d/2)−1 between outside the current layer, and Alfvén velocity base√d on B0.420 αandκ,asproposedfromnon-extensivestatisticalmechan- 375 The width of the current layer was Ls∼2λi=2 Msλes, ics(Tsallisetal,1995;Prato&Tsallis,1999;Bolognaetal, withsimulationmassratioMs=mi/mes=64.Onusingin- 2000;Livadiotis&McComas,2013)toholdinthesuperdif- dexsforsimulationquantities,realelectronmassesbecome fusionrangeα<2,andapplyitaswelltoourparticularre- me=rmes,withr=64/1840. WithcurrentJ,wemayput connectionproblem. Then,onusingthemeasuredvalueofα,wehaveκ≈5.9 425 η B λ ν B E = η |J| ∼ as 0 = es√as 0 (18) for d=2. This gives the two-dimensional κ-superdiffusion (cid:107),P as µ0 Ls 2 Ms coefficientfromEqs. (22), (7), and(9), withsquaredcorre- lationlength(cid:96)2=2T /m ν ,as Thus, the anomalous collision frequency corresponding to e e a 380 the pressure induced pseudo-viscosity in the simulation of D (t)≈11D (ω t)1.17 (23) aκ B ce thereconnectionprocesswasoftheorderof where D ≈T /m ω is of the order of the Bohm diffu- 430 B e e ce ν (cid:46) 0.8 (cid:112)M (V /c)ω = 0.8ω (19) sion coefficient. This value of ten times (!) Bohm diffu- as s A es ce,s sion is excessively large, implying the presence of extraor- with the second form of the right-hand side resulting when dinarily strong anomalous diffusion at the reconnection site √ accounting for the identity (V /c) M=ω /ω . In terms though being not in unacceptable disagreement with excep- 385 A ce e ofrealelectronmassesthelastexpressionbecomes 435 tionallyfastspontaneousreconnection. ForaGaussianprob- ability distribution one had (cid:104)x2(cid:105)=(cid:96)2d/2 and thus D (t)≈ a ν =ν r (cid:46) 0.03ω (20) D (ω t)1.17. a as ce B ce R.A.TreumannandW.Baumjohann: Superdiffusion 7 Itshould, however, bekeptinmindthatthederivationof Acknowledgements. ThisresearchwaspartofaVisitingScientist theκ-diffusioncoefficientEq. (23)isbasedonthearbitrary Program at ISSI, Bern. Hospitality of the librarians Andrea Fis- 440 assumption that the unknown distribution of displacements490 cherandIrmelaSchweizer, andthetechnicaladministratorSaliba inthenarrowelectronexhaustwouldindeedbeofthefamily F. Saliba, is acknowledged. RT thanks the referees for clarifying ofκdistributions. Whilethedeterminationoftheanomalous commentsandsuggestionsofrelatedliterature. collision frequency from the simulations used is very well justified,thereisnoobservational,noranytheoretical,justi- References ficationforthisadhocassertion,however. 445 Allegrini P, Grigolini P & West B J (1996) Dynamical ap- 6.5 Lowerlimitonν inreconnection a 495 proach to Lévy processes, Phys Rev E 54, 4760-4767, doi:10.1103/PhysRevE,54.4760 The above numerical simulation based estimates can be di- Bale S D, Mozer F S & Phan T D (2002) Observation of rectly applied to observations of reconnection in the mag- lower hybrid drift instability in the diffusion region at a netotail current sheet in order to infer about the anomalous reconnecting magnetopause, Geophys Res Lett 29, 2180, 450 collision frequency generated in reconnection. From an ap-500 doi:10.1029/2002GL016113 plicationalgeophysicalpointofviewthisismostinteresting. BolognaM,TsallisC&GrigoliniP(2000)Anomalousdiffusionas- Observed magnetic fields across the tail plasma sheet vary sociatedwithnonlinearfractionalderivativeFokker-Planck-like between1nT<B <10nT. Withthesevaluesoneobtains equation:Exacttime-dependentsolutions,PhysRevE62,2213- 0 2218,doi:10.1103/PhysRevE.62.2213 thefollowingrangefortheanomalouscollisionfrequencies ChristonSP,WilliamsDJ,MitchellDG,FrankLA&HuangCY duringreconnectionintheplasmasheet: 505 455 (1989)Spectralcharacteristicsofplasmasheetionandelectron populationsduringundisturbedgeomagneticconditions,JGeo- 4.9Hz < ν < 50Hz, ω ≈ 4.1 Hz (24) a lh physRes94,13409-13424,doi:10.1029/JA094iA10p13409 These reasonably high values follow directly from analysis ChristonSP,WillamsDJ,MitchellDG,HuangCY&FrankLA (1991)Spectralcharacteristicsofplasmasheetionandelectron of the simulations, compared to the lower-hybrid frequency510 populationsduringdisturbedgeomagneticconditions,JGeophys ω givenontherightforthelowervalueB=1nTonly.This lh Res96,1-22,doi:10.1029/90JA01633 estimated anomalous collision frequency at the magnetotail 460 DaughtonW,LapentaG&RicciP(2004)Nonlinearevolutionof reconnectionsiteistheresultofnon-stochasticprocessesin thelower-hybriddriftinstabilityinacurrentsheet,PhysRevLett theelectronexhaustdiffusionregionwhichgeneratetheout- 93,105004,doi:10.1103/PhysRevLett.93.105004 515 of diagonal pseudo-viscous terms in the electron pressure Davidson R D (1978) Quasi-linear stabilization of lower- tensor. It is responsible for the necessary superdiffusion at hybrid-drift instability, Phys Fluids 21, 1373-1380, the reconnection site which is required in the collisionless doi:10.1063/1.862379 465 reconnectionprocess. Gell-MannM&TsallisC,eds(2004)NonextensiveEntropy-Inter- The closeness of the lower-hybrid frequency ωlh to the520 disciplinaryApplications,OxfordUniversityPress,OxfordUK Hasegawa A, Mima K & Duong-van M (1985) Plasma distribu- rangeofanomalouscollisionfrequenciesindicatesthecolli- tionfunctioninasuperthermalradiationfield,PhysRevLett54, sionlesselectriccouplingbetweenelectronsandionsinany 2608-2610,doi:10.1103/PhysRevLett.54.2608 reconnectionprocess. 470 Hau L N & Sonnerup B U Ö (1991) Self-consistent gyroviscous Inaddition,itprovidesanimportantlowerlimit fluid model of rotational discontinuities, J Geophys Res 96, 525 15767-15778,doi:10.1029/91JA00983 ω (cid:46)min(ν ) (25) lh rec a Hesse M & Winske D (1998) Electron dissipation in collision- less magnetic reconnection, J Geophys Res 103, 26479-26486, onν incollisionlessreconnection,therebyaposteriorijus- a doi:10.1029/98JA01570 tifyingthefrequentlyfoundsurprisingcloseness(e.g.,Huba HesseM,SchindlerK,BirnJ&KuznetsovaM(1999)Thediffusion 530 475 et al., 1977; LaBelle & Treumann, 1988; Treumann et al., region in collisionless magnetic reconnection, Phys Plasmas 6, 1991;Yoonetal.,2002,andothers)tothelower-hybridfre- 1781-1795,doi:10.1063/1.873436 quency of the rough estimates of anomalous collision fre- HuangK(1987)StatisticalMechanics,2nded(JohnWiley&Sons, quencies from the analysis of spacecraft observations of re- NewYork,USA)Chapter5 connectionwhicharenecessarytoexplainthetimescaleof535 HubaJD,GladdNT&PapadopoulosK(1977)Thelower-hybrid- theobserveddissipationofenergy. drift instability as a source of anomalous resistivity for mag- 480 neticfieldlinereconnection,GeophysResLett4,125-128,doi: Consideredinthisspirit,collisionlessreconnectionisun- 10.1029/GL004i003p00125 derstood as an equivalent anomalous local super-diffusion HubaJD,GladdNT&DrakeJF(1981)Ontheroleofthelower process in collisionless plasma. From a general physical hybriddriftinstabilityinsubstormdynamics,JGeophysRes86, 540 pointofview,thisinterpretationultimatelyre-unifiestheini- 5881-5884,doi:10.1029/JA086iA07p05881 485 tiallyconsideredmutuallyexcludingcollisionlessreconnec- Izutsu T, Hasegawa H, Nakamura T K M & Fujimoto M (2012) tion and diffusion theories in satisfactory concordance with Plasma transport induced by kinetic Alfvén turbulence, Phys fundamentalelectrodynamics. Plasmas19,102305,doi:10.1063/1.4759167 8 R.A.TreumannandW.Baumjohann: Superdiffusion Klafter J, Blumen A, Zumofen G & Shlesinger M F (1990) Lévy 1409,doi:10.1063/1.866253 545 walkapproachtoanomalousdiffusion,PhysicaA168,637-645, Treumann R A, Sckopke N, Brostrom L & LaBelle J (1990) 605 doi:10.1038/363931a0 The plasma wave signature of a magnetic hole’ in the vicin- LaBelle J & Treumann R A (1988) Plasma waves at the ityofthemagnetopause,JGeophysRes95,19099-19114,doi: dayside magnetopause, Space Sci Rev 47, 175-202, 10.1029/JA095iA11919099 doi:10.1007/BF00223240 TreumannRA,LaBelleJ&PotteletteR(1991)Plasmadiffusion 550 LandauLD&LifshitzEM(1987)FluidMechanics,2ndedition, at the magnetopause – The case of lower hybrid drift waves, J 610 Chapters2&5(Butterworth-Heinemann,Oxford) GeophysRes96,16009-16013,doi:10.1029/91JA01671 LiewerPC&KrallNA(1973)Self-consistentapproachtoanoma- Treumann R A (1997) Theory of super-diffusion for the lous resistivity applied to theta pinch experiments, Phys Fluids magnetopause, Geophys Res Lett 24, 1727-1730, doi: 16,1953-1963,doi:10.1063/1.1694240 10.1029/97GL01760 555 Livadiotis G & McComas D J (2010) Exploring transitions of TreumannRA(1999a)KinetictheoreticalfoundationofLorentzian 615 space plasmas out of equilibrium, Astrophys J 714, 971-987, statistical mechanics, Phys Scr 59, 19-26, doi: 10.1238/Phys- doi:10.1088/0004-637X/741/2/88 ica.Regular.059a00019 Livadiotis G & McComas D J (2011) Invariant kappa distribu- Treumann R A (1999b) Generalized-Lorentzian thermodynamics, tionsinspaceplasmasoutofequilibrium,AstrophysJ741,88, PhysScr59,204-214,doi:10.1238/Physica.Regular.059a00204 560 doi:10.1088/0004-637X/714/1/971 Treumann R A & Baumjohann W (2013) Collisionless magnetic 620 LivadiotisG&McComasDJ(2013)Understandingkappadistri- reconnection in space plasmas, Front Physics 1, 00031, doi: butions:Atoolboxforspacescienceandastrophysics,SpaceSci 10.3389/fphy.2013.00031 Rev175,183-214,doi:10.1007/s11214-013-9982-9 TsallisC(1988)PossiblegeneralizationofBoltzmann-Gibbsstatis- MacmahonA(1965)Finitegyroradiuscorrectionstothehydromag- tics,JStatPhys52,479,doi:10.1007/BF01016429 565 neticequationsforaVlasovplasma,PhysFluids8,1840-1845, TsallisC,deSouzaAMC,MaynardR(1995)DerivationofLO˝vy- 625 doi:10.1063/1.1761116 type anomalous superdiffusion from generalized statistical me- MatthaeusWH,QinG,BieberJW&ZankGP(2003)Nonlinear chanics,LectureNotesinPhysics450,269-289 collisionlessperpendiculardiffusionofchargedparticles,Astro- Vasyliunas V M (1968), A survey of low-energy electrons in the physJ590,L53-L56,doi:10.1086/376613 eveningsectorofthemagnetospherewithOGO1andOGO3,J 570 Prato D & Tsallis C (1999) Nonextensive foundation GeophysRes73,2839-2884,doi:10.1029/JA073i009p02839 630 of Lévy distributions, Phys Rev E 60, 2398-2401, YoonPH,LuiATY&SitnovMI(2002)Generalizedlower-hybrid doi:10.1103/PhysRevE.60.2398 drift instabilities in current-sheet equilibrium, Phys Plasmas 9, Pritchett P L (2005) Onset and saturation of guide-field magnetic 1526-1538,doi:10.1063/1.1466822 reconnection,PhysPlasmas12,062301,doi:10.1063/1.1914309 YoonPH,ZiebellLF,GaelzerR,LinRP&WangL(2012)Lang- 575 RicciP,BrackbillJU,DaughtonW&LapentaG(2005)Newrole muirturbulenceandsuprathermalelectrons,SpaceSciRev173, 635 ofthelower-hybriddriftinstabilityinthemagneticreconnection, 459-489,doi:10.1007/s11214.012-9867-3 PhysPlasmas12,055901,doi:10.1063/1.1885002 RoytershteynV,DaughtonW,KarimabadiH&MozerFS(2012) Influence of the lower-hybrid drift instability on magnetic re- 580 connection in asymmetric configurations, Phys Rev Lett 108, 185001,doi:10.1103/PhysRevLett.108.165001 AppendixA Sagdeev R Z (1966) Cooperative phenomena and shock waves in collisionlessplasmas,RevPlasmaPhys4,23-91 Anomalousspectraandκdistributions SagdeevRZ(1979)TheOppenheimerlectures: Criticalproblems 585 in plasma astrophysics I. Turbulence and nonlinear waves, II. Based on semi-quantitative asymptotic arguments it has 640 Singularlayersandreconnection,RevModPhys51,1-20,doi: been argued (Tsallis et al, 1995; Prato & Tsallis, 1999; 10.1103/RevModPhys.51.1 Bologna et al, 2000; Gell-Mann & Tsallis, 2004; Livadiotis Scholer M, Kucharek H & Giacalone J (2000) Cross-field diffu- &McComas,2013)thatq-andκ-distributionsbothbelonged sion of charged particles and the problem of ion injection and 590 totheclassofanomalousLévy-likeα-probabilityspectraEq. accelerationatquasi-perpendicularshocks,JGeophysRes105, 18285-18293,doi:10.1029/1999JA000324 645 (2) rendering valid a relation between α and κ of the kind ScudderJD&OlbertS(1979)Atheoryoflocalandglobalpro- usedinsubsection6.4inthepresentpaper. cesseswhichaffectsolarwindelectrons.I-Theoriginoftypical Below we show by rigorous calculation in two different 595 1AUvelocitydistributionfunctions-Steadystatetheory,JGeo- ways that these arguments seem doubtful. Apparently q physRes84,2755-2772,doi:10.1029/JA084iA06p02755 and κ probability distributions do not belong to this kind Shlesinger M F, West B J & Klafter J (1987) Lévy dynamics of of Lévy-like α-spectra. Their spectral form is substantially enhanced diffusion – Application to turbulence, Phys Rev Lett650 morecomplicated.2 58,1100-1103,doi:10.1103/PhysRevLett.58.1100 ShlesingerMF,ZaslavskyGM&KlafterJ(1993)Strangekinetics, 600 Nature363,31-37,doi:10.1038/363931a0 StasiewiczK(1987)Agyroviscousmodelofthemagnetotailcur- 2SeealsoendnoteNo34inBolognaetal(2000)whereitisex- rentlayerandthesubstormmechanism, PhysFluids30, 1401- plicitlynotedthatproblemsremainwiththerelationbetweenLévy spectraandqdistributions,i.e.anunambiguousα[q]relation. R.A.TreumannandW.Baumjohann: Superdiffusion 9 Probabilitydistributionfromkαspectrum principlesuggestingthattheκ-distributionisnotagoodde- 700 scriptivemodelofhypotheticalprobabilitypowerspectraof Retransforming the probability spectrum Eq. (2) into real thetypeofEq. (2). Thisdiscussionholdsford=1. Littleis 655 spacerequiressolvingtheinverseFourierintegral knownaboutthebehavioratlargerdimensions. 1 (cid:90) p(α|x)∝ e−akα−ik·xddk (A1) Spectrumofκdistribution (2π)3 Solving the Fourier integral of the κ-distribution in d di- 705 in d dimensions and properly normalized. Here (cid:96)k → mensionsrequiresrequirescalculatingtheintegral k, x/(cid:96)→x, a/(cid:96)α→a. No general solution is known for √ ∞ κ (cid:90) this integral except in the case α=2. Its solution for arbi- p (k)∝A D(d−1) p(κ|x¯)e−ik¯x¯dx¯ (A4) trary real α∈R can be attempted applying the method of κ κ (−ik¯)d−1 660 steepestdescent. Aligningkandx,onehasd3k=kd−1dk. −∞ √ √ Unfortunately,theturningpointequation where k¯= κ(cid:96)k, x¯=x/ κ(cid:96), and D(d−1)=∂d−1/∂k¯d−1. Thesolutionis ktαp+ixktp/aα+(d−1)/aα=0 (A2) √κk¯κ+1−d/2 p (k)∝A D(d−1) × (A5) cannot be solved for arbitrary α. The only two treat-710 κ κ 2κ+1+d/2(−i)d−1 665 adbimleencsaisoensalarceasαe =d=21f.orOanlllyditmheenlastitoenrsisd,ofanindtetrheest.on(eI-t × (cid:112)k¯/π K (cid:0)1k¯(cid:1) is well-known, cf., e.g., Tsallis et al, 1995, for a recol- Γ(κ+1+d/2) 12(κ+1+d/2) 2 lection, that the former trivially reproduces the Gaussian It is the large argument form of the Bessel function distribution.) One thus has ktp,d=1=(−ix/aα)1/(α−1)= (cid:112)k¯/π K (k¯/2) ∝ exp(−k¯/2) which contributes the ν 670 (x/aα)1/(α−1)exp[3πi/2(α−1)], and with d=1 for the wanted exponential factor. However, one finds that α≈1 aboveFourierintegral is independent of κ in this case, at least for the long scales. 715 (A similar conclusion was presented already in Treumann, p(α|x)∝e−aktαp−iktpx(cid:90) dke−12aαktαp−2(k−ktp)2 (A3) 1997). This behavior is not changed by the dimensional 2π derivativesbecauseofthereproductivepropertyoftheexpo- nential.Ford=1,inparticular,thederivativedisappearsand The condition that (cid:60)(kα−2)>0 yields the trivial require- tp thespectrumiscompletelydescribedbytheBesselfunction. ment α<5/2 valid for all interesting cases including the720 Physically it indicates that in the long range the spectrum Gaussian. 675 corresponding to the κ distribution is indeed, as expected, Another condition is obtained from the requirement that far away from Gaussian behavior. It, however, has no sim- p(α|x) must be a real probability distribution. Setting ilarity whatsoever to the model probability spectrum in Eq. (cid:61)(k )=0 one concludes that α =1+3/2n > 1, with tp d=1 (2). Theκdistributiondescribesstrongcorrelationsbetween n=1,2,.... Hence, α = 5,7,3,11,... can assume dis-725 d=1 2 4 2 8 the particles with, if at all, weak dependence of α on κ (at cretevaluesonlywhich,forlargen,convergeto1. 680 thebesttohigherorder). Forarbitrarydandα=2−α(cid:48)≈2,i.e. α(cid:48)(cid:28)1,thetwoap- In order to get a feeling of such a weak dependence one proximatesolutionsfortheturningpointbecomebothpurely may manipulate the exponential contributed by the Bessel imaginarykt(p1,2)=−i[2(d−1)/x; x(1−α(cid:48)/2)/2a−4(d− function and its frontal k¯ dependent factor in the above ex- 730 1)/x]. The reality condition for the real space probability pressionforlargek¯tobecome requires treating the complex turning point integral. Even 685 (cid:104) (cid:16) (cid:17)(cid:105) closetotheGaussianlimitα=2calculationoftherealspace k¯ζexp−(k¯/2)=exp −1k¯ 1−lnk¯2ζ/k¯ 2 probability distribution from the hypothetical non-Gaussian (cid:104) (cid:16) (cid:17)(cid:105) spectrumEq. (2)isnontrivial,causingseriousdoubtsinthe ≈exp −1k¯exp −lnk¯2ζ/k¯ (A6) 2 assumed generality of the kα model spectrum. No further (cid:104) (cid:105) usefulinformationisobtained. ≈exp −1k¯(1−2ζ/k¯) 690 2 The x-dependence of the solution of the d=1 integral is contained in the factor (aα/x)(α−2)/2(α−1) which may735 Again,thisexponentialreproduceswhencarryingoutthedif- ferentiations. Hence one finds approximately for the func- be interpreted as the large-x limit of the κ distribution for tional d=1. It can, by comparison, be reconciled only for val- 695 ues 0<αd=1=(1−κ)/(34−κ)< 52, yielding 0<κ< 34, a α[κ]≈1−2ζ/k¯, ζ=κ+1−d/2 (A7) narrow and extreme range only at this dimensionality. The lower limit on κ gives 4 (cid:46)α . Imposing the Gaussian depending on the dimensionality d and the spectral scale k¯. 3 d=1 limit α=2 yields finally 0<κ≤ 1. This is rather differ- For d=1 it is independent of the differential operation. It 2 740 entfromtheGaussianlimitκ→∞oftheκ-distribution, in isobviousthatα=2,theGaussianlimit,isnotcontainedin 10 R.A.TreumannandW.Baumjohann: Superdiffusion thisconditionwhichshowsthatαissmallandforlargek¯is Thisisfinallyseenwhenstraightforwardlytakingthelarge oforderα∼O(1),asalreadyinferredabove. Moreover,for order expansion of the Bessel function for κ(cid:29)1. Then the √ largeκonehasfromthisexpressionα≈1− κ/kexplicitly abovespectrumasymptoticallybehavesas 775 excludingthelimitκ→∞unlessuniformlyalsok→∞. 745 exp−κ¯η The last condition is satisfied for k¯>2ζ only providing p (k)∼D(d−1)√ (A10) κ κ¯(1+k¯2/4κ¯2)1/4 anotherconditionholds, 0<κ< k2 (cid:34)1±(cid:115)1−4(cid:96)(cid:18)1−d(cid:19)(cid:35)2≈(cid:18) k (cid:19)2 (A8) lwni(cid:104)th(k¯/κ¯2κ¯=)(cid:16)121(+κ(cid:112)+11++k¯2d//42κ¯)2,(cid:17)(cid:105).anIdt isηno=t o(cid:112)bv1io+usk¯2h/o4wκ¯2th+is 16(cid:96)2 k 2 2(cid:96) spectrummatchesanexp(−ak2)functionforκ→∞. which,forinstance,yields0<κ∼1forthemodestrequire- Takingκ(cid:29)kyieldsadependence∼exp(−κ¯−k¯2/8κ¯)→ 780 ment k/(cid:96)∼2, thus identifying a sufficiently large range of 0 for κ→∞. On the other hand, in the limit k(cid:29)κ for 750 validity of κ for all three spatial dimensions in treating the all fixed κ, one has η∼k¯/2κ¯ and thus a dependence ∼ averagedisplacementproblem. Noindependentrelationbe- exp−k¯/2. tweenαandκhasyetbeenobtained. This α=1 spectrum had been elucidated already above TheonlywayofincludingtheGaussianlimitα=2isvia and also in Treumann (1997). It represents the asymptotic 785 application of renormalization group methods to the func- spectral behavior of κ distributions, indicating that asymp- 755 tionalEq. (A7). Thisprocedureyields totically these are practically independent of κ and thus, at the best, are extreme versions α=1 of spectra of the form α[κ]≈2+exp[−(1+2ζ/k¯)] (A9) of Eq. (2), indicating the presence of extraordinarily strong correlations. which for fixed k and large κ exhibits a dependence α∼790 √ exp(− κ/k). Thisformindeedincludesthelimit lim α= κ→∞ 2.However,itisnotofanyinterestasthislimitisapproached 760 fromabove,yieldingα(cid:38)2forallκ. One may notice that the exponential power spectrum is notonlyapproximatehere,ithasnotevenbeenimposednor used in the calculation of the power spectrum belonging to theκdistribution. Hence,iftheκdistributionisbelievedto 765 describe power spectra of the type of Eq. (2) invluding the underlyingphysicalprocesses,thenthiscanonlybetakenas veryapproximate. Generallyspeaking,thoughtheκ-distributioncontainsthe Gaussianprobabilityforκ→∞,thereconstructionofasim- 770 pleGaussianprobabilityspectrumfromtheκdistributionis notsuccessful.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.