Super-Eddington accreting massiveblackholes aslong-livedcosmologicalstandards Jian-Min Wang1,2,∗ Pu Du1, David Valls-Gabaud3,1,2, Chen Hu1, and Hagai Netzer4 1KeyLaboratoryforParticleAstrophysics,InstituteofHighEnergyPhysics,CAS,19BYuquanRoad,Beijing100049,China 2National AstronomicalObservatories of China, CAS,20A DatunRoad, Beijing100020, China 3LERMA,CNRSUMR8112, ObservatoiredeParis,61Avenuedel’Observatoire, 75014Paris,Franceand 4School of Physics and Astronomy and The Wise Observatory, TheRaymondandBeverleySacklerFacultyofExactSciences, Tel-AvivUniversity,Tel-Aviv69978, Israel 3 (Dated:Received27August2012;accepted16January2013byPhysicalReviewLetters) 1 Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain 0 accretion ratedue to photon trapping and advection inslimaccretion disks. Weshow that these SEAMBHs 2 could provide a new tool forestimating cosmological distances ifthey are properly identifiedby hard X-ray n observations, in particular by the slope of their 2–10 keV continuum. To verify thisidea we obtained black a holemassestimatesandX-raydataforasampleof60narrowlineSeyfert1galaxiesthatweconsidertobethe J mostpromisingSEAMBHcandidates. Wedemonstratethatthedistancesderivedbythenew methodforthe 7 objectsinthesamplegetclosertothestandardluminositydistancesasthehardX-raycontinuumgetssteeper. 1 Theresultsallowustoanalyzetherequirementsforusingthemethodinfuturesamplesofactiveblackholes andtodemonstratethattheexpecteduncertainty,givenlargeenoughsamples,canmakethemintoauseful,new ] cosmologicalruler. O C PACSnumbers:98.80.Es,98.54.Cm,98.62.Js,98.62.Mw,95.36.+x . h p ThediscoveryoftheacceleratingexpansionoftheUniverse ratherthanlinearly)totheaccretionrate[6,7], - o hasnowbeenestablishedthroughobservationsoftypeIasu- r pernovae (SNe Ia) [1], and is likely to be confirmed further L• =ℓ0(1+alnm˙ 15)M• , (1) t as wlatiitohnnse,wwesataknldeanrsdinrgulaenrsdpcrlouvsitdeersdobfygbaalaryxoiensa[2co].usHtiocwoesvceilr-, whereℓ0 ≈5.29×1038 ergs−1M⊙−1,anda≈0.476[7].For [ reference,atm˙ =15thesaturatedluminosityis 4.20L . SNe Ia beyond z & 1.5 are rare [3] as there is no time for ∼ Edd Thus, at a given black hole mass, SEAMBHs are radiating 1 theirprogenitorstoevolveinsubstantialnumbersgiventheir v basicallyataconstantluminositywhich,asshownbelow,can lowermetallicity[4].Tofurtherprobethedynamicsoftheac- 5 thereforebeusedtodeducecosmologicaldistances. 2 celeration,newdistanceindicatorsareneededatandbeyond InthisLetterweaddresstwoimportantissues:howtoiden- 2 theseredshifts.Basedonwell-understoodphysicsweshowin tify SEAMBHs and how to test, observationally, Equation 1 4 thisLetterthatsuper-Eddingtonaccretingmassiveblackholes and its uncertainties such that it can be used to derive reli- 1. (hereafterSEAMBHs)insomeactivegalacticnuclei(AGNs), ablecosmologicaldistances. WhileSEAMBHsarepredicted 0 thatarecharacterizedbya massof 106∼8M⊙, canprovidea tohaveuniqueoptical-UVspectralcharacteristics[5–7],their 3 new tool to estimate cosmologicaldistances at a wide range use to identify such sources is hampered by the dilution of 1 ofredshifts,includingthehighredshiftUniverse. : thediskemissionbystellarradiationfromthehostgalaxyat v long wavelengths, and by the Galactic and inter-galactic ab- i X Radiation pressure limits the spherical accretion rate onto sorption at short wavelengths. In fact, current observations r black holes to M˙Edd = LEdd/ηc2, where LEdd = cannot identify such systems using only their spectra in the a 4πGM•mpc/σT is the Eddington luminosity for a pure hy- optical-UV domain. Fortunately, X-ray spectroscopy allows drogenplasma, η ( 0.1)isthemasstoradiationconversion such identifications for two reasons. First, there is a well- ∼ efficiency,σT istheThomsoncrosssection,mp istheproton knownpositivecorrelationbetweenthe2-10keVX-raypho- mass, c is the speed of light, G is the gravitational constant ton spectral index (Γ) and the Eddington ratio (L /L ) Bol Edd and M• is the black hole mass. However, super-Eddington [8]. In addition, higher LBol/LEdd sources emit a smaller accretionontoblackholesisfeasibleinslimdiskswherethe fractionoftheirtotalradiation(fX = LX/L•) athardX-ray radiation pressure-dominated regions (RPDR) are thermally energies[9]. Thesepropertiesareeasytomeasurewithmod- stable due to the radial advection of the locally emitted ra- ern X-ray observations and are similar to those observed in diation [5]. In such disks, the timescale of photon diffusion GalacticblackholesinX-raybinaries[10]. to thedisksurfaceis longerthanthatofthe radialmotionof ThegeneraltheorythatlinksX-rayemissiontotheoptical- the accreting gas in the RPDR. The photons are trapped in- UVspectrumofaccretiondisksisbasedontheassumptionof sidetheaccretionflowsandareadvectedintotheblackholes. ahotcoronaabovethediskthatisthesourceoftheX-rayra- This advection dominateswithin the photontrapping radius, diation. TheX-rayemissionefficiencyoftheprocessesinthe Rtrap ≈ 430m˙ 15Rg,wherem˙ 15 = m˙ /15,m˙ = M˙•/M˙Edd, corona depends on LBol/LEdd. In particular, the magneto- M˙•isthemassaccretionrateandRg =GM•/c2[6]. Photon rotational instability is a key factor to produce the viscosity trappingaffectsthetotalemittedradiationandresultsinasat- thathelpstransportingangularmomentumoutward[11]. The uratedluminosity,L•,whichisproportional(logarithmically, processtakes place throughmagnetic buoyanttransportation 2 abovethecolddisk[12]whichleadstoa“corona-dominated” lines ([OIII]/Hβ < 3); 5) fast, large amplitude X-ray vari- dissipationthroughhardX-rayemission.Theincreasesofthe ations [19]. The typical black hole mass in NLS1s (see be- accretionratesresultintheweakeningofthetransportationof low) is considerably smaller than that in BLS1s of similar magnetic tubes because of the inflation of the disk by radia- L which implies that many of them may be accreting at Bol tionpressurewhichyieldsareductionofthebuoyantvelocity. super-Eddingtonrates. Theendresultoftheseprocessesistheradialadvectionofthe TotestobservationallyEquation1inNLS1s,wehavetoes- emittedphotonsandthesuppressionoftherelativeX-rayflux timateM•. Blackholemassescan bemeasuredindividually (f )ofthesystem[13]. using the reverberation mapping (RM) technique, which in- X The second effectof an increasing L /L ratio is the vokestheresponse(timelag)ofthebroademissionlineswith Bol Edd steepeningoftheX-rayphotonindexΓ. Therehavebeenvar- respect to changes in the continuum producedby the under- iousattemptsatcalculatingΓinhotcoronaefrombasiccon- lyingdisk[20,21]. Initsmostdetailedversion,thevelocity- siderationsoftheconditionsinaccretiondisks[12]. The2-10 resolvedreverberationmapping(VRRM),onecanderivethe keVemissionismainlyduetotheComptonizationofphotons spatialdistributionofthelineemittinggas,anditsvelocity,at fromthe colddisks(the X-rayreflectioncan beneglectedin everylocationaroundtheblackhole. Inprinciple,thisphase- thisband[14]). IthasbeenshownthatfX M•−1/18m˙ −4/9 spacemappingenablesustodetermine,accurately,theblack ∝ holemass(thisisequivalenttodynamicalmethodswhichare intheRPDR(seeequation13forf 1andFigure1inRef. X ≪ used to measure the masses of black holes in normalnearby [13])andthusoneexpectsthataluminosityfXL• isradiated galaxies). Suchtwodimensionalmappingsareonlyavailable by the coronae. Since Comptonization is the main cooling for a handful of sub-Eddington sources and many details of process, the balance between heating and cooling yields the densityofhotelectronsn f andn m˙ −4/9. thetechniqueneedtobeimprovedforaccuratemeasurements c X c ∝ ∝ (e.g.thecaseoftheBLS1Mrk50[21]). Under the conditions discussed above, the X-ray photon Fortunately,wecanuseasaproxythetightcorrelationbe- index can be approximated by Γ 2.25y−2/9 [15], where ≈ tween the size of the broadline regions(BLR) (the time lag y = 4θ τ (1+4θ )(1+τ ) is the Comptonizationparam- e T e T times the speed of light) and the underlying continuum lu- eter, θ = kT /m c2, T is the electron temperatureand τ e e e e T minosity to obtain an empiricalrelationship, fora sample of is the Thomson scattering optical depth. It is expected that about35AGNs,thatcanbecombinedwiththeobservedline y nγ m˙ −4γ/9, where γ = 1 for unsaturated Comp- ∝ c ∝ widthstoestimatetheblackholemassesinalargesampleof tonization(τ < 1)andγ = 2forsaturatedComptonization. T sources.Therelationshipisgivenby Thisscenariois supportedbythe behaviorsofblackholeX- ray binaries in very high states [10], showing that the 2-10 L α keV emission is at the level of low/hard states, but the pho- RBLR =R0 1044e51r0g0s−1 , (2) ton indexes are typically Γ > 2. Considering that hard X- (cid:18) (cid:19) ray spectra have a cutoff of 50-100 keV (θe ∼ 0.1 − 0.2) where R0 ≃ 9 × 1016cm, α = 0.6 ± 0.1, and L5100 is [16] and applying the above coronal model to AGNs, we the AGN continuum luminosity (λL at 5100 A˚ in units of λ haveΓ m˙ 8γ/81. Thispredictionagreeswith the observed 1044erg s−1) [20, 22]. We note that among the 35 AGNs ∝ Γ LBol/LEdd correlationof AGNs hostingstandard(opti- used to derive this correlations, eight are NLS1s and follow − callythickandgeometricallythin)accretiondisks[8]. thesametrendasothersources[23]. The simplest model for the slim disks of SEAMBHs Equation2enablesustoobtaintheblackholemassesbyas- assumes a spherical hot corona with a characteristic size sumingavirialized(gravitationallybound)cloudsystemand ℓ . The Comptonization of photons from the slim combining all the unknown geometrical factors, such as the c disk surface produces a hard X-ray luminosity LX = inclination to the line of sight, into a single constant fBLR. 4θeneσTc L•/4πℓ2cc 4πℓ3c/3 , giving rise to τT = Using this constant we can now write an expression for the 3f /4θ 0.8f θ−1,whereτ = n σ ℓ ,f = f /0.1 “reverberationmapping-basedvirialmassestimate”ofsuper- andX θ e ≈=(cid:0) θ /00..11. 0(cid:1)T.1(cid:0)he coron(cid:1)aTe haviengTacCo0m.1ptonizXation massiveblackholesas 0.1 e parameterof y 0.8, the SEAMBHsare thencharacterized by Γ & 2.3y−2≈/9, where y = y/0.8. Obviouslythere are M• =fBLRG−1VF2WHMRBLR , (3) 0.8 0.8 uncertaintiesintheseparametersandtheresultingtheoretical where V is the FWHM of the broademission line (e.g. FWHM relationships,however,wecanusetheobservedΓtoidentify Hβ)thatwasusedtoderivethetimelagintheRMmeasure- SEAMBHsindifferenttypesofactivegalacticnuclei. ment.Thefactorf iscalibratedbycomparingtheresultsof BLR The best group of AGNs where such processes have been theRMexperimentstodirectblackholemeasurementsbased studiedarenarrowlineSeyfert1galaxies(NLS1s).Theseob- ontheM• σ∗ relation,whereσ∗ isthestellarvelocitydis- − jectsareseparatedfrombroadlineSeyfert1galaxies(BLS1s) persion in the bulge of the host galaxy. Such a comparison byhavingthefollowingproperties[17,18]:1)thefull-width- isnowavailableforabout30outofthe35AGNsin theRM half-maximum (FWHM) of Hβ profiles are narrower than sample. It shows that f 1.2 0.2 [24]. Noting that BLR 2000kms−1;2)strongsoftX-rayexcess;3)unusuallystrong L• = κBL5100, where κB is≃a bolo±metric correction factor, (relative to Hβ) optical iron emission lines; 4) weak [OIII] we obtain an expressionof L• in terms of fBLR and VFWHM. 3 FIG.1:Left:ResidualsoftheSEAMBHdistancemodulus(∆µ=µ•−µL).Theerrorbarsaretakenas∆µ•=1.17mag(seetextfordetails).Theassumed cosmologicalparametersareH0 =71kms−1Mpc−1,ΩΛ =0.73andΩM =0.27.Middle: Thedistributionof∆µasafunctionofthehardX-ray(2-10 keV)photonindexΓ. Thenormalizedfrequencyisreferredtofractionstothepeaknumberofobjects. N isthetotalnumberofSEAMBHsselectedbyΓ. Right:scatterofthe∆µdistributionswithΓ(bottom)andthedistributionofΓforthesampleofSEAMBHcandidates.Thedependenceofthedispersioninthe residualsasafunctionofΓshowsasystematicdecreaseandtendstoσmin,indicatingtheefficacyoftheselectionasstandardcandles. ∆µ SinceL =4π 2F ,whereF isthemeasuredcon- similar results in [7, 28]). The contaminationsby the stellar 5100 • 5100 5100 tinuumfluxinunitDsofergs−1cm−2at5100A˚ and • isthe light of the host galaxy were removed, prior to the estimate D luminosity distance of the black hole, we obtain the expres- ofF ,usingtheapproximationdescribedinMaterialsOn- 5100 sion line. We examined the L /L distribution in our NLS1 Bol Edd sampleandfoundthat,indeed,manyofthemindicatesuper- • = 1 l0(1+alnm˙ 15)fBLRR0 1/2(1−α) VF1W/(H1M−α). Eddingtonratios,upto5andevenmore. Thus,theselection D √4π (cid:20) GκB (cid:21) F511/020 ofsourcesbyΓisindeedagoodwaytoidentifysuchsources. (4) We calculate ∆µ for all sources, bin them into various Thisexpressionstillinvolvestheunknownaccretionratem˙ groupsofdifferentΓ,andplottheminFigure1. Asshownby 15 which,assuggestedearlier, canbe estimatedfromtheX-ray thestandarddeviation(σ ),thescatterof∆µsystematically ∆µ slopeΓ.However,thedependenceforΓ>2(whichistheone decreasesasΓincreases. FromEquation4),thisbehaviorcan weareinterestedhere,seebelow)isweakenoughthatwecan beunderstoodintermsofthescatterexpressedby ktuhnsaeotwthanneoaopbbpsjeerorcvxtaiimbslaeatsiSoaEnnAdm˙Mc1o5Bn=Hsta1bnyatsn.mdTeoahbsutuasri,innhDgav•iitnsfrgoΓmeisnttahdbeelxios,thhweeder ∆µ• = ln510"4((11+−aαl)n−m2˙a125)2 (cid:18)∆m˙m˙ (cid:19)2+∆µ2X#1/2, haveawaytodirectlymeasureitsdistance. (5) In the following we use the distance modulus, µ• = where ∆µ2X = 5i=1∆µ2i, ∆µi = Ai(∆Xi/Xi), Xi = 5log(D•/pc) − 5, and compare it with the one obtained fBLR, R0,κB, VFWPHM,F5100, Ai(i = 1,2,3) = 1/2(1−α), from the standard luminosity distance L in the Friedman- A4 = 1/(1 α)andA5 = 1/2. ∆µ• convergesto ∆µX as D − Lemaˆıtre-Robertson-Walkermetricµ = 5log( /pc) 5. ∆m˙ /m˙ decreaseswithincreasingΓ. L L D − The prediction is that comparing • and DL we will get Toillustratethetypicaluncertaintyonindividualpointswe D smaller residuals ∆µ = µ• − µL for larger Γ, since large assumethat∆fBLR/fBLR = 0.2 [24] (fromthe scatterin the indices point to conditions closer to those predicted by the M• σ∗distribution),∆F5100/F5100 =0.2(fromtheknown − SEAMBHtheory. variationsintheopticalcontinuumandtheuncertaintyinthe We now turn to the available samples of SEAMBH can- substraction of the stellar background), ∆V /V = FWHM FWHM didates. While the observedNLS1 propertiesmay all be re- 0.05(fromtheuncertaintyinfittingtheemissionlineprofiles latedtothelargeEddingtonratio[18,25],notallNLS1shave andmeasuringV ),∆R /R =0.2and∆κ /κ =0.3. FWHM 0 0 B B super-Eddington accretion rates. It is thus necessary to use Theestimateduncertaintyofκ isthelargestandmostprob- B thehardX-rayspectratoidentifySEAMBHsamongNLS1s. lematicforseveralreasons. First, allourestimatesof κ are B We selected a large number of NLS1s from several hetero- derivedfromtheoreticalcalculationsofslimdiskspectra [7]. geneous samples [18, 26] with hard X-ray observations by These have not been verified observationally because of the ASCA, XMM-Newton, Chandra and Swift [27]. All data and lackofextremeUVobservations,wheremostof theemitted datareductiondetailsareprovidedintheSupplementaryMa- luminosityindisksaroundsmallblackholes(106 107M⊙) − terials Online. In short, we use the observed F flux and is emitted. Moreover, a factor of 10 increase in black hole 5100 theestimatedblackholemassM• toderiveκB andhenceL• mass results in a factor of 101/3 decrease in κB (from about for each source (see also a somewhat differentapproach but 100in106M⊙toabout40in107M⊙blackholes).Theentire 4 rangeofblackholemassesinoursamplesuggestsaverylarge ence and futureobservations. Moreover,the accuracyof the ∆κB/κB. Fortunately, the individualmasses are knownand measuredM•canincreasesubstantiallyifnew,dedicatedRM the uncertainty on massive black holes using the RM-based experimentsare carried out on a large numberof SEAMBH virial method is only a factor of about 3 [29]. This and the candidates. This can reduce the uncertainty on f , F , BLR 5100 allowedrangeofspectralshapesandm˙ givesthequotedesti- V andR andconstrainαtobetheslopeforthispopu- FWHM 0 mateon∆κ /κ . lationonly.AsFigure1shows,itisreasonabletoassumethat B B Combining all these uncertainties and assuming α = 0.6 foralargeenoughsampleofSEAMBHsatanarrowredshift we obtain ∆µX = 0.54. This correspondsto ∆µ• 1.17 range,wecouldexpectascatteronthepopulationµ• thatap- ≃ mag since the first term in Equation 1 tends to vanish for proaches0.15mag,similartothecurrentaccuracyofSNeIa largeenoughvaluesof Γ. ThisisnotsurprisinggivenEqua- method[3]. tion 1 and the known uncertainties on M• measured by the SEAMBHs,asanewtypeofcosmologicaldistanceindica- RM-basedvirialmethod. Thisuncertaintyisestimatedto be tor,haveanumberofadvantagesoverothers[30]:(1)Thesat- 0.3–0.5dexwhichwouldsuggestasimilaruncertaintyonL•. urated luminosities are well understoodon physical grounds Sinceµ 2.5logL•,wegetasimilaruncertaintyonindivid- and have no potentialcosmic evolution. (2) The objects can ∝ uallymeasuredpointstotheoneobtainedbythemoredetailed beefficientlyselectedbytheirX-rayoropticalproperties.(3) calculations. From Figure 1, we find ∆µ• & σ∆mµin = 0.93 Theycanprobea largerangeof redshifts, as theyfollowthe mag,whichclearlyshowsthattheselectedsamplehasasmall cosmic growth of massive black holes that are abundant at scatterof∆m˙ /m˙ relatedtothisterm. high-z and are very luminous. (4) Unlike SNe Ia, repeated The panels of Figure 1 illustrate both the convergence to observationscanbemadetoimprovetheobservationalaccu- ∆µ = 0 and the reduced scatter when using increasinglt racy. h i larger values of Γ. The central panel shows that for a suffi- Several observational issues require careful attention: (1) cientlysteepX-raycontinuum,acombinationofalargenum- As mentioned before, the R L relation applied here is ber of SEAMBHs gives, indeed, the correct distance with a BLR − theoneobtainedforallAGNs. There-calibrationofthisre- smallscatter. lationshipinadedicatedNLS1sorSEAMBHsample,byob- The systematic decrease of the dispersion in the subsam- tainingbetterestimatesofR andαinEquation2,canreduce ples with increasing Γ, while keeping a median with little 0 thescatterinthederivedmassandhenceκ . Obviously,the variation, cannot be accounted by statistical fluctuations in B estimatedM• involvesthedistancetothesourcewhichisthe the subsamples. Consideringthat the subsamplesare notin- quantitywe are attemptingto measure. However, we do not dependent,we assessthestatisticalsignificanceusingMonte expect large differences between and so this uncer- Carlosimulationswith107GaussiansamplesofsizeN =60 DL D• tainty, by itself, is very small. (2) The 2-10 keV luminosity withthesamemeananddispersionastheobservedone.From andslope are bothvariable[19] whichmay leadto misiden- them,weselecteddistinct(i.e.,withnoreplacement)random tification of SEAMBHs. Long-term averaged values can be sub-samplesofthesamesizeastheonesselected(Figure1), usedtoimprovetheaccuracy. andestimatetheprobabilitiesthatthedifferencesinthemedi- The prospects of building large samples of SEAMBHs to ansandtheratioofthedispersionscorrespondtotheobserved beusedastestsofthecurrentcosmologicalmodelarepromis- ones. We findthat while the probabilitythatthe mediansdo ing. We expectthat roughly20%of NLS1 with Γ 2 host notdifferfromthe oneoftheunderlyingsample of N = 60 ≥ SEAMBHs. As NLS1 constitute about 10% of all AGNs, is always verylarge (above 80%), the probabilitythat the ∼ thereshouldbe104 105SEAMBHsamongSeyfert1galax- dispersionsareassmallastheobservedoneisalwayssmaller ∼ ieswithz 0.3[31]. SEAMBHscouldbeevenmoreabun- than3%. Theobservedtrendcannotthereforebeascribedto ≤ dantathigh-zalthoughthedefinitionofNLS1shouldbemod- randomfluctuationsofsmallsamplesextractedfromthemain ifiedinsuchcases[32]. Herewerequireblackholemassesti- sample. In the sample used here, there are only 12 sources with Γ [2.3,2.5] but future samples will be larger since matesthatarebasedonboththeHβandMgIIλ2798A˚ lines. ∈ X-ray spectra can be obtained by Nustar, by the upcoming such objects can be observed to high redshift. We point out eRosita and HXMT missions [33]. Given accurate observa- that the Γ 2.3 and 2.3 Γ 2.5 panels are statistically ≥ ≤ ≤ tions of SEAMBHs at high redshift we will have a unique indistinguishable because of the poor quality of the sources chance to explore in-depth the dynamics of the accelerating with Γ > 2.5. There are 11 sources in total with Γ > 2.5 Universeaswellasthenatureofdarkenergy. listedinTable1intheSupplementaryMaterialOnline. Five of them with hard X-ray observations have large error bars JMW thanks the hospitality of M. Ward and C. Done at (∆Γ 0.37),makingtheΓ binninglesssignificantforthese Durham,wherethisworkwasinitiatedinearlyOctober2011. ≥ − small samples. Five other objects are observed in the 0.5–8 L.C. Ho,Y.-Y.Zhou,Z.-W.Han,C.Jin, Y.-R.Li, S.-M.Jia, keVbandbyChandra(Williamsetal. 2004in[26],seenotes J.-M. Bai and J.-C. Wang are acknowledged for useful sug- inTable1),butthedataqualityonlyallowsustoapproximate gestions and discussions. The research is supported by 973 the 0.5–8keV spectral indexeswith the 2–8 keV proxy, and project (2009CB824800), NSFC-11173023, -11233003, and the errorbarsof these sourcesremainverylarge(∆Γ & 0.3 -11133006. DVG was supported in part by the CAS with a except one). The 2.3 Γ 2.5 panel is shown for refer- VisitingProfessorshipforseniorinternationalscientists. ≤ ≤ 5 [16] F.Panessa,etal.,Mon.Not.R.Astron.Soc.,417,2426(2011); V.Beckmann,etal.,Astron.Astrophys.,505,417(2009) [17] D.E.Osterbrock&R.W.Pogge,Astrophys.J.,297,166(1985) ∗ Electronicaddress:[email protected] [18] T.Boller,W.N.Brandt,&H.Fink,Astron.Astrophys.,305,53 [1] A.G.Riess,etal.,Astron.J.116,1009(1998); S.Perlmutter, (1996) etal.,Astrophy.J.517,565(1999) [19] K.M.Leighly,Astrophy.J.Suppl.,125,297(1999) [2] A.Albrecht,etal.,ReportoftheDarkEnergyTaskForce,astro- [20] S.Kaspi,etal.,Astrophys.J.,533,631(2000);S.Kaspi,etal., ph/0609591(2006);J.A.Frieman,M.S.Turner&D.Huterer, ibid,629,61(2005) Ann.Rev.Astron.Astrophy.46,385(2008),D.Weinberg,etal. [21] A.Pancoast,B.J.Brewer&T.Treu,ibid,730,139(2011);A. arXiv:1201.2434(2012). Pancoast,etal.,ibid,754,49(2012) [3] D. Rubin, et al., arXiv:1205.3494 (2012); G. Folatelli, et al., [22] M.Bentz,etal.,ibid,697,160(2009) Astron.J.,139,120(2010) [23] M. Bentz, in “NLS1 and their place in the Universe”. Ed. L. [4] C.Kobayashi&K.Nomoto,Astrophys.J.,707,1466(2009) Foschinietal.ProceedingsofScience(2011),id.33 [5] M. A. Abramowicz, et al., ibid, 332, 646 (1988), E. [24] C.A.Onken,etal.Astrophys.J.,615,645(2004);J.H.Wooet Szuszkiewicz,M.A.Malkan&M.A.Abramowicz,ibid,458, al.,ibid,716,269(2010);D.Park,etal.,ibid,747,30(2012). 474 (1996); A. M. Beloborodov, Mon. Not. R. Astron. Soc., [25] K.A.Pounds,etal.Mon.Not.R.Astron.Soc.,277,L5(1995); 297,739(1998) J. Kuraszkiewicz, et al. Astrophys. J., 542, 692 (2000); S. [6] J.-M. Wang, E. Szuszkiewicz, et al., Astrophys. J., 522, 839 Collin&T.Kawaguchi, Astron.Astrophys., 426, 797(2004); (1999);J.-M.Wang&Y.-Y.Zhou,ibid,516,420(1999) S.Collin,etal.,ibid,456,75(2006) [7] S.Mineshige,etal.,Pub.Astron.Soc.Jap.,52,499(2000)[see [26] M. P. Ve´ron-Cetty, P. Ve´ron & A. C. Gonc¸alves, Astron. As- alsoK.Watarai,etal.,ibid,52,133(2000)];L.-H.Chen&J.- trophys.,372,730(2001),R.J.Williams,etal.,Astrophys.J., M. Wang, Astrophys. J., 614, 101 (2004). We can get κ ≈ B 610,737(2004),H.Zhou,etal.,Astrophy.J.Suppl.,166,128 40 ∼ 100 at5100A˚ for M• = 106 ∼ 107M⊙ andm˙ ∼ 10 (2006),Y.Shen,etal.,ibid,194,45(2011) fromtheirFigure1.Wehave∆κ /κ =0.3andκ ≈70for B B B [27] ASCA: the Advanced Satellite for Cosmology and Astro- thepresentsample.Thisvalueagreeswithobservationalresults physics;XMM-Newton:X-rayMulti-mirrorMission;Chandra: [28].Thiscoefficienthasnocosmologicalevolution. ChandraX-rayObservatory;Swift:theSwiftGamma-rayBurst [8] Y.-J.Lu&Q.-J.Yu,Astrophys.J.,526,L5(1999),O.Shemmer, Mission.HXMT:theHardX-rayModulationTelescope et al., ibid, 646, L29 (2006); G. Risaliti et al. ibid, 700, L6 [28] C.Jin,M.Ward,C.Done&J.Gelbord,Mon.Not.R.Astron. (2009); X.-L. Zhou & Y.-H. Zhao, ibid, 720, 206 (2010); D. Soc.,420,1825(2012)andJinetal.ibid,425,907(2012).The Grupe et al. Astrophy. J. Suppl., 187, 64 (2010); W.-H. Bian averagedvalueofthebolometriccorrectionfactor κ ≈ 70.0 & Y.-H. Zhao, Mon. Not. R. Astron. Soc., 343, 164 (2003); isobtainedfrom10NLS1s(Γ>2)consistentwith[7B]. D. Porquet, et al. Astron. Astrophys., 422, 85 (2004) and E. [29] M. Vestergaard & B. M. Peterson, Astrophys. J., 641, 689 Piconcelli,etal.ibid,432,15(2005)forPGquasars. (2006) [9] J.-M. Wang, K. Watarai & S. Mineshige, Astrophys. J., 607, [30] R. De Grijs, Anintroduction todistance measurements inas- L107(2004); R.V. Vasudevan &A.C. Fabian, Mon. Not. R. tronomy, Wiley(2011)forareviewofthecurrentdistancein- Astron.Soc.,392,1124(2009);E.Lusso,etal.ibid,425,623 dicators;K.Horne,etal.,Mon.Not.R.Astron.Soc.,339,367 (2012) (2003),P.Marziani,etal.,Mem,S.A.It.Suppl.3,218(2003) [10] R.A.Remillard&J.E.McClintock,Ann.Rev.Astron.Astro- andD.Watsonetal.,Astrophys.J.,740,L49(2011)suggestthe phys.,44,49(2006) BLRdelay-luminosityrelationcanbeappliedtothedetermina- [11] S.A.Balbus&J.F.Hawley,Rev.Mod.Phys.,70,1(1998) tionoftheHubbleconstant,butitsintrinsicscatter(∼0.5mag) [12] A. A. Galeev, et al. Astrophys. J., 229, 318 (1979); L. Stella preventsitsapplicationtocosmology. &R.Rosner,ibid,277, 312(1984); J.-M.Wang&H.Netzer, [31] J.Huchra&R.Burg,Astrophys.J.,393,90(1992);J.S.Ulves- Astron.Astrophys.,398,927(2003),X.Cao,Mon.Not.R.As- tad&L.C.Ho,ibid,558,561(2001);L.Hao,etal.Astron.J., tron.Soc.,394,207(2009) 129,1795(2005) [13] A.Merloni,Mon.Not.R.Astron.Soc.,341,1051(2003) [32] H.Netzer&B.Trakhtenbrot,Astrophys.J.,654,754(2007) [14] I. M. George & A. C. Fabian, ibid, 249, 352 (1991); P. [33] eRosita(http://www.mpe.mpg.de/erosita/)istobelaunchedin Magdziarz&A.A.Zdziarski,ibid,273,837(1995) 2013,andHXMTin2015,whilethehardX-raytelescopeNus- [15] A. M. Beloborodov, in “High Energy Processes in Accreting tarwaslaunchedinJune2012(http://www.nustar.caltech.edu/). BlackHoles”, ASPConferenceSeries161, ed.J.Poutanen& R.Svensson(1999),p.295