ebook img

Supercongruences related to ${}_3F_2(1)$ involving harmonic numbers PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Supercongruences related to ${}_3F_2(1)$ involving harmonic numbers

SUPERCONGRUENCES RELATED TO F (1) 3 2 INVOLVING HARMONIC NUMBERS ROBERTO TAURASO Abstract. Weshowvarioussupercongruencesfortruncatedserieswhichinvolvecentral 7 binomial coefficients and harmonic numbers. The corresponding infinite series are also 1 evaluated. 0 2 n a J 1. Introduction 0 3 In 1997, Van Hamme [21] established the p-adic analogs of several Ramanujan type series. For one of them, the series labeled (H.1), ] T N ∞ 2k 3 1, 1, 1 π k = F 2 2 2;1 = , (1) . 64k 3 2 1,1 Γ4(3) h k=0 (cid:0) (cid:1) (cid:20) (cid:21) 4 t X a the modulo p2 congruence (H.2) for the truncated version has been recently improved by m Long and Ramakrishna in [9, Theorem 3], [ 29v3 Xkp−=10 (cid:0)62k4k(cid:1)k3 ≡p3 ( −−Γp1624pΓ(cid:0)4p41(cid:1)41 iiff pp ≡≡44 13,. (2) 7 where p isany prime greater than 3 (we use the n(cid:0)ota(cid:1)tiona m b to meana b (mod m)). 0 ≡ ≡ In this paper we will investigate the series and the corresponding partial sums where 0 . the terms have one of the following forms 1 0 3 3 (2) 3 3 (2) 2k H 2k H 2k O 2k O 7 k, k , k , k . 1 k 64k k 64k k 64k k 64k : (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) v (r) (r) i Here H denotes the k-th generalized harmonic number of order r and O is the sum X k k with odd denominators, r a k k 1 1 (r) (r) H = and O = k jr k (2j 1)r j=1 j=1 − X X (1) (1) where we adopt the convention that H = H and O = O . k k k k Date: January 31, 2017. 2010 Mathematics Subject Classification. 11A07,33C20,11S80,33B15,11B65. Key words and phrases. Supercongruences, hypergeometric series, harmonic numbers, p-adic Gamma function. 1 2 ROBERTOTAURASO The main results are presented in Section 3 (evaluations of the infinite series) and Section 5 (congruences for the truncated series). For example we show that ∞ 2k 3 O π2 p−1 2k 3 O 0 if p 4 1, k k ≡ = , and Xk=1(cid:18)k (cid:19) 64k 6Γ4(34) Xk=1(cid:18)k (cid:19) 64k ≡p2 −1p2Γ4p 14 if p ≡4 3. The correspondence between the right-hand sides of the infinite serie(cid:0)s(cid:1)and the finite sum  is particularly striking for the appearance of the classic Gamma function and the p-adic analog. 2. Similar results of lower degree Before dealing with the main issue, we are going to take a look to similar sums already in the literature, where the central binomial coefficient is raised to a power less than 3. Assume that p is a prime greater than 3. For n 1, we have ≥ n−1 2k H 2n 2n(H 2) k n−1 = − +2. k 4k n 4n k=1(cid:18) (cid:19) (cid:18) (cid:19) X Thus, by n = p, we obtain (see [19, (1.10)] for the modulo p3 version) p−1 2k H 1 k 2 2p+4p2q (2) 6p3q2(2) p3B , k 4k ≡p4 − p − p − 3 p−3 k=1(cid:18) (cid:19) X where q (a) = ap−1−1 is the Fermat quotient and we used the Wolstenholme’s theorem p p 2p 2, and the congruences p ≡p3 (cid:0) (cid:1) H 1p2B , 4p−1 1+2pq (2)+p2q2(2) (3) p−1 ≡p3 −3 p−3 ≡p3 p p (for the first one we can refer to [14, Theorem 5.1 (a)]). Moreover, the identity n−1 2k H(2) 2n 2nH(2) n−1 2k k = n−1 2 k k 4k n 4n − k4k k=1(cid:18) (cid:19) (cid:18) (cid:19) k=1 (cid:0) (cid:1) X X implies (see [19, (1.11)] for the modulo p version) p−1 (2) 2k H 4 1 k 4q (2)+2pq2(2) p2q3(2) p2B , k 4k ≡p3 − p p − 3 p − 2 p−3 k=1(cid:18) (cid:19) X where we employed the congruence established in [20, Theorem 1.1], n−1 2k kk4k ≡p3,−Hp−21 k=1 (cid:0) (cid:1) X and 2 2 7 Hp(2−)1 ≡p2 3pBp−3, Hp−21 ≡p3 −2qp(2)+pqp2(2)− 3p2qp3(2)− 12p2Bp−3 (4) 3 given in [14, Theorem 5.1 (a)]) and [14, Theorem 5.2 (c)] respectively. As regards the squared case, the identities [12, (2.4) and (2.8)] n n n+k ( 1)kH = 2( 1)nH , k n k k − − k=1(cid:18) (cid:19)(cid:18) (cid:19) X n n n+k n ( 1)k ( 1)kH(2) = 2( 1)n+1 − , k k − k − k2 k=1(cid:18) (cid:19)(cid:18) (cid:19) k=1 X X and the congruence for 0 k n = (p 1)/2 (note that p divides 2k for n < k < p) ≤ ≤ − k n n+k 2k k ((2j 1)2 p2) (cid:0) (cid:1)2k 2 ( 1)k = j=1 − − k (5) k k − k 4k(2k)! ≡p2 16k (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)Q (cid:0) (cid:1) imply [19, Theorem 4.1] (see also [17, Theorems 1.1 and 1.2] for a more general p2- congruence) p−1 2 2k H k 16kk ≡p2 (−1)p+21(4qp(2)−2pqp2(2)), k=1(cid:18) (cid:19) X p−1 2 (2) 2k H k 8E +4E , k 16k ≡p2 − p−3 2p−4 k=1(cid:18) (cid:19) X where we also used (2) 7 (2) p−1 14 Hp−21 ≡p2 3pBp−3, H⌊p4⌋ ≡p2 (−1) 2 (8Ep−3−4E2p−4)+ 3 pBp−3 (6) given in [14, Corollary 5.2], [15, Corollary 3.8] and n ( 1)k 1 (2) (2) p−1 −k2 = 2H⌊p4⌋ −Hp−21 ≡p2 (−1) 2 (8Ep−3 −4E2p−4). (7) k=1 X 3. Evaluations of the infinite series The generalized hypergeometric function is defined as a ,a , ,a ∞ (a ) (a ) (a ) zk 1 2 r 1 k 2 k r k F ··· ;z = ··· r s b ,b , ,b (b ) (b ) (b ) · k! (cid:20) 1 2 ··· s (cid:21) k=0 1 k 2 k··· s k X where (x) = x(x+1) (x+k 1) for k 1 and (x) = 1 is the Pochhammer symbol k 0 ··· − ≥ and a , b and z are complex numbers with none of the b being negative integers or zero. i j j We recall some well-known hypergeometric identities: i) Dixon’s theorem [1, p.13] a,b,c Γ(1+ a)Γ(1+a b)Γ(1+a c)Γ(1+ a b c) F ;1 = 2 − − 2 − − , (8) 3 2 1+a b,1+a c Γ(1+a)Γ(1+ a b)Γ(1+ a c)Γ(1+a b c) (cid:20) − − (cid:21) 2 − 2 − − − 4 ROBERTOTAURASO ii) Whipple’s theorem [1, p.16] a,1 a,c π21−2cΓ(e)Γ(1+2c e) F − ;1 = − . (9) 3 2 e,1+2c e Γ(a+e)Γ(1−a+e)Γ(1+c a+e)Γ(1+c 1−a+e) (cid:20) − (cid:21) 2 2 − 2 − 2 In the next theorem we evaluate four specific series. Theorem 1. We have that ∞ 2k 3H 2π(π 3ln2) ∞ 2k 3 O π2 k k = − , = , (10) k 64k 3Γ4(3) k 64k 6Γ4(3) k=1(cid:18) (cid:19) 4 k=1(cid:18) (cid:19) 4 X X ∞ 2k 3H(2) π(12G π2) ∞ 2k 3O(2) π(π2 8G) k = − , k = − . (11) k 64k 3Γ4(3) k 64k 8Γ4(3) k=1(cid:18) (cid:19) 4 k=1(cid:18) (cid:19) 4 X X where G = ∞ (−1)k is the Catalan’s constant. k=0 (2k+1)2 Proof. Let P k−1 1 (r) H (x) = . k (x+j)r j=0 X Then d d (r) (r+1) ((x) ) = (x) H (x) and H (x) = rH (x). dx k k · k dx k − k (cid:16) (cid:17) For (10), let a = b = 1/2 in (8), then ∂ 1, 1,c ∞ 2k 32O +H F 2 2 ;1 = k k. ∂c 3 2 1, 3 c k 64k (cid:18) (cid:20) 2 − (cid:21)(cid:19)(cid:12)c=1 k=1(cid:18) (cid:19) (cid:12) 2 X (cid:12) By setting b = c = 1/2 in (8), we get (cid:12) ∂ a, 1, 1 ∞ 2k 32O 2H F 2 2 ;1 = k − k. ∂a 3 2 1 +a, 1 +a k 64k (cid:18) (cid:20)2 2 (cid:21)(cid:19)(cid:12)a=1 k=1(cid:18) (cid:19) (cid:12) 2 X (cid:12) On the other hand, by differentiating the right-hand side of (8) and (9) and by using (cid:12) d d (Γ(x)) = Γ(x) Ψ(x) and Ψ(r)(x) = Ψ(r+1)(x) dx · dx where Ψ(r) is the polygamma function of order r (w(cid:0)ith Ψ(0)(cid:1)= Ψ), we obtain ∂ 1, 1,c 1, 1, 1 1 3 1 F 2 2 ;1 = F 2 2 2;1 Ψ(1) Ψ +Ψ +Ψ , ∂c 3 2 1, 3 c 3 2 1,1 · − − 4 4 2 (cid:18) (cid:20) 2 − (cid:21)(cid:19)(cid:12)c=1 (cid:20) (cid:21) (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (cid:12) 2 (cid:12) and (cid:12) ∂ a, 1, 1 1, 1, 1 3 F 2 2 ;1 = F 2 2 2;1 2Ψ(1) 2Ψ 2ln(2) . ∂a 3 2 1 +a, 1 +a 3 2 1,1 · − 4 − (cid:18) (cid:20)2 2 (cid:21)(cid:19)(cid:12)a=1 (cid:20) (cid:21) (cid:18) (cid:18) (cid:19) (cid:19) (cid:12) 2 (cid:12) (cid:12) 5 By considering a suitable linear combination of the previous two identities, the special values 1 1 π 3 π Ψ Ψ(1) = ln4, Ψ Ψ(1) = ln8 , Ψ Ψ(1) = ln8+ . 2 − − 4 − − − 2 4 − − 2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) yield immediately (10). Let a = c = 1/2 in (9), then ∂2 1, 1, 1 ∞ 2k 32H(2) F 2 2 2 ;1 = k . ∂e2 3 2 e,2 e k 64k (cid:18) (cid:20) − (cid:21)(cid:19)(cid:12)e=1 k=1(cid:18) (cid:19) (cid:12) X Moreover, for c = 1/2, e = 1 in (9), we find (cid:12) (cid:12) ∂2 a,1 a, 1 ∞ 2k 3 8O(2) F − 2;1 = − k . ∂a2 3 2 1,1 k 64k (cid:18) (cid:20) (cid:21)(cid:19)(cid:12)(cid:12)a=21 Xk=1(cid:18) (cid:19) On the right-hand side, we have (cid:12) (cid:12) ∂2 1, 1, 1 1, 1, 1 π2 3 F 2 2 2 ;1 = F 2 2 2;1 Ψ , ∂e2 3 2 e,2 e 3 2 1,1 · 3 − 1 4 (cid:18) (cid:20) − (cid:21)(cid:19)(cid:12)e=1 (cid:20) (cid:21) (cid:18) (cid:18) (cid:19)(cid:19) (cid:12) and (cid:12) (cid:12) ∂2 a,1 a, 1 1, 1, 1 1 1 1 3 F − 2;1 = F 2 2 2;1 Ψ Ψ π2 . ∂a2 3 2 1,1 3 2 1,1 · 2 1 4 − 2 1 4 − (cid:18) (cid:20) (cid:21)(cid:19)(cid:12)a=1 (cid:20) (cid:21) (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) (cid:19) 2 (cid:12) As before, by combining the res(cid:12)ults and by using the special values (cid:12) 1 1 Ψ = π2 8G 1 2 ± 4 ∓ (cid:18) (cid:19) (cid:3) the conclusion (11) easily follows. 4. Congruences for the truncated series - Preliminary results If n is an odd integer, by replacing k with (n k) is easy to see that − n 3 n 3 n n ( 1)k = 0 and ( 1)k H H = 0. (12) k n−k − k − k k=0 (cid:18) (cid:19) k=0 (cid:18) (cid:19) X X The next lemma follows from [2, Theorem 1]. Lemma 1. For any non-negative odd integer n = 2m+1, we have n 3 n c ( 1)k H = m, (13) k − k − 6 k=0 (cid:18) (cid:19) X n 3 n c ( 1)k (3H2 +H(2)) = m (H 4H H +2H ). (14) − k k k 2 m − 2m+1 − 3m+2 6m+4 k=0 (cid:18) (cid:19) X 6 ROBERTOTAURASO ( 1)m(6m+3)!(m!)3 where c = − . m (3m+1)!((2m+1)!)3 The next lemma establishes some identities involving the harmonic numbers that we will need later on. Lemma 2. For any non-negative integer n, we have 2 n (−1)k n k=1 k2 if n 0, n n n+k 2k Hk(2) = (cid:18)n2(cid:19) · P 4n ≡2 (15)  Xk=0(cid:18)k(cid:19)(cid:18) k (cid:19)(cid:18)k (cid:19)(−4)k  n−1 −2 −4n−1 if n 1. n−1 · n2 ≡2 (cid:18) 2 (cid:19)   Moreover, for any even integer,   n 2 n n+k 2k H n H k n = , (16) k k k ( 4)k n 4n k=0(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) − (cid:18)2(cid:19) X n 2 n n+k 2k H n H 2k n = . (17) k k k ( 4)k n 2 4n k=0(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) − (cid:18)2(cid:19) · X Proof. For n = 2m, let −2 2m 2m+k 2k 2m F(m,k) = ( 4)2m−k k k k m − (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) then by Wilf-Zeilberger method we find 2(4m+3)k2 2m+1 2m+k 2k 2m −2 G(m,k) = ( 4)2m−k − (2m+1)3 k 1 k k m − (cid:18) − (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) such that F(m+1,k) F(m,k) = G(m,k +1) G(m,k). − − (2) Let S(m) = F(m,k)H then, by summation by parts (see [5] for a similar ap- k≥1 k proach), we have P (2) S(m+1) S(m) = (G(m,k +1) G(m,k))H − − k k≥0 X G(m,k +1) G(m,k) = = − (k +1)2 − k2 k≥0 k≥1 X X 1 1 = + . −(2m+1)2 (2m+2)2 (cid:3) The other identities can be obtained in a similar way. 7 The Morita’s p-adic Gamma function Γ is defined as the continuous extension to the p set of all p-adic integers Z of the sequence p n ( 1)n k → − 0≤k<n Y (k,p)=1 where p is an odd prime and n > 1 is an integer (see [13, Chapter 7] for a detailed introduction to Γ ). If x Z then Γ (0) = 1 and p p p ∈ xΓ (x) if x = 1, p p Γ (x+1) = − | | p Γ (x) if x < 1, ( p p − | | where denotes the p-adic norm. By [9, Theorem 14], for all a,b Z , p p |·| ∈ Γ (a+bp) Γ (a)(1+G (a)bp) (18) p p2 p 1 ≡ where G (a) = Γ′(a)/Γ (a) Z . Moreover 1 p p ∈ p Γ (x)Γ (1 x) = ( 1)sp(x) (19) p p − − where s (x) is the integer in 1,2,...,p such that s (x) x. The above formula is the p p p { } ≡ p-adic analog of the classic reflection formula for the classic Gamma function π Γ(x)Γ(1 x) = . − sin(πx) Lemma 3. For any prime p > 3, 2m 2 Γ4 1 if p 1, m − p 4 ≡4 (20) (cid:0)16m(cid:1) ≡p2 16Γ−(cid:0)4 (cid:1)1 (1+2p) if p 3,  p 4 ≡4 where m = p/4 . Moreover if p 3 then(cid:0) (cid:1) 4 ⌊ ⌋ ≡ p 1 c Γ4 . (21) m ≡p2 2 p 4 (cid:18) (cid:19) Proof. We start with (21). Since p 3, we have that m = (p 3)/4 and 4 ≡ − ( 1)m(2m+p)!(m!)3 ( 1)m+1p(m!)3 c = − − m p2 (3m+1)!((2m+1)!)3 ≡ 2(3m+2)!((2m+1)!)2 ( 1)m+1pΓ3 p+1 ( 1)m+1pΓ3 1 p 1 = − p 4 − p 4 Γ4 2Γ 3p+3 Γ2 p+1 ≡p2 2Γ 3 Γ2 1 ≡p2 2 p 4 p 4 p(cid:0) 2 (cid:1) p 4 p (cid:0)2 (cid:1) (cid:18) (cid:19) where, by (19), (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 1 1 3 Γ2p 2 = (−1)p+21 = 1, and Γp 4 Γp 4 = (−1)p+41 = (−1)m+1. (22) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 8 ROBERTOTAURASO As regards (20), we consider only the case p 3 since the other case can be handled 4 ≡ similarly. Then 2m 2 1 2 Γ2(1) Γ2 1 +m Γ2 1 + p m = 2 m = p p 2 = p −4 4 . 16m (1) Γ2 1 · Γ2(1+m) Γ2 1 + p (cid:0) (cid:1) (cid:0) (cid:1)m ! p 2 p(cid:0) (cid:1) p(cid:0) 4 4 (cid:1) By (18) and by [7, Lemma 2.4], (cid:0) (cid:1) (cid:0) (cid:1) 1 p 1 p Γ + Γ 1+(G (1)+H ) , p p2 p 1 3m+1 −4 4 ≡ −4 4 (cid:18) (cid:19) (cid:18) (cid:19) (cid:16) (cid:17) and 1 p 1 p Γ + Γ 1+(G (1)+H ) . p p2 p 1 m 4 4 ≡ 4 4 (cid:18) (cid:19) (cid:18) (cid:19) (cid:16) (cid:17) Therefore, since Γ 1 = 4Γ 3 , p −4 p −4 2m 2 (cid:0) Γ2(cid:1) 1 (cid:0) (cid:1) p 1 m p −4 1+(H H ) 16Γ−4 (1+2p) 16m ≡p2 Γ2 1 · 3m+1 − m 2 ≡p2 p 4 (cid:0) (cid:1) p(cid:0) 4 (cid:1) (cid:18) (cid:19) (cid:16) (cid:17) where we also used (22) a(cid:0)nd(cid:1) m+1 1 4 H = H H + H +4. 3m+1 p−1 p m p m − p j ≡ 3p+1 ≡ j=1 − X (cid:3) 5. Congruences for the truncated series - Main results Theorem 2. For any prime p > 3, p−1 3 Γ4 1 (2q (2) pq2(2)) if p 1, 2k Hk p 4 · p − p ≡4 (23) Xk=1(cid:18)k (cid:19) 64k ≡p2 −1p(cid:0)2Γ(cid:1)4p 41 if p ≡4 3, and (cid:0) (cid:1)  p−1 3 (2) Γ4 1 (4E 2E ) if p 1, 2k Hk − p 4 · p−3 − 2p−4 ≡4 (24) Xk=1(cid:18)k (cid:19) 64k ≡p2 −41Γ4p(cid:0) (cid:1)41 if p ≡4 3. Proof. For (24), if p 1 then n = (p 1)(cid:0)/2(cid:1)is even and we use (5) and (15). Finally we 4  ≡ − use (20). If p 3 then n = (p 1)/2 = 2m+1 is odd. We have 4 ≡ − 2k k−1 −1 k−1 p p 1 p k = 1 1 = 1 (H H ) ( 4)k n − 2j +1 ≡p2 − 2 n j − 2 n − n−k −(cid:0) (cid:1)k j=0(cid:18) (cid:19) j=0 − Y X and therefore(cid:0) (cid:1) 1 2k n p ( 1)k 1 (H H ) . (25) 4k k ≡p2 − k − 2 n − n−k (cid:18) (cid:19) (cid:18) (cid:19) (cid:16) (cid:17) 9 Thus, by (12), (16), and (21), p−1 3 n 3 2k H n 3p k ( 1)k 1 (H H ) H k 64k ≡p2 − k − 2 n − n−k k k=1(cid:18) (cid:19) k=0 (cid:18) (cid:19) (cid:18) (cid:19) X X 3p c p 1 1 H m Γ4 . ≡p2 − 2 n − 6 ≡p2 −12 p 4 (cid:18) (cid:19) (cid:18) (cid:19) (cid:16) (cid:17) As regards (24), we use (5) and (15) with n = (p 1)/2. Then we apply (20) and (7). (cid:3) − Theorem 3. For any prime p > 3, p−1 3 0 if p 1, 2k O 4 k ≡ (26) Xk=1(cid:18)k (cid:19) 64k ≡p2 −1p2Γ4p 41 if p ≡4 3, and (cid:0) (cid:1)  p−1 3 (2) 1Γ4 1 E if p 1, 2k Ok 2 p 4 p−3 ≡4 (27) Xk=1(cid:18)k (cid:19) 64k ≡p −116Γ(cid:0)4p(cid:1)41 if p ≡4 3. Proof. If n = (p 1)/2 is even then by (5), (16) a(cid:0)nd(cid:1)(17),  − p−1 3 p−1 2k 3 2 2 2k O H n H 1 n H k = k H k n n 0. k 64k 64k 2k − 2 ≡p2 n 2 4n − 2 n 4n ≡p2 k=1(cid:18) (cid:19) k=1 (cid:0) (cid:1) (cid:18) (cid:19) (cid:18)2(cid:19) · (cid:18)2(cid:19) X X Assume now that n = (p 1)/2 = 2m+1 is odd. We have that − 2k 1 p (2) (2) (2) H = H H +pH H + H H . 2(n−k) p−1 − p j ≡p2 2k 2k ≡p2 2k 4 k − n−k Xj=1 − (cid:16) (cid:17) Hence n 3 n 3 n n ( 1)k H = ( 1)k H 2k 2(n−k) − k − − n k k=1 (cid:18) (cid:19) k=0 (cid:18) − (cid:19) X X n 3 n 3 n p n ( 1)k H ( 1)k H(2) H(2) ≡p2 − − k 2k − 4 − k k − n−k Xk=1 (cid:18) (cid:19) Xk=0 (cid:18) (cid:19) (cid:16) (cid:17) which implies n 3 n 3 n 3 n p n p n ( 1)k H ( 1)k H(2) H(2) = ( 1)k H(2). − k 2k ≡p2 −8 − k k − n−k −4 − k k Xk=1 (cid:18) (cid:19) Xk=0 (cid:18) (cid:19) (cid:16) (cid:17) Xk=0 (cid:18) (cid:19) (28) Moreover k−1 k−1 H 1 1 1 1 k H = + H (H +H H ). (29) 2k p k p k n−k n 2 2j +1 ≡ 2 − n j ≡ 2 − ! j=0 j=0 − X X 10 ROBERTOTAURASO Consequently by (25), (28), (29), p−1 3 n 3 2k H n 3p 2k ( 1)k 1 (H H ) H k 64k ≡p2 − k − 2 n − n−k 2k k=1(cid:18) (cid:19) k=1 (cid:18) (cid:19) (cid:18) (cid:19) X X n 3 n 3 n 3p n ( 1)k H ( 1)k (H H )(H +H H ) p2 2k n n−k k n−k n ≡ − k − 4 − k − − k=1 (cid:18) (cid:19) k=0 (cid:18) (cid:19) X X n 3 n 3 p n 3p n ( 1)k H(2) H ( 1)k H ≡p2 −4 − k k − 2 n − k k k=0 (cid:18) (cid:19) k=0 (cid:18) (cid:19) X X n 3 n 3 3p n 3p n + ( 1)k H2 H ( 1)k H 4 − k n−k − 4 n − k n−k k=0 (cid:18) (cid:19) k=0 (cid:18) (cid:19) X X n 3 p n c p 1 ( 1)k 3H2 +H(2) m Γ4 (30) ≡p2 −4 − k k k ≡p2 − 4 ≡p2 −8 p 4 Xk=0 (cid:18) (cid:19) (cid:16) (cid:17) (cid:18) (cid:19) where in the last step we used (13), (14), and (21) (note that m < 2m+1 < 3m+2 < p < 6m+4 < 2p). Finally, by (23), p−1 3 p−1 2k 3 2k O H p 1 k = k H k Γ4 k 64k 64k 2k − 2 ≡p2 −12 p 4 k=1(cid:18) (cid:19) k=1 (cid:0) (cid:1) (cid:18) (cid:19) (cid:18) (cid:19) X X and the proof of (26) is complete. As regards (27), we have by (6) k−1 k−1 (2) (2) (2) 1 1 H H H O(2) = = n − n−k n−k (31) k (2j +1)2 ≡p 4(n j)2 4 ≡p − 4 j=0 j=0 − X X where n = (p 1)/2. Then, by (25) and (31), − p−1 2k 3O(2) 1 n n 3 ( 1)n+1 n n 3 k ( 1)k H(2) = − ( 1)k H(2) k 64k ≡p −4 − k n−k 4 − k k k=1(cid:18) (cid:19) k=0 (cid:18) (cid:19) k=0 (cid:18) (cid:19) X X X ( 1)n+1 p−1 2k 3H(2) − k p ≡ 4 k 64k k=1(cid:18) (cid:19) X (cid:3) and the desired result follows from (24). Remark 4. By (23), (26), and (2) for any prime p > 3 p−1 3 p−1 2k 3 2k H H 2k − k q (2) k k 64k ≡p p 64k k=1(cid:18) (cid:19) k=0 (cid:0) (cid:1) X X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.