Lecture Notes in Economics and Mathematical Systems (Vol. 1-15: Lecture Notes in Operations Research and Mathematical Economics, Vol. 16-59: Lecture Notes in Operations Research and Mathematical Systems) Vol. 1: H. BUhlmann, H. Loeffel, E. Nievergelt, EinfUhrung in die Vol. 30: H. Noltemeier, Sensitivitatsanalyse bei diskreten linearen Theorie und Praxis der Entscheidung bei Unsicherheit. 2. Auflage, Oplimierungsproblemen. VI, 102 Seiten. 1970. IV, 1 25 Seiten. 1969. Vol. 31: M. KUhlmeyer, Die nichtzentrale t-Verteilung. II, 106 Sei Vol. 2: U. N. Bhat, A Study of the Oueueing Systems M/G/l and ten. 1970. GI/MI1. VIII, 78 pages. 1968. Vol. 32: F. Bartholomes und G. Hotz, Homomorphismen und Re Vol. 3: A. Strauss, An Introduction to Optimal Control Theory. duktionen linearer Sprachen. XII, 143 Seiten. 1970. OM 18,- Out of print Vol. 33: K. Hinderer, Foundations of Non-stationary DynamiC Pro Vol. 4: Branch and Bound: Eine EinfUhrung. 2., geanderte Auflage. gramming with Discrete Time Parameter. VI, 160 pages. 1970. Herausgegeben von F. Weinberg. VII, 174 Seiten. 1973. Vol. 34: H. Stormer, Semi-Markoff-Prozesse mit endlich vielen Vol. 5: L. P. Hyvarinen, Information Theory lor Systems Engineers. Zustanden. Theorie und Anwendungen. VII, 128 Seiten. 1970. VII, 205 pages. 1968. Vol. 35: F. Ferschl, Markovkellen. VI, 168 Seiten. 1970. Vol. 6: H. P. KUnzi, O. MUlier, E. Nievergelt, EinfUhrungskursus in die dynamische Programmierung. IV, 103 Seiten. 1968. Vol. 36: M. J. P. Magill, On a General Economic Theory of Motion. VI, 95 pages. 1970. Vol. 7: W. Popp, EinfUhrung in die Theorie de< Lagerhaltung. VI, 173 Seiten. 1968. Vol. 37: H. MUlier-Merbach, On Round-Off Errors in Linear Pro gramming. V, 48 pages. 1970. Vol. 8: J. Teghem, J. Loris-Teghem, J. P. Lambotte, Modeles d'Attente M/G/l et GI/MI1 a Arrivees et Services en Groupes. III, Vol. 38: Statistische Methoden I. Herausgegeben von E. Walter. 53 pages. 1969. VIII, 338 Seiten. 1970. Vol. 9: E. Schultze, EinfUhrung in die mathematischen Grundlagen Vol. 39: Statistische Methoden II. Herausgegeben von E. Walter. der Informationstheorie. VI, 116 Seiten. 1969. IV, 157 Seiten. 1970. Vol. 10: D. Hochstadter, Stochastische Lagerhaltungsmodelle. VI, Vol. 40: H. Drygas, The Coordinate-Free Approach to Gauss 269 Seiten. 1969. Markov Estimation. VIII, 113 pages. 1970. Vol. 11/12: Mathematical Systems Theory and Economics. Edited Vol. 41: U. Ueing, Zwei Losungsmethoden fUr nichtkonvexe Pro by H. W. Kuhn and G. P. Szego. VIII, III, 486 pages. 1969. grammierungsprobleme. IV, 92 Seiten. 1971. Vol. 13: Heuristische Planungsmethoden. Herausgegeben von Vol. 42: A. V. Balakrishnan, Introduction to Optimization Theory in F. Weinberg und C. A. Zehnder. II, 93 Seiten. 1969. a Hilbert Space. IV, 153 pages. 1971. Vol. 14: Computing Methods in Optimization Problems. V, 191 pages. Vol. 43: J. A. Morales, Bayesian Full Information Structural Analy 1969. sis. VI, 154 pages. 1971. Vol. 15: Economic Models, Estimation and Risk Programming: Vol. 44:-G. Feichtinger, Stochastische Modelle demographischer Essays in Honor of Gerhard Tintner. Edited by K. A. Fox, G. V. L. Prozesse. IX, 404 Seiten. 1971. Narasimham and J. K. Sengupta. VIII, 461 pag·es. 1969. Vol. 45: K. Wendler, Hauptaustauschschritte (Principal Pivoting). Vol. 16: H. P. KUnzi und W. Oettli, Nichtlineare Optimierung: 11,64 Seiten. 1971. Neuere Verfahren, Bibliographie. IV, 180 Seiten. 1969. Vol. 46: C. Boucher, Lec;ons sur la theorie des automates ma Vol. 17: H. Bauer und K. Neumann, Berechnung oplimaler Steue thE>matiques. VIII, 193 pages. 1971. rungen, Maximumprinzip und dynamische Optimierung. VIII, 188 Vol. 47: H. A. Nour Eldin, Optimierung linearer Regelsysteme Seilen. 1969. mit quadrati scher Zielfunktion. VIII, 163 Seiten. 1971. Vol. 18: M. Wolff, Optimale Instandhaltungspolitiken in einfachen System en. V, 143 Seiten. 1 970. Vol. 48: M. Constam, FORTRAN fUr Anfanger. 2. Auflage. VI, 148 Seiten. 1 973. Vol. 19: L. P. Hyvarinen, Mathematical Modeling for Industrial Pro Vol. 49: Ch. SchneeweiB, Regelungstechnische stochastische cesses. VI, 122 pages. 1970. Optimierungsverfahren. XI, 254 Seiten. 1 971. Vol. 20: G. Uebe, Optimale Fahrplane. IX, 161 Seiten. 1970. Vol. 50: Unternehmensforschung Heute - Obersichtsvortrage der Vol. 21: Th. M. Liebling, Graphentheorie in Planungs-und Touren ZUricher Tagung von SVOR und DGU, September 1970. Heraus problemen am Beispiel des stadtischen StraBendienstes. IX, gegeben von M. Beckmann. IV, 133 Seiten. 1971. 118 Seiten. 1970. Vol. 51: Digitale Simulation. Herausgegeben von K. Bauknecht Vol. '22: W. Eichhorn, Theorie der homogenen Produktionslunk und W. Nef. IV, 207 Seiten. 1971. lion. VIII, 119 Seilen. 1970. Vol. 52: Invariant Imbedding. Proceedings 1970. Edited by R. E. Vol. 23: A. Ghosal, Some Aspects of Oueueing and Storage Bellman and E. D. Denman. IV, 148 pages. 1971. Systems. IV, 93 pages. 1970. Vol. 24: G. Feichtinger, Lernprozesse in stochastischen Automaten. Vol. 53: J. RosenmUller, Kooperative Spiele und Markte. III, 152 V, 66 Seiten. 1970. Seiten.1971. Vol. 25: R. Henn und O. Opitz, Konsum-und Produktionstheorie I. Vol. 54: C. C. von Weizsacker, Steady Slate Capital Theory. III, 11,124 Seiten. 1970. 102 pages. 1971. Vol. 26: D. Hochstadter und G. Uebe, Okonometrische Methoden. Vol. 55: P. A. V. B. Swamy, Stalistical Inference in Random Coef XII, 250 Seiten. 11170. ficient Regression Models. VIII, 209 pages. 1971. Vol. 27: I. H. Mufti, Computational Methods in Optimal Control Vol. 56: Mohamed A. EI-Hodiri, Constrained Extrema. Introduction Problems. IV, 45 pages. 1970. to the Differentiable Case with Economic Applications. III, 130 Vol. 28: Theoretical Approaches to Non-Numerical Problem Sol pages. 1971. ving. Edited by R. B. Banerji and M. D. Mesarovic. VI, 466 pages. Vol. 57: E. Freund, Zeitvariable MehrgroBensysteme. VIII, 160 Sei 1970. ten. 1971. Vol. 29: S. E. Elmaghraby, Some Network Models in Management Vol. 58: P. B. Hagelschuer, Theorie der linearen Dekomposition. Science. III, 176 pages. 1970. VII, 191 Seilen. 1971. continuation on page 185 Lecture Notes in Economics and Mathematical Systems Managing Editors: M. Beckmann and H. P. Kunzi 150 Frances Bauer Paul Garabedian David Korn Supercritical Wing Sections III Springer-Verlag Berlin Heidelberg New York 1977 Editorial Board H. Albach A. V. Balakrishnan M. Beckmann (Managing Editor) P. Dhrymes J. Green W. Hildenbrand W. Krelle H. P. KUnzi (Managing Editor) K. Ritter R. Sato H. Schelbert P. Schonfeld Managing Editors Prof. Dr. M. Beckmann Prof. Dr. H. P. KUnzi Brown University Universitat ZUrich Providence, RI 02912/USA 8090 ZUrich/Schweiz Authors Frances Bauer Paul Garabedian David Korn New York University Courant Institute of Mathematical Sciences 251 Mercer Street New York, N.Y. 10012/USA AMS Subject Classifications (1970): 76H05, 65P05, 35M05 ISBN-13: 978-3-540-08533-1 e-ISBN-13: 978-3-642-48852-8 DOl: 10.1007/978-3-642-48852-8 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re·use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1977 PREFACE The purpose of this book is to survey computational flow research on the design and analysis of supercritical wing sections supported by the National Aeronautics and Space Administration at the Energy Research and Development Administration Mathematics and Computing Laboratory of New York University. The work was performed under NASA Grants NGR 33-016-167 and NGR 33-016-201 and ERDA Contract EY-76-C-02-3077. Computer programs to be listed and described have applications in the study of flight of modern aircraft at high sub sonic speeds. One of the codes generates cascades of shockless tran sonic airfoi~s that are expected to increase significantly the effici ency of compressors and turbines. Good simulation of physically observed flows has been achieved. This work is a sequel to two earlier books [1,2] published by Springer-Verlag under similar titles that we shall refer to as Volumes I and II. New York November 1977 TABLE OF CONTENTS I. INTRODUCTION 1 1. Shockless Airfoils and Supercritical Wing Sections 1 2. Differential Equations of Gas Dynamics 2 II. THE METHOD OF COMPLEX CHARACTERISTICS 5 1. A New Boundary Value Problem 5 2. Topology of the Paths of Integration 8 3. Iterative Scheme for the Map Function 9 III. TRANSONIC AIRFOIL DESIGN CODE 10 1. Isolated Airfoils 10 2. Compressor Cascades 12 3. Turbine Cascades 13 4. Comparison with Experiment 14 IV. TWO-DU1ENSIONAL ANALYSIS CODE 16 1. Wave Drag 16 2. A Fast Solver 19 3. Remarks about Three-Dimensional Flow 24 V. REFERENCES 26 VI. USERS MANUAL FOR THE DESIGN CODE 29 1. Introduction 29 2. The Input Deck 29 3. Closure 34 4. Achieving a Good Design 35 5. Boundary Layer Correction 37 6. Error Messages 38 7. Glossary of TAPE7 Parameters 39 8. Glossary of Output Parameters 43 VII. PLOTS AND TABLES OF RESULTS 45 1. Airfoils Designed Using the New Code 45 2. Data from Analysis and Experiment 72 VIII. FORTRAN LISTINGS OF THE CODES 90 1. The New Design Code K 90 2. Update of the Analysis Code H 167 I, INTRODUCTION 1. Shockless Airfoils and Supercritical Wing Sections Supercritical wing technology is expected to have a significant influence on the next generation of commercial aircraft. Computation al fluid dynamics has played a central role in the development of new supercritical wing sections. One of the principal tools is a fast and reliable code that simulates two-dimensional wind tunnel data for transonic flow at high Reynolds numbers (see Volume II). This is used widely by industry to assess drag creep and drag rise. Codes for the design of shockless airfoils by the hodograph method have not been so well received because they usually require a lot of trial and error (see Volume I). However, a more advanced mathematical approach makes it possible to assign the pressure as a function of the arc length and then obtain a shockless airfoil that nearly achieves the desired distribution of pressure [11]. This tool should enable engineers to design families of transonic airfoils more easily both for airplane wings and for compressor blades in cascade. There are plans to use the supercritical wing on commercial air craft to economize on fuel consumption by reducing drag. Computer codes have served well in meeting the demand for new wing sections. This work is an example of the possibility of replacing routine wind tunnel tests by computational fluid dynamics. An effective approach to the supercritical wing is through shock less airfoils. An advanced design code implementing the concept of designing a shockless airfoil so that its pressure distribution very nearly takes on prescribed data has been written recently. It has turned out to be so successful that we hope it may ultimately gain the same acceptance as the better established analysis code. In this book we shall describe the new design code in detail and we shall give an update of the analysis code, which incorporates new 2 features decreasing the execution time. Fortran listings are includ- ed, together with directions for running the codes. A selection of examples and comparisons with experiment complete the work. They include shockless airfoils in cascade suggesting a new technology for turbomachinery that may contribute significantly to energy conserva- tion. 2. Differential Equations of Gas Dynamics The partial differential equation for the velocity potential ~ describing isentropic flow of a compressible fluid can be derived from a variational principle asserting that the integral over the flow field of the pressure p, considered to be a function of the speed q = Iv~l, is stationary in its dependence on ¢. The variational prin- ciple is useful in the formulation of finite element and finite difference methods. Here it will suffice to state the equation for ~ in the quasilinear form 2 2 2 2 (c -u l¢xx - 2uv ~xy + (c -v l~yy 0 for plane flow, where u = ~ ,v = ~ and c is the speed of sound x y 2 related to q by Bernoulli's law const. The normal derivative of ~ is set equal to zero at the boundary of the flow. For many transonic flows of practical interest, including flows around airfoils, we can assume entropy to be conserved across shock waves, so the velocity potential can be retained in the formulation of the equations of motion. Moreover, when shockless flows appear they can often be viewed as physically relevant weak solutions of the equations for which shock losses have been successfully eliminated. We proceed to bring the equation for ~ into a canonical form 3 suitable for computation. The physical coordinates x and yare con- nected with the velocity potential <P and the st.ream function 1jJ by the relation x + iy (d<p + i d1jJ ) p , where e is the flow angle and p is the density given by the equation of state p = pY, or c2 ypY-l. We find it convenient to solve first for <p and 1jJ and obtain x and y afterwards from this integral. The ordinary differential equation for the characteristics, or Mach lines, of the flow is known to be In terms of <p and 1jJ it becomes where M = q/c is the local Mach number. We introduce characteristic coordinates sand n associated with the integrals of this equation (see Volume I). In terms of sand n we obtain for <p and 1jJ the canonical system - i/l-M2 1jJ /p . n These partial differential equations will be integrated numerically by a finite difference scheme of the form 4 Here '+ and, stand for suitable mean values of the coefficients :f:. i/l_M2 /p, which become known functions of ~ and Tj ,,,,hen the corres- ponding system of partial differential equations for the hodograph variables u and v is solved in closed form. In Volume I it has been shown how the finite difference scheme can be implemented for sub- sonic as well as supersonic flow through analytic extension into the complex domain. II. THE METHOD OF CHAIU\CTERISTICS CO~1PLEX 1. A New Boundary Value Problem We have seen that physically realistic transonic flow computations can be based on partial differential equations for the velocity poten- tial and stream function that presuppose conservation of entropy. In terms of characteristic coordinates ~ and n we have = cP n T - 1jJ n • The coordinates ~ and n can be specified in terms of the speed q and the flow angle S by the formulas J J log f (~) Il-r.12 d~ - is log f (ii) = Il-M2 d~ + is , where f is any complex analytic function. Prescription of a second arbitrary function g serves to determine cp and 1jJ as solutions of the characteristic initial value problem where ~O = nO is a fixed subsonic point in the complex plane. With these conventions it turns out that 1jJ(~,n) = 1jJ(~,ii) , as can be seen from the uniqueness of the solution. Hence for subsonic flow the real hodograph plane corresponds to points in the complex domain where ~ = ii. To calculate cp and 1jJ paths of integration are laid down in the complex plane, and then a stable finite difference scheme is applied to solve the characteristic initial value problem (see Volume I). Consider the nonlinear boundary value problem of designing an air- foil on which the speed q has been assigned as a function of the arc length s. To construct such an airfoil it is helpful to view f as a function mapping the unit circle I~I < 1 onto the region of flow. Then both log f and g have natural expansions as power series
Description: