SUPERCRITICAL WATER GASIFICATION OF ALGAE Ramzi Cherad Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Doctoral Training Centre in Low Carbon Technologies Energy Research Institute School of Chemical and Process Engineering September 2015 The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The details of chapters 4, 5 and 6 of the thesis are based on the following published papers respectively: 1. Cherad, R., Onwudili, J.A., Williams, P.T., Ross, A.B., 2014. A parametric study on supercritical water gasification of Laminaria hyperborea: a carbohydrate-rich macroalga. Bioresource Technology, 169, 573–80. doi:10.1016/j.biortech.2014.07.046 2. Cherad, R., Onwudili, J.A., Ekpo, U., Williams, P.T., Lea-Langton, A.R., 2013. Macroalgae Supercritical Water Gasification Combined with Nutrient Recycling for Microalgae Cultivation. Environmental Progress and Sustainable Energy, 32, 902–909. doi:10.1002/ep 3. Cherad, R., Onwudili, J.A., Biller, P., Williams, P.T., Ross, A.B., 2016. Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel, 166, 24–28. doi:10.1016/j.fuel.2015.10.088 II Details of contributions from the candidate and co-authors are listed below: 1. The candidate performed all the experiments, analysis and write up. Ms. Ekpo performed the growth trials. Dr. Onwudili supported in the experimental and analytical techniques and proof reading. Dr. Ross and Professor Williams contributed with comments, guidance and proof reading. 2. The candidate performed all the experiments, analysis and write up. Dr. Onwudili supported in the experimental and analytical techniques and proof reading. Dr. Ross and Professor Williams contributed with comments, guidance and proof reading. 3. The candidate performed all the experiments, analysis and write up. Dr. Onwudili and Dr. Biller supported in the experimental and analytical techniques and proof reading. Dr. Ross and Professor Williams contributed with comments, guidance and proof reading. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2015 The University of Leeds and Ramzi Cherad The right of Ramzi Cherad to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. III ACKNOWLEDGEMENTS This work was carried out thanks to funding from the Engineering and Physical Sciences Research Council (EPSRC) via the Doctoral Training Centre in Low Carbon Technologies at the University of Leeds. Thanks to my supervisors, Dr. Andrew Ross and Professor Paul Williams, for their guidance and support. Andy, your passion for research and interest in using algae for energy has been a source of inspiration during the course of this work; Paul, for your encouragement and immeasurable support through the trying journey. Thanks to Dr. Jude Onwudili for your support during the experiments, write-up, and publications associated with the research. Your expertise helped overcome any issues. Your support through exchanging of ideas, keeping an eye on the broader picture and practical assistance has been invaluable. Thanks to my colleagues – the 2010 cohort of the Doctoral Training Centre in Low Carbon Technologies – Gemma Brady, Zarashpe Kapadia, Philippa Usher, Jayne Windeatt and David Wyatt. Thanks to the Management Committee of the Doctoral Training Centre, Professor Paul Williams, James McKay, Rachael Brown and Emily Bryan-Kinns. Thanks to Dr. Patrick Biller, Ugo Ekpo, Sara Dona, Eyup Yildir, and Edmund Woodhouse for all the help and support. Thanks to my father, brother and sister for all the love and support. This thesis is dedicated to my late mother who saw me start the journey but never got to read the final draft. IV ABSTRACT Diversification of our energy supplies – especially in the transport and electricity generation sectors – is required to meet decarbonisation targets. Algae have been identified as suitable alternative feedstocks for third generation biofuels due to their fast growth rates and non-competitiveness with land for food crops. Hydrothermal processing of algae is an appropriate conversion route as it allows the processing of wet feedstock thus removing the energy penalty of drying. In this study, supercritical water gasification was used for (i) the hydrothermal processing of macroalgae for the production of gaseous fuel – mainly hydrogen and methane – and (ii) the upgrading of the process water from hydrothermal liquefaction of microalgae for hydrogen production for biocrude hydrotreating. The supercritical water gasification (SCWG) of the four macroalgae species investigated (Saccharina latissima, Laminaria digitata, Laminaria hyperborea, and Alaria esculenta) produced a gas that mainly consisted of hydrogen, methane and carbon dioxide. Non-catalytic SCWG resulted in hydrogen yields of 3.3 - 4.2 mol kg-1 and methane yields of 1.6 - 3.3 mol kg-1 . Catalytic macroalgae macroalgae SCWG (using ruthenium) resulted in hydrogen yields of 7.8 - 10.2 mol kg-1 macroalgae and methane yields of 4.7 - 6.4 mol kg-1 . macroalgae The yield of hydrogen was approximately three times higher when using sodium hydroxide as catalyst (16.3 mol H kg-1 ) compared to non-catalysed SCWG 2 macroalgae of L. hyperborea (5.18 mol H kg-1 ). The energy recovery (an expression of 2 macroalgae how much chemical energy of the feedstock is recovered in the desired product V following hydrothermal processing) was 83% when sodium hydroxide was used as a catalyst, compared to 52% for the non-catalytic SCWG of L. hyperborea. The yield of methane was approximately 2.5 times higher (9.0 mol CH kg-1 ) 4 macroalgae when using ruthenium catalyst compared to the non-catalysed experiment (3.36 mol CH kg-1 ) and the energy recovery increased by 22% to 74%. 4 macroalgae The selectivity of methane or hydrogen production during the SCWG of macroalgae can be controlled using ruthenium or sodium hydroxide respectively. Longer hold times and increased reaction temperature favoured methane production when using ruthenium. An increase in catalyst loading had no significant effect on the methane yield. Higher hydrogen yields were obtained through using higher concentrations of sodium hydroxide, lower algal feed concentration and shorter hold times (30 min). Increasing reaction times (>30 min) with a base catalyst (sodium hydroxide) decreased the hydrogen yield. Overall energy recovery was highest at the lowest feed concentrations; 90.5% using ruthenium and 111% using sodium hydroxide. The process waters from the hydrothermal liquefaction (HTL) of microalgae (Chlorella, Pseudochoricystis, and Spirulina) were gasified under supercritical water conditions to maximise hydrogen production. Hydrogen yields ranged from 0.18 - 0.29 g H g-1 from SCWG of the process water of HTL along with near 2 biocrude complete gasification of the organics (~98%). Compared to the hydrogen requirements for hydrotreating algal biocrude (~0.05 g H g-1 ), excess 2 biocrude hydrogen can be produced from upgrading the process water through SCWG. The results indicate that process waters following SCWG are still rich in nutrients that can be recycled for algal cultivation. VI TABLE OF CONTENTS Acknowledgements ………………….....................................................………….IV Abstract…………...………..…………………...……...………………....................V Table of Contents...……..….……………………………………………….……..VII List of Tables…………………………………………………………....................XII List of Figures…………….………………………………………….....................XV Nomenclature……………..…………………………………………………..…XVII Outline of Thesis………….……………………………………………………….XX 1 Introduction ....................................................................................................... 23 1.1 Climate change mitigation .......................................................................... 25 1.2 Biofuels ...................................................................................................... 27 1.3 First generation biofuels ............................................................................. 30 1.4 Second generation biofuels ........................................................................ 33 1.5 Third generation biofuels ........................................................................... 37 1.5.1 Processing algae for fuel ..................................................................... 38 1.5.2 Hydrothermal processing .................................................................... 39 1.6 Research Objectives ................................................................................... 48 2 Hydrothermal processing of algae for biofuels ................................................. 51 2.1 Macroalgae ................................................................................................. 51 2.1.1 Description .......................................................................................... 51 2.1.2 Classification ....................................................................................... 52 2.1.3 Cultivation ........................................................................................... 54 2.1.4 Brown algae - Kelps ............................................................................ 55 2.1.5 Species under investigation ................................................................. 59 2.2 Microalgae .................................................................................................. 62 2.2.1 Description .......................................................................................... 62 VII 2.2.2 Classification ....................................................................................... 62 2.2.3 Cultivation ........................................................................................... 63 2.2.4 Structure .............................................................................................. 65 2.3 Hydrothermal liquefaction of algae (HTL) ................................................ 67 2.3.1 Batch microalgal HTL......................................................................... 67 2.3.2 Batch macroalgal HTL ........................................................................ 75 2.3.3 Continuous microalgal HTL and biocrude upgrading ........................ 78 2.4 Hydrothermal gasification of algae ............................................................ 89 2.4.1 Microalgal HTG .................................................................................. 89 2.4.2 Macroalgal HTG ................................................................................. 92 2.5 Nutrient recycling ....................................................................................... 96 2.6 Energy recovery ......................................................................................... 99 2.7 Supercritical water gasification (SCWG) ................................................. 102 2.7.1 Physiochemical characteristics.......................................................... 102 2.7.2 Role of water in reaction ................................................................... 105 2.7.3 Advantages of supercritical water gasification ................................. 106 2.7.4 SCWG of biomass and the influence of main operating parameters 108 2.7.5 Catalytic SCWG of biomass ............................................................. 116 2.7.6 Status of technology and challenges ................................................. 130 3 Methodology ................................................................................................... 137 3.1 Introduction .............................................................................................. 137 3.2 Algal species ............................................................................................. 137 3.2.1 Macroalgal species ............................................................................ 137 3.2.2 Microalgal species ............................................................................. 140 3.2.3 Catalysts ............................................................................................ 140 3.3 Hydrothermal processing ......................................................................... 141 3.3.1 SCWG Reactor .................................................................................. 141 VIII 3.3.2 SCWG Experimental procedure ........................................................ 142 3.3.3 HTL Reactor...................................................................................... 143 3.3.4 HTL Experimental procedure ........................................................... 144 3.3.5 Product separation and analysis ........................................................ 145 3.3.6 Experiment reproducibility ............................................................... 151 4 SCWG of macroalgae combined with nutrient recycling for microalgae cultivation ................................................................................................................ 154 4.1 Introduction .............................................................................................. 154 4.2 Methodology ............................................................................................ 155 4.2.1 SCWG experiments ........................................................................... 155 4.2.2 Cultivation trials ................................................................................ 155 4.3 SCWG of macroalgae ............................................................................... 156 4.4 Catalytic SCWG of macroalgae ............................................................... 160 4.5 Catalyst poisoning and spent catalyst re-use ............................................ 162 4.6 Hydrogen yields ....................................................................................... 165 4.7 Effect of seasonal variation on SCWG of Saccharina latissima .............. 165 4.8 Process water and cultivation trials of Chlorella vulgaris ....................... 167 4.9 Conclusions .............................................................................................. 172 5 Parametric study on SCWG of Laminaria hyperborea................................... 173 5.1 Introduction .............................................................................................. 173 5.2 Methodology ............................................................................................ 174 5.3 Catalytic SCWG of macroalgae: Laminaria hyperborea ......................... 175 5.4 Effect of catalyst loading .......................................................................... 177 5.5 Effect of feed concentration ..................................................................... 178 5.6 Effect of hold time .................................................................................... 180 5.7 Effect of temperature ................................................................................ 184 5.8 Conclusions .............................................................................................. 188 IX 6 Hydrogen production from the catalytic SCWG of microalgal HTL process water ........................................................................................................................ 189 6.1 Introduction .............................................................................................. 189 6.2 Methodology ............................................................................................ 192 6.3 Hydrothermal liquefaction (HTL) of Chlorella at varying hold times .... 193 6.4 SCWG of the process water from HTL of Chlorella ............................... 196 6.5 Composition of the process water ............................................................ 198 6.6 Combined HTL and SCWG of Chlorella, Pseudochoricystis, and Spirulina .................................................................................................................. 201 6.7 Conclusions .............................................................................................. 203 6.7.1 HTL of microalgae ............................................................................ 203 6.7.2 SCWG of the process water from microalgae HTL .......................... 203 7 Conclusions ..................................................................................................... 206 7.1 Introduction .............................................................................................. 206 7.2 Supercritical water gasification of macroalgae ........................................ 207 7.2.1 Non-catalytic SCWG of macroalgae ................................................. 207 7.2.2 Catalytic SCWG of macroalgae using ruthenium ............................. 207 7.2.3 Seasonal variation in macroalgae and influence on gas yields ......... 208 7.2.4 Nutrient recycling from macroalgae for microalgae cultivation ....... 208 7.2.5 Catalytic SCWG of macroalgae using ruthenium, nickel and sodium hydroxide ........................................................................................................ 208 7.2.6 Influence of catalyst loading ............................................................. 209 7.2.7 Influence of algal concentration (feed concentration) ...................... 209 7.2.8 Effect of hold time ............................................................................ 210 7.2.9 Effect of temperature......................................................................... 210 7.3 SCWG of the process water from hydrothermal liquefaction of microalgae . .................................................................................................................. 211 7.3.1 HTL of Chlorella and the separation of biocrude ............................. 211 X
Description: