ebook img

Sunyaev-Zel'dovich observations of LoCuSS clusters with the Arcminute Microkelvin Imager: high X-ray luminosity sample PDF

4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sunyaev-Zel'dovich observations of LoCuSS clusters with the Arcminute Microkelvin Imager: high X-ray luminosity sample

Mon.Not.R.Astron.Soc.000,1–17(0000) Printed31January2011 (MNLATEXstylefilev2.2) Sunyaev-Zel’dovich observations of LoCuSS clusters with the Arcminute Microkelvin Imager: high X-ray luminosity sample ⋆ 1 AMI Consortium: Timothy W. Shimwell1†, Carmen Rodr´ıguez-Gonza´lvez1‡, 1 0 Matthew L. Davies1, Farhan Feroz1, Thomas M. O. Franzen1, Keith J. B. Grainge1,2, 2 n Michael P. Hobson1, Natasha Hurley-Walker1, Anthony N. Lasenby1,2, Malak Olamaie1, a J Guy Pooley1, Richard D. E. Saunders1,2, Anna M. M. Scaife3, Michel P. Schammel1, 8 Paul F. Scott1, David J. Titterington1, Elizabeth M. Waldram1 2 1AstrophysicsGroup,CavendishLaboratory,JJThomsonAvenue,CambridgeCB30HE ] 2KavliInstituteforCosmologyCambridge,MadingleyRoad,Cambridge,CB30HA O 3DublinInstituteforAdvancedStudies,31FitzwilliamPlace,Dublin2,Ireland C . h p Accepted—;received—;inoriginalform31January2011 - o r t s ABSTRACT a WepresentobservationsfromtheSmallArrayoftheArcminuteMicrokelvinImager(AMI) [ of eighthighX-ray luminositygalaxycluster systems selected from the LocalCluster Sub- 1 structureSurvey(LoCuSS)sample.WedetecttheSunyaev-Zel’dovich(SZ)effectinsevenof v theseclusters.Withtheassumptionsthatgalaxyclustersareisothermal,haveadensityprofile 0 describedbyasphericalb -modelandobeythetheoreticalM-Trelation,weareabletoderive 9 cluster parameters at r from our SZ data. With the additional assumption of hydrostatic 200 5 equilibriumweareabletoderiveparametersatr .We presentposteriorprobabilitydistri- 500 5 butionsforclusterparameterssuchasmass,radiusandtemperature(T ).Combiningour SZ,MT 1. sample with that of AMI Consortium: Rodr´ıguez-Gonza´lvez et al. (2011) and using large- 0 radiusX-raytemperatureestimates(TX)fromChandraandSuzakuobservations,wefindthat 1 thereisreasonablecorrespondencebetweenT andT valuesatlowT ,butthatforclus- X SZ,MT X 1 terswithT abovearound6keVthecorrespondencebreaksdownwithT exceedingT ; X X SZ,MT : westressthatthisfindingisbasedonjusttenclusters. v i X Keywords: cosmology: observations - Sunyaev-Zel’dovich – galaxies:clusters – X-ray – cosmic mi- r a crowave background– galaxies:clusters:individual (Abell 586, Abell 611, Abell 773, Abell 781,Abell1413,Abell1758,Zw1454.8+2233andRXJ1720+2638) 1 INTRODUCTION We have imaged a subset of LoCuSS in the Sunyaev- Zel’dovich (SZ; Sunyaev & Zeldovich 1972) effect with the Ar- TheLocal Cluster Substructure Survey(LoCuSSseeSmithet al. cminute Microkelvin Imager (AMI; see e.g. AMI Consortium: 2003,2005)sampleofclusterscontains164clusterswithredshifts Zwart et al. 2008) centred at 16 GHz. The SZ signal arises from between0.142and0.295. TheLoCuSSaimstomeasuretherela- theinverseComptonscatteringofcosmicmicrowavebackground tionshipbetweenthestructureofgalaxyclustersandtheevolution (CMB) photons by the hot cluster plasma (see e.g. Birkinshaw of the hot gas and galaxies that inhabit them using gravitational 1999andCarlstrom,Holder&Reese2002),withasurfacebright- lensing data and other observations spanning theelectromagnetic ness that is independent of redshift and dependencies on plasma spectrum from theradio toX-ray. Example LoCuSSanalysis pa- density and temperature that are different to those for e.g. X-ray persrelevant tothisworkareMarroneetal.(2009) andZhanget bremsstrahlungemission. al.(2010). Hereafter,weassumeaconcordanceL CDMcosmologywith ⋆ShWimewreelqlueetsatl.t2h0a1t1a’ny reference to this paper cites ‘AMI Consortium: W m=0.3,W L =0.7andH0=100kms−1Mpc−1.Thedimensionless † E-mail:[email protected] HubbleparametersaredefinedashX =H0/(Xkms−1Mpc−1).All ‡ E-mail:[email protected] coordinatesaregivenatequinoxJ2000. 2 Shimwellet al. 2 CLUSTERSAMPLE dard AIPS 1 taskstoimagethecontinuumandindividual-channel UVFITS data. On the continuum maps we detected sources at Ig×nr1ea0tht3ei7srWtphaoapvneerr20wth◦eea0fno.d1c-u2asn.4oXnke-rVLaoybCaluunSmdSiinncoltsuhisteytecr(lsLusXwt)eirtghrreeasattdeferractmlhinaeant(iao1cn1- y>s4asnLdApaenadkcflautaxl,ogSu0e.dTothedestoeurmrcienerigwhhteatshceernasiosonu,rxcse,disecelxinteantidoend, inour LA maps wecompared the measured source areawiththe cordingtoEbelingetal.1998,2000,usingh50=1).Radiosource LAsynthesizedbeam.Forextendedsourceswecataloguedthein- contamination can make it difficult to observe the SZ effect at tegrated flux rather than the peak flux. We measured the flux of 16GHzandwehavenotstudiedtheclusterswithsourcesbrighter each source ineach channel map and assumed apower law rela- than 10 mJy/beam within 10′ of the cluster X-ray centre. Note tionship between flux and frequency (S(cid:181) n −a ) to determine the thatourredshiftscorrespondtothosecitedinEbelingetal.(1998, sourcespectralindex, a .Thenumber of>4s sourcesdetected 2000). Wepresent results from the analysis of eight galaxy clus- LA inourLAobservationstowardstheeightclustersisshowninTable ter systems; Table 1 shows the coordinates, redshifts and X-ray 2. luminosities of our selected LoCuSS clusters. A companion pa- per(AMIConsortium:Rodr´ıguez-Gonza´lvezetal.2011)presents resultsfrom11 LoCuSSclusterswithanX-rayluminosity inthe range7-11×1037W(h50=1). 4 BAYESIANANALYSIS ToanalysetheAMIclusterobservationsweuseaBayesiananaly- sismethodology(Marshalletal.2003andFerozetal.2009).This 3 INSTRUMENT,OBSERVATIONSANDSOURCE FINDING Bayesian analysis uses MULTINEST (Feroz & Hobson 2008 and Feroz, Hobson, & Bridges 2009) to efficiently explore the multi- 3.1 TheArcminuteMicrokelvinImager(AMI) dimensional parameter space andtocalculate Bayesian evidence. This analysis has been applied to pointed observations of known AMIconsistsofapairofaperture-synthesisinterferometricarrays clusters in AMI Consortium Rodr´ıguez-Gonza´lvez et al. (2010), located near Cambridge. The Small Array (SA) is optimised for AMIConsortium:Zwartetal.(2010)&Rodr´ıguez-Gonza´lvezetal. SZimagingwhiletheLargeArray(LA)isusedtomeasureradio (2011)andalsotodetectpreviouslyunknownclustersinShimwell sourcesthatcontaminatetheSZ-effectintheSAobservations.AMI etal.InthispaperweusethesamemodelasShimwelletal.,thedif- isdescribedindetailinZwartetal.(2008). ferencesbetweenthismodelandpreviousmodelsareexplainedin AMIConsortium:Olamaieetal.(2010)andRodr´ıguez-Gonza´lvez etal.(2010). 3.2 Observations ThepriorsthatweuseinourBayesiananalysisareshownin Table3. SApointedobservationscentredattheX-rayclusterposition(Table 1)foroureightclustersweretakenduring2007-2010. Theobser- vationlengthswereintherange20-90hoursperclusterbeforeany flaggingof thedata; thenoiseson theSA mapsreflecttheactual observationtimeused. 5 SASOURCESUBTRACTIONANDMAPPING With the SA we observed phase calibrators every hour and used bi-daily observations of 3C48 or 3C286 for amplitude cali- Source subtraction is performed using the software package bration; the assumed flux densities for the calibrator sources are MUESLI.ThisperformsthesamefunctionastheAIPStaskUVSUB consistent withtheRudy et al. (1987) model of Mars– seeAMI but it is optimised for processing AMI data. For both the LA Consortium:Franzenetal.(2010). sourcesandthesourcesmodelledinourBayesiananalysisweuse WiththeLAwetypically conduct 61+19pt hexagonal raster thesourceposition,meanfrequency,spectralindexandcentralflux observations centred on thecluster X-rayposition. The 61 point- value to subtract the appropriate flux for each source from each ingcentresareseparatedby4′;theinner19pointingsareobserved channel of the SA UVFITS file. To perform this subtraction from forapproximatelysixtimeslongerthantheouter42pointings.We our non-primary-beam-corrected SA UVFITS we make use of an observed phase calibrators every ten minutes. Observations were accurateSApowerprimarybeammodel. taken over 2009-2010 and each cluster was observed for 10-25 Weuse AIPS toproduce theSAmaps andapply no primary hoursbeforeanyflaggingofthedata.Formoredetailsontheras- beam correction i.e. the SA thermal noise is constant across the teringtechniquesandcalibrationseeFranzenetal.(2010). map.AlltheSAmapspresentedherehavecontourlevelschanging All our cluster data were passed through REDUCE,the stan- linearlyfrom2-10s SA;positivecontoursaresolidlinesandnega- dard AMI data reduction package which is discussed in detail in tivecontoursaredashed lines.TheSAsynthesizedbeamFWHM e.g. AMI Consortium: Davies et al. (2009). Thermal noise levels isshowninthebottomleftcornerofourSAmaps.Wealsopresent fortheSAandtheLAmaps(s ands respectively),andphase thesource-subtractedmapswithauvtaperof600kl (aGaussian SA LA calibratorsthatwehavetakenfromtheJodrellBankVLASurvey taperofvalue1arelowuvfallsto0.3at600kl )sincetheshorter (Patnaiketal.1992,Browneetal.1998andWilkinsonetal.1998) SAbaselinesaremoresensitivetothelargeangularsizeoftheSZ- aresummarisedinTable2. effectsignal.MapsbeforesourcesubtractionhavebeenCLEANed withasingleboxovertheirtotalextents,whilstsource-subtracted mapshavebeenCLEANedwithatightboxaroundtheSZsignals. 3.3 LAmappingandsourcefinding Our LA map-making and source-finding procedures follow AMI Consortium: Shimwell et al. (2010) exactly. We applied stan- 1 http://www.aips.nrao.edu SZobservationsofLoCuSS clusterswith theAMI:highX-rayluminositysample 3 Table1.Coordinates, redshifts andX-rayluminosities ofthe observedLoCuSSclusters. Notethat Abell1758Bis included eventhough itisbelow our luminositycut;thisisbecauseitiswithinthefieldofviewofourAbell1758Aobservations.RedshiftsandX-rayluminositiesaretakenfromEbelingetal. (1998,2000). Cluster Rightascension Declination Redshift X-rayluminosity Alternativeclusternames (J2000) (J2000) in1037W (h50=1) Abell586 07:32:12 +31:37:30 0.171 11.12 Abell611 08:00:56 +36:03:40 0.288 13.60 Abell773 09:17:54 +51:42:58 0.217 13.08 RXJ0917.8+5143 Abell781 09:20:25 +30:31:32 0.298 17.22 Abell1413 11:55:18 +23:24:29 0.143 13.28 Abell1758B 13:32:29 +50:24:42 0.280 07.25 Abell1758A 13:32:45 +50:32:31 0.280 11.68 Zw1454.8+2233 14:57:15 +22:20:34 0.258 13.19 Z7160 RXJ1720.1+2638 17:20:10 +26:37:31 0.164 16.12 Table2.DetailsofAMIobservations. Cluster s SA s LA NumberofLA4s LAsources LAphasecalibrator (mJy) (mJy) Abell586 0.172 0.09 23 J0741+3112 Abell611 0.106 0.07 23 J0808+408 Abell773 0.133 0.09 09 J0903+468orJ0905+4850 Abell781 0.116 0.07 24 J0925+3127orJ0915+2933 Abell1413 0.130 0.09 17 J1150+2417 Abell1758A 0.115 0.08 14 J1349+536 Abell1758B 0.130 0.08 14 J1349+536 Zw1454.8+2233 0.100 0.10 16 J1513+2338 RXJ1720.1+2638 0.084 0.10 17 J1722+2815 6 RESULTS cluster mass from weak lensing by applying a Navarro, Frenk & White (NFW; Navarro, Frenk, & White 1996) profile. They find Ftroarcteioacnh, acnludstpeorswteeriporrepseronbtaSbAilimtyapdsisbtreibfourteioannsdoaffttehresloaurgrcee-sscuable- MT(r2500)=2.41−+00..4415×1014M⊙, whilst at large radii they find clusterparametersobtainedfromrunningtheSAdatathroughour MT(r500)=4.74−+11..1440×1014M⊙(usingh70=1). Abell586hasbeenstudiedextensivelyintheX-raye.g.Allen Bayesian analysis software. The derived cluster parameters are (2000)andWhite(2000).Arecentanalysisofthetemperaturepro- giveninTable4.WealsopresentChandraimagestakenfromthe file(Cypriano et al. 2005) shows how the temperature falls from Chandra Data Archive. All maps are displayed with right ascen- ≈9keVattheclustercentreto≈5.5keVataradius≈280′′.Cypri- siononthex-axisanddeclinationonthey-axis.InSection6.9we anoetal.haveusedtheGeminiMulti-ObjectSpectrographtogether compareourderivedclustertemperatureswithlarge-radiusX-ray temperatures(r≈500kpc)takenfromtheliterature. with X-ray data taken from the Chandra archive to measure the propertiesofAbell586.Theycomparemassestimatesderivedfrom thevelocitydistributionandfromtheX-raytemperatureprofileand findthatbothgiveverysimilarresults,Mg≈0.46×1014M⊙within 6.1 Abell586 1.3h−1Mpc.Theysuggestthattheclusterissphericalandrelaxed 70 OurAMISAmapsandtheparameterswemeasurearepresented withnorecentmergers.TheelongationoftheSZsignalonourmap inFigure1.WehaveoverlayedourmaponanX-rayChandraim- (Figure1)suggestsnon-sphericity. age;theclustercentroidsmatchandweobserveanextensionofthe clustertowardsthesouth. 6.2 Abell611 The SZeffect fromAbell 586 has previously been observed with OVRA/BIMA by LaRoque et al. (2006) and Bonamente et We present AMI SA maps, large-scale cluster parameters and a al.(2006).LaRoqueetal.applyanisothermalb -modeltoSZand Chandra image of Abell 611 in Figure 2. The Donnarumma et Chandra X-ray observations and find Mg(r2500)=2.49±0.32× al. (2010) analysis of theChandra achive data shows that theX- 1013M⊙ andMg(r2500)=2.26−+00..1113×1013M⊙ respectively(using ray isophotes are quite circular, the surface brightness profile is h70=1).Inaddition,theydetermineanX-rayspectroscopictem- smooth and the brightest cluster galaxy lies at the centre of the peratureoftheclustergasof≈6.35keVbetweenaradiusof100kpc X-ray emission. These results indicate that the cluster is relaxed. andr ;r istheradiusatwhichtheaveragecluster density From the X-ray data, the cluster mass was estimated using an 2500 2500 falls to 2500 times the critical density at that redshift and is de- NFW profile, spherical symmetry and hydrostatic equilibrium to terminedfromChandraobservationsbyBonamenteetal.(2006). be 9.32±1.39×1014M⊙ (withina radius of 1.8±0.5 Mpc). How- In comparison, Okabe et al. (2010) use Subaru to calculate the ever, the Donnarumma et al.analysis of strong lensingdata indi- 4 Shimwellet al. Abell586 y/arcsec0−−150000 1000 −1r/hkpcc 246800000000 2.5 2 1.5 b 1 0.5 MSun180 −1M(r)/hT200 246 0.15 −1f/hgas,r20000.0.15 −50x0/a0rcse5c0 −1y000/−a5rc0sec0 rc/h5−010kpc10000.5 1b.5 2.5MT(r200)5/h−1MSu1n0 0.0fg5as,r2000./1h−10.15 2 4 6 8 10 2 4 6 8 10 MT(r500)/h−1MSun x 1014 Mg(r500)/h−2MSun x 1013 2 4 6 8 10 0 0.1 0.2 0.3 Mg(r200)/h−2MSun x 1013 fg(r500)/h−1 0.5 1 1.5 0.5 1 1.5 r500/h−1Mpc r200/h−1Mpc 0 2 4 6 8 10 T/KeV Figure1.ThetopleftimageshowstheSAmapbeforesubtraction,themapinthemiddlelefthashadthesourcesremoved,thetoprightpanelshowsthecluster parametersthatwesamplefrominourBayesiananalysisandthemiddlerightplotpresentsseveralclusterparametersderivedfromoursamplingparameters. TheimageatthebottomshowstheChandraX-raymapoverlayedwithSAcontours. SZobservationsofLoCuSS clusterswith theAMI:highX-rayluminositysample 5 Table3.PriorsusedinourBayesiananalysis. Parameter Prior Sourceposition(xs) +or×:Delta-functionusingtheLApositions. △:GaussiancentredontheLApostionswiths =5′′. Sourcefluxdensities(S0/Jy) ×or△:GaussiancentredontheLAcontinuumvaluewithas of0.4S0. +:Delta-functionontheLAvalue. Sourcespectralindex(a ) ×or△:GaussiancentredonthevaluecalculatedfromtheLAchannelmapswiths astheLAerror. +:Delta-functionontheLAvalue. Redshift(z) Delta-functionontheX-rayvalue(Table1). Coreradius(rc/h−1010kpc) Uniformbetween10and1000. Beta(b ) Uniformbetween0.3and2.5. Mass(MT,r200/h−1010M⊙) Uniforminlogspaceover,(0.32−50)×1014M⊙h−1010. Gasfraction(fg) Gaussianpriorcentredon0.086,s =0.02(Komatsuetal.2010). Clusterposition(xc) GaussianpriorontheX-rayposition,s =60′′(Table1). Table4.Derivedvaluesforclusterparameters. Clustername MT(r200) MT(r500) Mg(r200) Mg(r500) r200 r500 fg(r500) TSZ,MT(r200) ×1014h−1010M⊙ ×1014h−1010M⊙ ×1013h−1020M⊙ ×1013h−1020M⊙ h−1010Mpc ×10−1h−1010Mpc ×10−1h−1010 keV Abell586 5.1±2.4 2.1±1.1 4.3±2.0 2.6±0.8 1.2±0.2 6.6±1.1 1.4±0.4 5.2±1.6 Abell611 4.0±0.8 2.0±0.5 3.5±0.6 2.8±0.3 1.1±0.1 6.3±0.5 1.5±0.4 4.5±0.6 Abell773 3.6±1.3 1.7±0.7 3.1±1.1 2.1±0.5 1.1±0.1 6.0±0.8 1.4±0.4 4.1±1.0 Abell781 4.1±0.8 2.0±0.5 3.6±0.6 2.9±0.4 1.1±0.1 6.3±0.5 1.5±0.4 4.5±0.6 Abell1413 4.0±1.0 1.9±0.6 3.5±0.8 2.7±0.4 1.1±0.1 6.6±0.7 1.5±0.4 4.4±0.8 Abell1758B 4.4±2.2 2.2±1.2 3.7±1.8 2.2±0.6 1.1±0.2 6.4±1.2 1.2±0.4 4.6±1.5 Abell1758A 4.1±0.7 2.5±4.4 3.6±0.5 3.4±0.4 1.1±0.1 6.8±0.4 1.4±0.3 4.5±0.5 RXJ1720.1+2638 2.0±0.4 1.2±0.2 1.7±0.3 1.6±0.3 0.9±0.1 5.6±0.4 1.4±0.3 2.8±0.4 catesthattheclustermasscouldbecloserto4.68±0.31×1014M⊙ fromthatbyZwartetal.(2010)whosamplefromtemperatureand (withinaradiusof1.5±0.2 Mpc.Notethatthevaluesquotedfrom M andderiveM undertheadditionalassumptionofhy- g,r200 T,r200 Donnarummaetal.areanexampleoftheirmassestimates;fromfit- drostatic equilbrium. Instead we sample from M and f T,r200 g,r200 tingdifferentmodelstheyfindestimatedmassvariessignificantly andcalculateT usingtheM-TscalingrelationgiveninRodr´ıguez- (between 9.32–11.11×1014M⊙ for the X-ray mass and between Gonza´lvezetal.(2010). Thedifferencesbetweenthesetwomod- 4.01–6.32×1014M⊙ for the lensing mass). Their mass estimates elsaredescribedindetailbyOlamaieetal.whodemonstratethat useh70=1.SeveralotheranalysesofChandradataproducecom- the mass estimated using the technique in this paper produces a parablemassestimates(e.g.Schmidt&Allen2007,Morandi,Et- more reliable value and that the Zwart et al. (2010) analysis un- tori&Moscardini2007,Morandi&Ettori2007andSandersonet derestimates the values for M and f . The values of b g,r200 g,r200 al.2009). andrc/h−1010kpcpresentedhereagreewiththoseintheZwartetal. Romano et al. (2010) perform a weak lensing analysis of (2010)analysis. Abell 611 using data from the Large Binocular Telescope. With Wefindnosignificantcontaminationfromradiosourcesand anNFWprofiletheyestimateMT,r200 =4–7×1014M⊙ andr200= detect thecluster withahigh signal-to-noise ratio.A comparison 1400−1600kpc,forh70=1.Theseareinagreementwiththeval- oftheSZ-effectimageandtheChandramapshowsthatthecentres uesobtainedfromSubaruweaklensingobservationsbyOkabeet oftheSZandX-rayemissionarecoincident. al. Using GMRT observations Venturi et al. (2008) concluded that Abell 611 has no radio halo at 610MHz. Abell 611 has also 6.3 Abell773 previously been observed intheSZat15 GHzbyGrainger et al. InFigure3weshow theAMISAmapsofAbell773, aChandra (2002)andZwartetal.(2010),andat30GHzbyBonamenteetal. X-ray map and the cluster parameters derived from our analysis. (2004),Bonamenteetal.(2006)andLaRoqueetal. TheSZeffectassociatedwithAbell773hasbeenobservedseveral FromouranalysisoftheAMISAobservationsofAbell611 times(Graingeet al.1993, Carlstrom,Joy, &Grego1996, Bona- presented in this paper we find that MT,r200 = 4.0−+00..43×1014M⊙. menteetal.2006,LaRoqueetal.andSaundersetal.2003).Most Wenotethatthemassobtainedissignificantlysmallerthanthere- recently,Zwartetal.(2010)observedtheclusterandfoundaclus- sultgiveninZwartetal.(2010); however, theirMT estimatesare ter mass of MT,r200 = 1.9−+00..43×1015M⊙ using h70 =1; however, biased high. The bias occurs because they used a low-radius X- theirM estimatesarebiasedhigh–seeSection6.2. T ray temperature as a constant temperature throughout the cluster, Inspectionofa10′×10′ regionoftheSloanDigitalSkySur- asisexplainedbythemandinOlamaieetal.(2010).TheSZmaps vey(SDSS2)centredonAbell773revealsacomplexgalaxydistri- presentedinthispaperaresimilartothoseinZwartetal.(2010); bothsetsofobservationsindicatethattheclusterisextendedinthe NWdirection.However,theanalysispresentedinthispaperdiffers 2 FundingfortheSDSSandSDSS-IIhasbeenprovidedbytheAlfredP. 6 Shimwellet al. A611 40 y/arcsec0 200 −20 1000 −1r/hkpcc 246800000000 2.5 2 1.5 b 1 0.5 MSun180 −1M(r)/hT200 246 0.14 −1f/hgas,r2000000...001.1682 −20x0/a0rcse2c0 −20y00/arc2s0ec40 rc/h5−010kpc10000.5 1b.5 2.5MT(r200)5/h−1MSu1n0 0.0fg6as,r020.01/h−10.14 2 4 6 8 10 2 4 6 8 10 MT(r500)/h−1MSun x 1014 Mg(r500)/h−2MSun x 1013 2 4 6 8 10 0 0.1 0.2 0.3 Mg(r200)/h−2MSun x 1013 fg(r500)/h−1 0.5 1 1.5 0.5 1 1.5 r500/h−1Mpc r200/h−1Mpc 0 2 4 6 8 10 T/KeV Figure2.ThetopleftimageshowstheSAmapbeforesubtraction,themapinthemiddlelefthashadthesourcesremoved,thetoprightpanelshowsthecluster parametersthatwesamplefrominourBayesiananalysisandthemiddlerightplotpresentsseveralclusterparametersderivedfromoursamplingparameters. TheimageatthebottomshowstheChandraX-raymapoverlayedwithSAcontours. SZobservationsofLoCuSS clusterswith theAMI:highX-rayluminositysample 7 butionwithsomeEWextension.Ourobservationssupportthisex- et al.2006). These analyses indicate that Abell 1413 isarelaxed tension,butthereisnodetailedcorrespondencebetweenthegalaxy cluster with no evidence of recent merging despite its elliptical andgasdistributions.TheChandraobservationsappeartoshowlit- morphology.BetweentheX-rayobservationsthereisgoodagree- tleifanysuchextension.Wefindnosignificantcontaminationfrom ment in the temperature and density profiles of the cluster out to radiosourcesanddetecttheclusterwithahighsignaltonoiseratio. half the virial radius. Hoshino et al. measure the variation of the For this cluster, Barrena et al. (2007) present an intensive electrontemperaturewithradius,findingatemperatureof7.5keV study of the optical data from the Telescopio Nazionale Galileo at the centre and 3.5keV at r200. They assume spherical symme- (TNG) telescope and X-ray data from the Chandra data archive. try,anNFWdensityprofileandhydrostaticequilibriumtocalcu- Theyfindtwopeaksinthevelocitydistributionoftheclustermem- lateMT,r200 = 6.6±2.3×1014h−701M⊙; where r200 = 2.24h−701Mpc. berswhichareseparatedby2′alongtheE-Wdirection.Twopeaks Zhangetal.useXMM-NewtontostudyAbell1413andfindM 500 canalsobeseenintheX-ray,althoughthesearealongtheNE-SW =5.4±1.6×1014M⊙,wherer500=1.18Mpc;theyassumeisother- direction.Barrenaetal.estimatethevirialmassoftheentiresys- mality,sphericalsymmetryandh70=1. temtobeMvir =1.2-2.7×1015h−701M⊙.Giovannini, Tordi,&Fer- Recent VLA observations (Govoni et al. 2009) indicate that etti(1999)reportedtheexistenceofaradiohaloinAbell773.This thereisdiffuse1.4-GHzemissionassociatedwiththecluster–this feature, typical of cluster mergers, was confirmed with 1.4 GHz maybeduetoamini-haloaroundthecluster. VLA observations by Govoni et al. (2001). Zhang et al. (2008) From the SA observations we detect the SZ decrement at usedXMM-NewtontostudyAbell773andfoundM =8.3±2.5 high significance. Wedetermine the cluster mass tobe M = 500 T,r200 ×1014M⊙, where r500 = 1.33Mpc; they assumed isothermality, 4.0−+00..63×1014h−1010M⊙ andr200 =1.14−+00..54h−1010kpc;boththeseval- spherical symmetry and h70 =1. Govoni et al. (2004) present a uesarecomparablewiththeHoshinoetal.results. ChandratemperaturemapandanX-rayimageofAbell773;they Thesourceenvironment aroundtheclusterat16GHzisrea- estimate a mean temperature of 7.5±0.8keV within a radius of sonable:thebrightestsourceis14mJy(11:55:36.63+23:13:50.1), 800kpc(h70=1). but this is 700′′ from the cluster X-ray centre. After this bright sourceissubtractedfromour dataweareleftwithalow levelof residual flux density on the map; it is unlikely that this residual 6.4 Abell781 fluxsignificantlycontaminatesourclusterdetectionorparameters. AMISAmaps,derivedparametersandaChandraobservationof BoththeX-raymap andtheSZimageindicatethat theclusteris the Abell 781 cluster are presented in Figure 4. From X-ray ob- ellipticalandextendedintheN-Sdirection. servations with Chandra and XMM-Newton (Sehgal et al. 2008) it is apparent that Abell 781 is a complex cluster system. The 6.6 Abell1758 main cluster is surrounded by three smaller clusters, two to the East of the main cluster and one to the West. They estimate the AnanalysisofROSAT imagesclearlyshowsthatthissystemcon- mass of the clusters assuming a NFW matter density profile; the sists of two interacting clusters, Abell 1758A and Abell 1758B, results indicate that the cluster mass of Abell 781 within r500 is separatedby8′(Rizzaetal.1998).InFigure6wepresentasingle 5.2+−00..37×1014M⊙fromXMM-NewtonandChandraX-rayobserva- mapthatcontains combined datafromobservations towardsboth tionsor2.7+−10..09×1014M⊙fromtheKittPeakMayall4-mtelescope clusters and the derived parameters for cluster Abell 1758A. We lteivnesliyn)g.Aoblsteerrnvaattiivoenlsy,(wZhhaenregre5t00ali.su1s.e09X−+M00..00M44aNnedw0t.o8n9−+o00b..s11e20rrveastpioencs- pmraepsesnftrothmebdoetrhivtehdepCahraamndertearsdafotaracrlcuhstivereAanbdelRlO17S5A8TA3.aInndFXig-urarye to estimate M500 = 4.5 ±1.3 ×1014M⊙, where r500 = 1.05Mpc, 7weshowthederivedparametersforclusterAbell1758B. assumingisothermalityandsphericalsymmetry.BothZhangetal. A detailedanalysis of XMM-Newtonand Chandra byDavid andSehgaletal.useh70=1. & Kempner (2004) indicates that the clusters Abell 1758A and The main cluster of Abell 781 is also known to contain a Abell1758Barelikelytobeinanearlystageofmergingandthat diffuse peripheral source at 610MHz; this was observed with the bothoftheseclustersarealsoundergoingmajormergerswithother GMRTbyVenturietal.(2008). smallersystems.ArecentanalysisofSpitzer/MIPS24m mdataby Hainesetal.(2009)classifiesAbell1758asthemostactivesystem theyhaveobservedatthatwavelength. Theyalsoidentifynumer- 6.5 Abell1413 oussmallermasspeaksandfilamentarystructures,whicharelikely toindicatethepresenceofinfallinggalaxygroups,insupportofthe We present the SA maps before and after source subtraction in David&Kempnerobservations.Zhangetal.useXMM-Newtonto Figure 5. We also show the derived cluster parameters and we overlay our SZ image on a Chandra X-ray map. Abell 1413 has studyAbell1758A andfoundM500 =1.1±0.3×1015M⊙,where r = 1.43Mpc. They assume isothermality, spherical symmetry been observed in the X-ray by XMM-Newton (e.g. Pratt & Ar- 500 naud2005),Chandra(e.g.Vikhlininetal.2005andBonamenteet andh70=1. al.2006) and most recentlyby thelow background Suzaku satel- lite (Hoshino et al. 2010); SZ images have been made of Abell 6.7 Zw1454.8+2233 1413 with the Ryle Telescope at 15 GHz (Grainge et al. 1996) andwithOVRO/BIMAat30GHz(LaRoqueetal.andBonamente Wedetectseveralsourcesclosetotheclustercentre–apointsource withafluxdensityof7.97mJyat14:56:59.11+22:18:55.97anda 4.67mJysourceat14:57:25.38+22:37:33.03.Wedonotdetectan SloanFoundation,theParticipatingInstitutions,theNationalScienceFoun- dation,theU.S.DepartmentofEnergy,theNationalAeronauticsandSpace Administration, the Japanese Monbukagakusho, the MaxPlanck Society, 3 We acknowledge the use of NASA’s SkyView facility andtheHigherEducation FundingCouncil forEngland.TheSDSSWeb (http://skyview.gsfc.nasa.gov) located at NASA Goddard Space Flight Siteishttp://www.sdss.org/. Center. 8 Shimwellet al. Abell773 50 y/arcsec0 0 −50 1000 −1r/hkpcc 246800000000 2.5 2 1.5 b 1 0.5 MSun180 −1M(r)/hT200 246 0.15 −1f/hgas,r20000.0.15 −5x00/arc0sec50 −50y0/a0rcsec50 rc/h5−010kpc10000.5 1b.5 2.5MT(r200)5/h−1MSu1n00.0f5gas,r2000./1h−10.15 2 4 6 8 10 2 4 6 8 10 MT(r500)/h−1MSun x 1014 Mg(r500)/h−2MSun x 1013 2 4 6 8 10 0 0.1 0.2 0.3 Mg(r200)/h−2MSun x 1013 fg(r500)/h−1 0.5 1 1.5 0.5 1 1.5 r500/h−1Mpc r200/h−1Mpc 0 2 4 6 8 10 T/KeV Figure3.ThetopleftimageshowstheSAmapbeforesubtraction,themapinthemiddlelefthashadthesourcesremoved,thetoprightpanelshowsthecluster parametersthatwesamplefrominourBayesiananalysisandthemiddlerightplotpresentsseveralclusterparametersderivedfromoursamplingparameters. TheimageatthebottomshowstheChandraX-raymapoverlayedwithSAcontours. SZobservationsofLoCuSS clusterswith theAMI:highX-rayluminositysample 9 A781 100 y/arcsec0 468000 20 1000 −1r/hkpcc 246800000000 2.5 2 1.5 b 1 0.5 MSun180 −1M(r)/hT200 246 0.14 −1f/hgas,r2000000...001.1682 x00/a2rc0se4c0 y05/0arcsec100 rc/h5−010kpc10000.5 1b.5 2.5MT(r200)5/h−1MSu1n0 0.0fg6as,r020.01/h−10.14 2 4 6 8 10 2 4 6 8 10 MT(r500)/h−1MSun x 1014 Mg(r500)/h−2MSun x 1013 2 4 6 8 10 0 0.1 0.2 0.3 Mg(r200)/h−2MSun x 1013 fg(r500)/h−1 0.5 1 1.5 0.5 1 1.5 r500/h−1Mpc r200/h−1Mpc 0 2 4 6 8 10 T/KeV Figure4.ThetopleftimageshowstheSAmapbeforesubtraction,themapinthemiddlelefthashadthesourcesremoved,thetoprightpanelshowsthecluster parametersthatwesamplefrominourBayesiananalysisandthemiddlerightplotpresentsseveralclusterparametersderivedfromoursamplingparameters. TheimageatthebottomshowstheChandraX-raymapoverlayedwithSAcontours. 10 Shimwellet al. Abell1413 −20 y/arcsec0−−−−186400000 −120 1000 −1r/hkpcc 246800000000 2.5 2 1.5 b 1 0.5 MSun180 −1M(r)/hT200 246 0.14 −1f/hgas,r2000000...001.1682 0.04 −40x0/arc0sec 40−120y−08/a0rcs−e4c0 rc/h5−010kpc10000.5 1b.5 2.5MT(r200)5/h−1MSu1n00.04fg0a.s0,r8200/0h.−112 2 4 6 8 10 2 4 6 8 10 MT(r500)/h−1MSun x 1014 Mg(r500)/h−2MSun x 1013 2 4 6 8 10 0 0.1 0.2 0.3 Mg(r200)/h−2MSun x 1013 fg(r500)/h−1 0.5 1 1.5 0.5 1 1.5 r500/h−1Mpc r200/h−1Mpc 0 2 4 6 8 10 T/KeV Figure5.ThetopleftimageshowstheSAmapbeforesubtraction,themapinthemiddlelefthashadthesourcesremoved,thetoprightpanelshowsthecluster parametersthatwesamplefrominourBayesiananalysisandthemiddlerightplotpresentsseveralclusterparametersderivedfromoursamplingparameters. TheimageatthebottomshowstheChandraX-raymapoverlayedwithSAcontours.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.