Super-resolution imaging via spatiotemporal frequency shifting and coherent detection LeonidAlekseyev1,EvgeniiNarimanov1,andJacobKhurgin2 1DepartmentofElectricalandComputerEngineering, PurdueUniversity,WestLafayette,IN47907 2 1 2DepartmentofElectricalandComputerEngineering, 0 JohnsHopkinsUniversity,Baltimore,MD21218 2 [email protected] n a J Abstract: Diffraction limit is manifested in the loss of high spatial 1 frequency information that results from decay of evanescent waves. As a 2 result,conventionalfar-fieldopticsyieldsnoinformationaboutanobject’s subwavelength features. Here we propose a novel approach to recovering ] s evanescentwavesinthefarfield,therebyenablingsubwavelength-resolved c imaging and spatial spectroscopy. Our approach relies on shifting the i t frequency and the wave vector of near-field components via scattering on p o acoustic phonons. This process effectively removes the spatial frequency . cut-off for unambiguous far field detection. This technique can be adapted s c for digital holography, making it possible to perform phase-sensitive i subwavelengthimaging.Wediscusstheimplementationofsuchasystemin s y themid-IRandTHzbands,withpossibleextensiontootherspectralregions. h p © 2012 OpticalSocietyofAmerica [ OCIScodes:230.1040Acousto-opticaldevices;300.6340Spectroscopy,infrared 1 v 7 Referencesandlinks 1 1. M.E.TestorfandM.A.Fiddy,“SuperresolutionImagingRevisited,”AdvancesinImagingandElectronPhysics 5 163,165–218(2010). 4 2. W.Lukosz,“OpticalSystemswithResolvingPowersExceedingtheClassicalLimitII,”JournaloftheOptical . SocietyofAmerica57,932(1967). 1 3. Y.Kuznetsova,A.Neumann,andS.R.Brueck,“Imaginginterferometricmicroscopy-approachingthelinear 0 systemslimitsofopticalresolution.”Opticsexpress15,6651–63(2007). 2 4. M.G.L.Gustafsson,“Nonlinearstructured-illuminationmicroscopy:wide-fieldfluorescenceimagingwiththeo- 1 reticallyunlimitedresolution.”ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica : v 102,13,081–6(2005). i 5. M.Paturzo,F.Merola,S.Grilli,S.DeNicola,a.Finizio,andP.Ferraro,“Super-resolutionindigitalholography X byatwo-dimensionaldynamicphasegrating,”OpticsExpress16,17,107(2008). 6. S.Durant,Z.Liu,J.M.Steele,andX.Zhang,“Theoryofthetransmissionpropertiesofanopticalfar-field r a superlensforimagingbeyondthediffractionlimit,”JournaloftheOpticalSocietyofAmericaB23,2383(2006). 7. B.Dragnea,J.Preusser,J.M.Szarko,S.R.Leone,andW.D.J.Hinsberg,“Patterncharacterizationofdeep- ultravioletphotoresistsbynear-fieldinfraredmicroscopy,”J.Vac.Sci.Technol.B19,142–152(2001). 8. B.KnollandF.Keilmann,“Near-fieldprobingofvibrationalabsorptionforchemicalmicroscopy,”Nature399, 134–137(1999). 9. N.C.J.vanderValkandP.C.M.Planken,“Electro-opticdetectionofsubwavelengthterahertzspotsizesinthe nearfieldofametaltip,”Appl.Phys.Lett.81,1558–1560(2002). 10. D.Mendlovic,A.W.Lohmann,N.Konforti,I.Kiryuschev,andZ.Zalevsky,“One-dimensionalsuperresolution opticalsystemfortemporallyrestrictedobjects,”AppliedOptics36,2353(1997). 11. A.Shemer,D.Mendlovic,Z.Zalevsky,J.Garcia,andP.GarciaMartinez,“SuperresolvingOpticalSystemwith TimeMultiplexingandComputerDecoding,”AppliedOptics38,7245(1999). 12. R.W.Boyd,NonlinearOptics(AcademicPress,SanDiego,2003),2nded. 13. A.Korpel,Acoustooptics(MarcelDekker,NewYork,1989). 14. R.LanzandP.Muralt,“Bandpassfiltersfor8ghzusingsolidlymountedbulkacousticwaveresonators,”IEEE TransactionsonUltrasonics,FerroelectricsandFrequencyControl52,938–948(2005). 15. M.B.Assouar,O.Elmazria,P.Kirsch,P.Alnot,V.Mortet,andC.Tiusan,“High-frequencysurfaceacousticwave devicesbasedonaln/diamondlayeredstructurerealizedusinge-beamlithography,”JournalofAppliedPhysics 101,114507(2007). 16. V.A.PodolskiyandE.E.Narimanov,“Near-sightedsuperlens,”Opt.Lett.30,75–77(2005). 17. N.I.Zheludev,“Whatdiffractionlimit?”Naturematerials7,420–2(2008). 18. J.W.GoodmanandR.W.Lawrence,“Digitalimageformationfromelectronicallydetectedholograms,”Applied PhysicsLetters11,77–79(1967). 19. U.SchnarsandW.Ju¨ptner,“Directrecordingofhologramsbyaccdtargetandnumericalreconstruction,”Applied Optics33,179181(1994). 20. E.Cuche,P.Marquet,andC.Depeursinge,“Simultaneousamplitude-contrastandquantitativephase-contrast microscopybynumericalreconstructionoffresneloff-axisholograms,”Appl.Opt.38,6994–7001(1999). 21. S.Alexandrov,T.Hillman,T.Gutzler,andD.Sampson,“SyntheticApertureFourierHolographicOpticalMi- croscopy,”PhysicalReviewLetters97,168,102(2006). 22. C.Liu,Z.Liu,F.Bo,Y.Wang,andJ.Zhu,“Super-resolutiondigitalholographicimagingmethod,”Applied PhysicsLetters81,3143(2002). 23. F.LeClerc,L.Collot,andM.Gross,“Numericalheterodyneholographywithtwo-dimensionalphotodetector arrays.”Opticsletters25,716–8(2000). 24. I.YamaguchiandT.Zhang,“Phase-shiftingdigitalholography.”Opticsletters22,1268–70(1997). 25. J.B.Pendry,“Negativerefractionmakesaperfectlens,”Phys.Rev.Lett.85,3966–3969(2000). 1. Introduction Microscopic imaging is the oldest and one of the most important non-invasive analysis tech- niques.Ithasbeenimmenselysuccessfulinuncoveringthestructure,composition,anddynam- icsofmicro-andnanoscalechemicalandbiologicalsamples.Contemporaryinvestigationsin the life sciences demand ever-increasing resolution in a variety of spectral bands, with much attention given to IR and THz. This task is made complicated by the diffraction limit, which setsafundamentalupperboundonthemaximumspatialfrequencyconveyedbyconventional refractiveoptics. Between the initial studies of optical resolution by Rayleigh and Abbe in the 19th century andthepresentday,amultitudeofsuper-resolutionsystemsandmethodshavebeenproposed and demonstrated [1]. Extracting information beyond the diffraction limit remains an active area of research. One general strategy for achieving sub-diffraction-limited images originates in the fact that it is possible to increase the spatial bandwidth of an optical system by sacri- ficing certain other characteristics (e.g. field of view, temporal bandwidth, acquisition time). ThisideawaspioneeredbyLukoszinhisseminal1967paper[2].Indeed,manycontemporary super-resolutiontechniquescanbeviewedasimplementationsoftheLukoszapproach[1,2], includingoff-axisillumination[3],structuredillumination[4],spatialfrequency-shiftinggrat- ings[5,6],andevennear-fieldscanningmicroscopy[7,8,9]. The idea of improving spatial resolution by using temporal degrees of freedom is partic- ularly appealing for two reasons. First, time multiplexing can help resolve ambiguities that arise when high spatial frequencies are scattered into the optical passband, as in the case of evanescent waves diffracting off a subwavelength grating [6]. Second, in certain frequency bands outside the visible spectrum (e.g. far-IR or THz) it might be easier to manipulate sig- nals in the time domain than in the spatial frequency domain. The potential utility of time- domain (or temporal-frequency domain) for super-resolution has long been recognized; in fact, a frequency-multiplexing scheme involving conjugate moving gratings was described in Lukosz’s original paper [2] and demonstrated several decades later [10, 11]. However, owing tothecomplexityoftheexperimentalsetup,thisschemehasnotseenwideadoption. acoustic grating ! − Ω detector array k x − q f laser object RF Lock-in x Computer generator amplifier z Fig.1.Schematicsoftheproposedsystem. In the present paper, we propose a time-multiplexed super-resolution system that requires nomovingpartsandisbasedoncoherentdetectionofafrequency-shiftedsignal.Thisscheme lendsitselfparticularlywelltosuper-resolvedimaginginIRandTHz.Ourapproachisbased on a device that converts evanescent waves to propagating waves via diffraction on acoustic phonons.Thescatteredandfrequency-shiftedwavescanbeeasilydecoupledfromtheexisting propagatingspectrumthatformstheregulardiffraction-limitedimage(thus,theimageisfree fromaliasing).Withminimalprocessing,theseshiftedcomponentscanbeusedtodistinguish subwavelengthfeatures. Wewilldiscusstwovariationsofthisapproach.Bothrelyonmixingthefrequency-shifted fields scattered from the object with a reference wave, creating, at the detector, a beat note photocurrent which can be isolated through lock-in techniques. We will see that detection of high spatial frequencies is enabled by the spatial frequency offset of the scattered signal, and that a true super-resolved imaging configuration can be attained with an additional temporal frequencyshiftofthereferencesignal. 2. Scatteringfromaphonongrating:generaldescription The proposed super-resolution microscope/sensing system is shown in Fig. 1. The object is placed in the near field of an acousto-optic modulator (AOM) and illuminated with a plane wavefromamid-IRorTHzsource.Wavesscatteredfromtheobjectstrikethephonongrating set up in the AOM by a running acoustic wave with frequency Ω. Due to scattering on the phonons,thetransversewavevectork oftheincidentradiationisshiftedbyintegermultiples x ofthephononwavevectorq,whileitscorrespondingfrequencyisshiftedbyintegermultiples of Ω. For a sufficiently large q, the evanescent components of the object’s spatial spectrum (|k |>ω/c)canbescatteredintothepropagatingwaveswith|k(cid:48)|≡|k −q|<ω/c.Thevarious x x x spatialfrequencycomponentscanbemeasuredusingaFourieropticssetup(e.g.alenswitha detectorarrayinitsfocalplane). Wemodeloursystembyconsideringarectangularsoundcolumn(i.e.planaracousticwave- fronts propagating in the x direction) interacting with a spectrum of incident plane waves in a dielectric medium. We neglect the diffraction of the sound field or multiple reflections, and assumeweakinteraction.Duetophotoelasticeffect,thesoundfieldproducesasinusoidalmod- ulationofthedielectricpermittivity[12], ε(x)=ε+∆εcos(qx−Ωt), (1) whichcorrespondstoaspatiotemporalvolumegrating.Wemaywritethegeneralformofthe fieldinsidethegratingasasumoverthediscretediffractedorders, E=∑A (z)exp[i(k +jq)x−i(ω+jΩ)t]. (2) j x j The scattered plane wave components A (z) are then governed by the Raman-Nath equa- j tions[13], ∆ε A(cid:48)(cid:48)(z)+k2A (z)=− ω2[A (z)+A (z)], (3) j zj j 2c2 j j−1 j+1 (cid:104) (cid:105)1/2 wherek = εω2 −(k +jq)2 ,andω (cid:39)ω. zj c2 x j The amplitude of the jth diffracted order, A , is proportional to (∆ε)j, with ∆ε/ε (cid:28)1, al- j lowingtoignorehigherorderterms(j≥2).Wecan,furthermore,concludethattheamountof energyscatteredintotheshiftedwavesissmall,therebypermittingtoneglectthevariationof 0thdiffractedorderA (theundepletedpumpapproximation)[12].Wenotethatforpropagating 0 waves,thisconclusionisvalidinsofarasthereexistsnoBraggmatchingbetweentheincident and diffractedwaves. Since thephonon wave vector q is atunable parameter inour model, it is always possible to pick a range of q values to ensure minimal energy loss in the incident wave.Fortheevanescentwaves,theundepletedpumpapproximationisjustifiedbythesmall interactionlength. KeepingtermsuptofirstorderinEq.(2),weobtain: ∆ε A(cid:48)(cid:48)(z)+k2A (z)=− ω2A (z). (4) ± zj ± 2c2 j 0 The scattering amplitudes of “upshifted” and “downshifted” waves can be obtained from this expression.Sincetheinputfieldatspatialfrequencies(k ∓q)contributestotheoutputfieldat x spatialfrequencyk ,wemaywrite: x E (k )=(cid:2)A˜ exp(iΩt)+A˜ exp(−iΩt)+A˜ (cid:3)exp[i(k x−ωt)], (5) out x − + 0 x withA˜ ≡t±E (k ∓q),A˜ ≡t E (k ).Scatteringcoefficientst± are,forthecaseofevanes- ± in x 0 0 in x centwaves,givenby ∆ε (cid:16)ω(cid:17)2 1 ∆ε (cid:16)ω(cid:17)2 1 t±=t ≈t , (6) 0 2 c kz±(cid:112)(kz±)2+κ2 0 2 c kz±(cid:112)q(q∓2kx) (cid:112) (cid:112) wherek±= ε(ω/c)2−(k ∓q)2,κ=ik = k2−ε(ω/c)2,andt isaFresneltransmission z x z x 0 coefficient. We see that the conversion of incident evanescent waves into propagating signals dependscriticallyontheacoustoopticindexcontrast∆ε andontheeffectiveinteractionlength 1/κ.Wenote,also,thatEq.(6)describesalsothegenerationofshiftedspatialfrequenciesfor thecasewheretheincidentwaveispropagating(providedwemaketheassociationκ=ik ).In z thiscase,thedivergenceofEq.(6)aroundq≈0,aswellasq≈±2k signifiesthebreakdown x oftheperturbativetreatmentofEq.(3)duetotheonsetofBragg-matching. FromEq.(6)wecanestimatethediffractionefficiencyofhighspatialfrequencyinputsignal E (kin)as in x (cid:12)(cid:12)t±(cid:12)(cid:12)≈ ω/c ∆ε , (7) 2kin n(1+n) x √ √ withn= ε (therefractiveindexoftheacousticmedium),and∆ε ∝ F,thefluxofacoustic energyperunitarea. Wethusobtaintheamplitudesofthefrequency-shiftedwaves.WedefineA˜ =t±E (k ∓q), ± in x A˜ =t E (k ) (with linear coefficients t , t± describing the generation of phonon-scattered 0 0 in x 0 and/ordevicetransmissioncharacteristics)andassumeA˜ (cid:29)A˜ (cid:29)A˜±,whereA˜ isthedetected i 0 i amplitude of the illuminating wave Aieik0z. Averaging out the signal over the finite detector apertureandsubtractingthebackground(whichcanbedoneelectronically),wecanwritethe intensitydetectedbythesystemofFig.1as I =|A˜ |2+2(cid:0)|A˜ A˜ |2+|A˜ A˜ |2(cid:1)1/2cos(Ωt+γ). (8) out 0 i − i + The two terms in this equation can be decoupled using standard techniques: the DC term is isolated with the aid of a low-pass filter, while the term oscillating at the acoustic frequency Ωisrecoverableusingstandardlock-indetection.Foranygivenk ,thissecondtermcontains x contributions from both A˜ =t+E (k −q) and A˜ =t−E (k +q). Although the coupling + in x − in x betweenthesetwoquantities,togetherwiththelackofphaseinformation,makesitdifficultto recoverthespatialspectrum,theinformationcollectedcanbeusedindetectingsubwavelength morphologicalchangesbetweendifferentsamples. 3. Super-resolvedfingerprinting:numericalsimulation We nowillustrate the abilityof the proposedsystem to distinguishedbetween subwavelength spatial features of different objects. In particular, we utilize Eq. (8) to perform a comparison between the standard optical target (USAF test chart) and a modified target, where the label ofevery6thlinegrouphasbeenrandomlyreplaced.Thefirstreplacementcorrespondstothe last resolvable line group (λ/2.5 line separation); the subsequent replacements correspond to halvingthesizeofthelinegroups(λ/5,...,λ/40).Weassumethemeasurementisperformedby selectinganelementofaphotodetectorarrayintheobservationplaneandusingtwoorthogonal acoustictransducerstoscantheacousticwavevectorwithintherangeq ∈[−25ω/c,25ω/c]. x,y (Wechoosethesevalueswiththeaimtoimprovebyafactorof∼20ontheAbbeλ/2resolution limit,therebycollectingmeaningfulinformationabouttheλ/40linegroup.) Inourcomputations,weassumetheoperatingwavelengthof10µmwithgermaniumasthe acousticmedium.Wetake∆ε=10−3andrestrictthemagnitudeoftheacousticwavevectorqto 25ω/c.Sinceforhighspatialfrequencieskin≈q,acousticdrivingfrequenciesupto8.75GHz x arerequiredtoretrievekin≈25ω/c.Theseparametersarewithinreachofmodernultrasonic x transducers[14],aswellassurfaceacousticwavedevices[15]. It should be emphasized that any method that relies on digital processing of raw data can suffer form rapid – sometimes exponential [16] – accumulation of noise. (Indeed, some pro- posedsuper-resolutionmethodsevenstipulatetheneedforanexponentiallystronginputsignal toovercomenoiseandlosses[17].)Toshowthatthisisnotthecasehere,inourcomputations weaddanormally-distributedrandomtermtotheACamplitudeofEq.(8)inordertosimulate noiseinthesystem.BecauseSNRisexpectedtobelowestformaximumvaluesoftheacoustic wavevectorq,weconsiderSNR=10forq=25ω/c1.Assuminga20×20elementphotodetec- torarray,wecomputethesignalgivenbyEq.(8)forthestandardtarget,aswellasthemodified target[Fig.2(a)].Fig.2(b)showstheresultofsubtractingthetwodatasetsandperformingan 1Acoustoopticdiffractionefficiency,andhencethesignal-to-noiseratiovariesas1/q. (A) (B) Fig. 2. (a) Optical test target and its modified version (inset). In the modified target, the “5”labelofeverycolumnhasbeenreplacedbyanotherdigit.(b)Computedoutputofthe systeminthepresenceofnoise(showningrayscale)assumingarealistic,noisydetector with 400 active photocells. The modified optical target is superimposed for illustration purposes.Theoutputofthesystemclearlyidentifiesthelocationofeverymodifieddigit, evenforregionsfarbelowthediffractionlimit. inverseFouriertransform,withtheresultingplotsuperimposedontothemodifiedopticaltarget. Evidently,everychangeintheoriginalimageismanifestedinthisdifferencediagram.Further- more,itislargelylocalizedinthevicinityoftheactualchangedpixels.Itispossibletodiscern thedifferencesignalevenfromtheλ/40linegrouplabel. The ability to distinguish between fine spatial features of optical targets makes the system described above uniquely suited for identifying objects based on their subwavelength spatial features.Asaresult,itmayfindapplicationsinfingerprintingand/ordetectionofchemicaland biologicalstructures. 4. Super-resolveddigitalholography A straightforward modification of the setup described above not only allows to measure the “downshifted” A˜ component directly, but also provides a method for retrieving phase infor- − mation,makingitpossibletoperformphase-contrastmicroscopy,andpotentiallyenabling3D imagingonsubwavelengthscales. To this end, a portion of the illuminating radiation is shifted in frequency by Ω using b a second AOM. Unlike the modulator that interacts with light scattered from the sample in the Raman-Nath regime [12], this second AOM utilizes an appropriately oriented and longer cell to produce Bragg scattering. This results in a strong optical signal at frequency ω+Ω , b |A˜ |exp[i(k ·r−(ω+Ω )t)], which is projected onto the detector [see Fig. 3(a)]. Interfer- b b b encebetweenthetwoopticalsignalsproducesbeatnotephotocurrentswithfrequenciesΩ,Ω , b Ω +Ω,Ω −Ω: b b Iout(kx)= (cid:12)(cid:12)Eiexp(ik0z)+A˜bexp(ik·r)+[A˜−exp(iΩt)+A˜+exp(−iΩt)+A˜0]exp(ik·r)(cid:12)(cid:12)2 = ...+2|A˜−A˜ |cos[(Ω +Ω)t+∆Φ−]+2|A˜+A˜ |cos[(Ω −Ω)t+∆Φ+]+..., (9) b b b b where∆Φ±=(k −k)·r−φ± isthephasedifferencebetweenthesignalfromtheBraggcell, b |A˜ |exp(ik ·r),andtheRaman-Nath-scatteredsignalA˜±exp(ik·r)=|A˜±|exp[i(φ±+k·r)]. b b (А) (B) Fig.3.(a)Schematicsoftheproposedsystem.NotetheBragg-shiftedreferencebeamthat aidsinprovidingphaseinformation.(b)Thecomputedoutputofthesystemwithoptical testtargetastheobjectinthepresenceofnoise. Of special interest is the component at frequency Ω+Ω , which carries the high spatial b frequencyinformationcontainedinitsmodulusanditsphase∆Φ−(cid:39)(kb−k )x−φ−.Bothof x x thesequantitiescanberetrievedusinglock-intechniques.Toproducethelock-inreference,the RFsignalsdrivingthetwoacousticcellscanbemixedusinganonlinearelement(e.g.adiode) andappropriatelyfilteredtoproducethesumfrequency.Asaresult,completeinformationcan beobtainedaboutthecomplexhighspatialfrequencyFouriercomponentA˜−,fromwhichitis straightforward todeduce the field E (k +q). Bycollecting data frommultiple CCDpixels, in x aswellasbyvaryingtheacousticwavevectorq,informationcanbecollectedabouttheentire spatial spectrum of the object. The data can then be digitally processed to produce a spatial- domainimagecontainingsubwavelengthdetails,aswellasphasecontrast. BecausetheBragg-shiftedsignalweusetodecoupletheA˜ andA˜ termsservesasarefer- + − enceneededtorecordphaseinformation,andbecausetheimageisreconstructeddigitally,our techniquebelongsinthecategoryofdigitalFourierholography(DFH)[18,19,20].However, theproposedcoherentdetectionmethodisdifferentfromtraditionalDFHsetupsinthatiteffec- tively converts sample spatial frequencies to temporal ones. In conventional holography, care has to be taken to isolate the target signal both in real and Fourier space. This translates into limitationonthefieldofview,aswellasmaximumattainableresolution[20].Therequirement that the CCD pixel spacing must allow for imaging the reference wave fringes further limits the resolution. As a result, simple digital holography setups suffer from very narrow spatial frequency passbands (N.A.∼0.1). Synthetic aperture techniques based on gratings [21, 22, 5] have been successfully shown to increase the effective numerical aperture, as has heterodyne detection[23].Ourmethodcombinesthebenefitsoftheseapproaches:dynamicacousticgrat- ingallowstoscanthespatialfrequencyspacewhilealwaysremainingintheCCD’spassband, while the temporal frequency shifts multiplex the data, effectively increasing the number of informationchannelsinagivenspatialfrequencyband. We simulate the performance of the frequency-shifted digital holography system by first usingEq.(9)tocomputetheresponseofthesystemtoacalibrationsignalhavingunitamplitude forallspatialfrequencies.Inpractice,suchcalibrationsignalmightbegeneratedbyplacinga pointsourceinthevicinityoftheAOM.Eq.(9)alsoprovidestheeffectiveamplitudeandphase transferfunctionsthatallowtodeterminethedetectedsignalforagiveninputfielddistribution. Gaussiannoiseisaddedtosimulatespurioussignalsinthesystem.Theinputsignalcanthenbe obtainedbydividingoutthecalibrationquantities.InFig.3(b)weplotthesimulatedretrieved fieldmagnitude.Zoominginonthecentralpartofthetestpatten(figureinset)itisevidentthat everylinegroupisdistinctlyresolved,suggestingthattheeffectivenumericalapertureis>1 (duetoreconstructionofevanescentwaves). 5. Potentialimprovementsoftheproposedsystemandextensiontohigherfrequencies Asdemonstratedearlier,theresolutionoftheproposedsystemswilldependonmanyfactors, including the maximum attainable frequency shift, integration time, acoustooptic index con- trast, and success in minimizing detector noise, laser linewidth, and speckle. In addition to resolution improvement, there exist many possible ways to enhance the functionality and the performanceoftheproposeddevices.Forinstance,becausethephaseinformationispreserved, thefullcomplexfieldintheobjectplanecanbereconstructed,potentiallyenabling3Dimag- ing via, e.g., phase-shifting interferometry [24]. On the performance front, the sensitivity of the device may be improved with a subwavelength layer of highly doped semiconductor at thefrontAOMfacet.Whenthedielectricconstantofthislayerisequalto−1,theevanescent fieldsarestronglyenhancedduetoresonantcouplingtosurfaceplasmonsinthedopedlayer(a phenomenonknownas“poor-man’ssuperlensing”[25]),leadingtobetterSNRatthedetector. Another possible way to improve the scattering efficiency of evanescent waves is placing the sample directly in the path of an acoustic wave, for instance, by running the wave through a microchannel containing objects to be studied. This approach may find many applications in novelintegratedbiological/chemicaldetectiondevices. Finally, we comment on the possibility of extending the proposed approach to frequencies otherthanthemid-IRandTHzbandsdiscussedhere.Whileimplementingthesystemforlower frequencies is essentially trivial, near-IR and optical frequencies pose a challenge. Acoustic phonon energies in practical devices do not approach the values necessary to produce a sub- stantial wave vector shift in these spectral bands. However, the required shift in spatial and temporalfrequenciescaninprinciplebeattainedbyreplacingtheacoustoopticmediumwitha nanostructuredperiodicallymovinggrating.Inthisscenario,thespatialfrequencyshiftisde- terminedbytheperiodicityofthegratingwhilethetemporalfrequencyshiftisdeterminedby the speed of grating oscillation. These parameters can be adjusted independently to optimize performance. 6. Conclusion We have proposed a system that enables detection of sub-diffraction-limited spatial spectrum componentsinthefarfieldbyutilizingscatteringfromanacousticgrating.Thisprocessworks wheneverthespatialfrequenciesoftheobjectarecomparableinscaletotheacousticwavevec- tor.Initssimplestimplementation,thesystemcouldaidin“fingerprinting”ofsamplesbasedon theirsubwavelengthspatialfeatures.WiththeuseofanadditionalBragg-shiftedreferencesig- nal,itisalsopossibletorecoverthephaseoftheoriginalopticalsignal.Theproposedapproach hasthepotentialtogreatlyenhancethespecificityofmid-IRandTHzspectroscopy. Acknowledgements ThisworkwassupportedinpartbyUnitedStatesArmyResearchOffice(USARO)Multidis- ciplinaryUniversityResearchInitiativeprogramawards50342-PH-MURandW911NF-09-1- 0539.