ebook img

Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials PDF

13 Pages·2014·0.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials

HeandAraciAdvancesinDifferenceEquations2014, 2014:155 http://www.advancesindifferenceequations.com/content/2014/1/155 RESEARCH OpenAccess Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials YuanHe1*andSerkanAraci2 *Correspondence: [email protected] Abstract 1FacultyofScience,Kunming Inthispaper,afurtherinvestigationfortheApostol-BernoulliandApostol-Euler UniversityofScienceand Technology,Kunming,Yunnan polynomialsandnumbersisperformed.Someclosedformulaeofsumsofproducts 650500,People’sRepublicofChina ofanynumberofApostol-BernoulliandApostol-Eulerpolynomialsandnumbersare Fulllistofauthorinformationis establishedbyapplyingthegeneratingfunctionmethodsandsomesummation availableattheendofthearticle transformtechniques.Itturnsoutthatsomewell-knownresultsarederivedasspecial cases. MSC: 11B68;05A19 Keywords: Bernoullipolynomialsandnumbers;Eulerpolynomialsandnumbers; Apostol-Bernoullipolynomialsandnumbers;Apostol-Eulerpolynomialsand numbers;summationformulae 1 Introduction TheclassicalBernoullipolynomialsB (x)andEulerpolynomialsE (x)areusuallydefined n n bymeansofthefollowinggeneratingfunctions: text (cid:2)∞ tn (cid:3) (cid:4) ext (cid:2)∞ tn (cid:3) (cid:4) = B (x) |t|<π and = E (x) |t|<π . (.) et– n n! et+ n n! n= n= Inparticular,therationalnumbersB =B ()andintegersE =nE (/)arecalledthe n n n n classicalBernoullinumbersandEulernumbers,respectively. Asiswellknown,theclassicalBernoulliandEulerpolynomialsandnumbersplayim- portant roles in different areas of mathematics such as number theory, combinatorics, specialfunctionsandanalysis.Numerousinterestingpropertiesforthemcanbefoundin manybooks;see,forexample,[–].Hereisthewell-knownEulerformulaontheclassical Bernoullinumbers: (cid:5) (cid:6) (cid:2)n n B B =–nB –(n–)B (n≥). (.) k n–k n– n k k= Thisformulahasbeenextendedindifferentdirectionsbymanyauthors.Forexample,a directgeneralisationof(.)isthefollowingidentityontheclassicalBernoullipolynomials duetoNörlund[]: (cid:5) (cid:6) (cid:2)n n B (x)B (y)=–n(x+y–)B (x+y)–(n–)B (x+y) (n≥), (.) k n–k n– n k k= ©2014HeandAraci;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproduction inanymedium,providedtheoriginalworkisproperlycited. HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page2of13 http://www.advancesindifferenceequations.com/content/2014/1/155 whichhasbeengeneralisedtoasymmetricformbyHeandZhang[].Wealsomention [–]forfurtherdiscoveriesoftheaboveNörlundresultfollowingtheworkofCarlitz [],AgohandDilcher[,].Ontheotherhand,Eie[],SitaramachandraroandDavis []generalised(.)tosumsofproductsofthreeandfourBernoullinumbers.Afterthat, Sankaranarayanan[]gavetheclosedexpressionofsumsofproductsoffiveBernoulli numbers, and Zhang [] derived the closed ones of sums of products of less than and equaltosevenBernoullinumbers.Inparticular,Dilcher[]obtainedsomeclosedformu- laeofsumsofproductsofanynumberofclassicalBernoulliandEulerpolynomialsand numbers.PetojevićandSrivastava[–]gotseveralnewformulaeofsumsofproducts ofanynumberofclassicalBernoullinumbersincludingtheEulertypeandDilchertype sumsofproductsofBernoullinumbers.Recently,Kim[]developedanewapproachto givetheclosedformulaofsumsofproductsofanynumberofclassicalBernoullinumbers byusingtherelationofvaluesatnon-positiveintegersoftheimportantrepresentationof themultipleHurwitzzetafunctionintermsoftheHurwitzzetafunction.Further,Kim andHu[]obtainedtheclosedformulaofsumsofproductsofanynumberofApostol- BernoullinumbersbyexpressingthesumsofproductsoftheApostol-Bernoullipolynomi- alsintermsofthespecialvaluesofmultipleHurwitz-Lerchzetafunctionsatnon-positive integers. WenowturntotheApostol-BernoullipolynomialsB (x;λ)andApostol-Eulerpolyno- n mialsE (x;λ),whichareusuallydefinedbymeansofthefollowinggeneratingfunctions n (see,e.g.,[,]): text (cid:2)∞ tn (cid:3) (cid:4) = B (x;λ) |t|<π ifλ=;|t|<|logλ|otherwise (.) λet– n n! n= and ext (cid:2)∞ tn (cid:3) (cid:4) = E (x;λ) |t|<π ifλ=;|t|<|log(–λ)|otherwise . (.) λet+ n n! n= Moreover,B (λ)=B (;λ)andE (λ)=nE (/;λ)arecalledtheApostol-Bernoullinum- n n n n bersandApostol-Eulernumbers,respectively.Obviously B (x;λ)and E (x;λ)reduceto n n B (x)andE (x)whenλ=.ItisworthnoticingthattheApostol-Bernoullipolynomials n n werefirstlyintroducedbyApostol[](seealsoSrivastava[]forasystematicstudy)in ordertoevaluatethevalueoftheHurwitz-Lerchzetafunction.Forsomeelegantresults andnicemethodsonthesepolynomialsandnumbers,oneisreferredto[–]. Inthepresentpaper,wewillbeconcernedwithsomeclosedformulaeofsumsofprod- ucts of any number of Apostol-Bernoulli and Apostol-Euler polynomials and numbers. The idea stems from the two identities of Xu and Cen [] applying the famous Faà di BrunoformulatoansweraproblemposedbyGuoandQi[].Weprovethetworesults duetoXuandCeninabriefwayagain.Asfurtherapplications,weobtainsomeclosed formulaeofsumsofproductsofanynumberofApostol-BernoulliandApostol-Eulerpoly- nomialsandnumbersbyapplyingthegeneratingfunctionmethodsandsomesummation transformtechniques.Itturnsoutthatsomeknownresultsincludingtheonesstatedin [,]arederivedasspecialcases. HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page3of13 http://www.advancesindifferenceequations.com/content/2014/1/155 2 Someauxiliaryresults WefirstlyrecalltheStirlingnumbersofthefirstkinds(n,k)andtheStirlingnumbersofthe secondkindS(n,k)whichcanbefoundinthestandardbook[].TheStirlingnumbers ofthefirstkindarethecoefficientsintheexpansion (cid:2)n (x) = s(n,k)xk (n≥), (.) n k= andtheStirlingnumbersofthesecondkindarecharacterisedbytheidentity (cid:2)n xn= S(n,k)(x) (n≥). (.) k k= Thenotation(x) appearingin(.)and(.)standsforthefallingfactorial(x) ofordern n n definedby(x) =and(x) =x(x–)(x–)···(x–n+)forpositiveintegernandcomplex  n numberx.Infact,theStirlingnumbersofthefirstkinds(n,k)andtheStirlingnumbersof thesecondkindS(n,k)canbedefinedbymeansofthefollowinggeneratingfunctions: (cid:2)∞ (cid:2)∞ (ln(+t))k tn (et–)k tn = s(n,k) and = S(n,k) . (.) k! n! k! n! n=k n=k Ifmakinguseof(.)thenonecaneasilyobtainthepairofclassicalinverserelations(see, e.g.,[,p.]): (cid:2)n (cid:2)n f(n)= s(n,k)g(k) ⇐⇒ g(n)= S(n,k)f(k), (.) k= k= withnbeingnon-negativeintegerandf(n)andg(n)beingtwosequences. Motivatedbytwoidentitiesappearingin[],GuoandQi[,]posedthefollowing problem:fort(cid:6)=andpositiveintegern,determinethenumbersa for≤k≤nsuch n,k– that (cid:5) (cid:6)  (cid:2)n  (k–) =+ a . (.) (–e–t)n n,k– et– k= Stimulatedbythisproblem,theauthors[]madeuseofthemathematicalinductionto establisheightidentitieswhichrevealthefunctions/(–e±t)nandthederivatives(/(e±t– ))(k)canbeexpressedbyeachotherbylinearcombinationswithcoefficientsinvolvingthe combinatorialnumbersandStirlingnumbersofthesecondkind.Further,XuandCen[] appliedthefamousFaàdiBrunoformulatounifytheeightidentitiesduetoGuoandQi []totwoidentitiesinvolvingtwoparametersα andλ.Wenextstatetheirresultsand giveabriefproof. Theorem.([]) Letnbeanon-negativeintegerandα,λtwoparameters.Then (cid:5) (cid:6)  (n) (cid:2)n+ (–)n+k–αn(k–)!S(n+,k) = , (.) –λeαt (–λeαt)k k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page4of13 http://www.advancesindifferenceequations.com/content/2014/1/155 andforpositiveintegern, (cid:5) (cid:6)  (cid:2)n (–)n–ks(n,k)  (k–) = . (.) (–λeαt)n (n–)!αk– –λeαt k= Proof Inviewofthebinomialseries (cid:5) (cid:6) (cid:2)∞ β (+t)β = tn (βcomplexnumber), (.) n n= wediscover (cid:5) (cid:6) (cid:5) (cid:6) (cid:2)∞ (cid:3) (cid:4) (cid:2)∞ (cid:3) (cid:4)  –n n+j– = –λeαt j= λeαt j. (.) (–λeαt)n j j j= j= Iftakingx=–jin(.)thenweobtain,forpositiveintegern, (cid:5) (cid:6) (cid:2)n  n+j– s(n,k)(–)n–kjk–= . (.) (n–)! j k= Applying(.)to(.)yields (cid:2)n (cid:2)∞ (cid:3) (cid:4)   = (–)n–ks(n,k) λeαt jjk–. (.) (–λeαt)n (n–)! k= j= Itiseasytoseefrom(.)that (cid:5) (cid:6)  (k–) (cid:2)∞ (cid:3) (cid:4) (cid:2)∞ (cid:3) (cid:4) = λj eαtj (k–)=αk– λeαt jjk–. (.) –λeαt j= j= Thus,combining(.)and(.)givestheformula(.).Itfollowsfrom(.)and(.) that(.)iscomplete.Thisconcludestheproof. (cid:2) Itbecomesobviousthatinthecaseα=in(.)arises,forpositiveintegern, (cid:5) (cid:6)  (cid:2)n (–)k–s(n,k)  (k–) = (.) (λet–)n (n–)! λet– k= and (cid:5) (cid:6)  (cid:2)n (–)n–ks(n,k)  (k–) = . (.) (λet+)n (n–)! λet+ k= Wenextgiveanotherauxiliaryresultasfollows. Theorem. Letnbeanon-negativeinteger.Then (cid:7) (cid:5) (cid:6) (cid:8) (cid:3) (cid:4) (cid:2)∞ (cid:2)n n tm ext f(y,t) (n)= (–x)n–kf (x+y) , (.) m+k k m! m= k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page5of13 http://www.advancesindifferenceequations.com/content/2014/1/155 andforpositiveintegerr, (cid:7) (cid:5) (cid:6) (cid:3) (cid:4) (cid:2)∞ (cid:2)n n f (x+y) ext g(y,t) (n)= (–x)n–k m+k+r k (cid:8)m+k+(cid:9) r m= k= (cid:8) (cid:9) (–)n+xm+n+  tm + tm(–t)nf (x+y–xt)dt , (.) r– (r–)! m!  where (cid:8)x(cid:9) denotes the rising factorial (cid:8)x(cid:9) of order n defined by (cid:8)x(cid:9) =  and (cid:8)x(cid:9) = n n  n x(x+)(x+)···(x+n–)forpositiveintegernandcomplexnumberx,f(y,t)isdenoted (cid:10) (cid:10) byf(y,t)= ∞ f (y)tm,g(y,t)isdenotedbyg(y,t)= ∞ fm+r(y) · tm and{f (x)}∞ isa m= m m! m= (cid:8)m+(cid:9)r m! n n= sequenceofpolynomialsgivenby (cid:2)∞ tn f (x) =F(t)e(x–/)t, (.) n n! n= withF(t)beingaformalpowerseries. Proof See[,(.),(.)]fordetails. (cid:2) TherefollowsomespecialcasesofTheorem..Bysettingy=andf(y,t)=/(λet+) in(.),weobtain,fornon-negativeintegersm,n, (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) (cid:5) (cid:6) tm  (n) (cid:2)n n ext = (–x)n–kE (x;λ), (.) m! λet+ k m+k k= where[tn]f(t)standsforthecoefficientsof[tn]inf(t).Ontheotherhand,sinceB (x;λ)=  whenλ=andB (x;λ)=whenλ(cid:6)=(see,e.g.,[]),sobysettingB (x;λ)=δ weget   ,λ  δ (cid:2)∞ B (λ) tm – ,λ = m+ · . (.) λet– t m+ m! m= It is easy to see from the properties of the Beta and Gamma functions that, for non- negativeintegersm,n, (cid:9)  m!·n! tm(–t)ndt= . (.) (m+n+)!  Thus,bysettingr=,y=andg(y,t)=/(λet–)–δ /tin(.),withthehelpof(.) ,λ and(.),weobtain,fornon-negativeintegersm,n, (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) (cid:5) (cid:6) tm  (n) (cid:2)n n B (x;λ) ext = (–x)n–k m+k+ . (.) m! λet– k m+k+ k= Weshallmakeuseoftheaboveformulae(.),(.),(.)and(.)togivesomeclosed formulaeofsumsofproductsofanynumberofApostol-BernoulliandApostol-Eulerpoly- nomialsandnumbersinthenextsection. HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page6of13 http://www.advancesindifferenceequations.com/content/2014/1/155 3 Therestatementofmainresults (cid:13) (cid:14) Beforestating ourmainresults,webegin byintroducingtheStirlingcyclenumbers n k givenbytherelation (cid:11) (cid:12) (cid:2)n n x(x+)···(x +n–)= xk. (.) k k= (cid:13) (cid:14) Itisobviousfrom(.)thats(n,k)=(–)n–k n .Infact,theStirlingcyclenumberscanbe k definedrecursivelyby(see,e.g.,[,]) (cid:11) (cid:12) (cid:11) (cid:12) (cid:11) (cid:12)  n  =, = = and   n (cid:11) (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) (.) n+ n n =n + (n,k≥). k k k– Inthissectionwealwaysdenotebyp (x)apolynomialgivenby(see,e.g.,[,]) n,m (cid:5) (cid:6)(cid:11) (cid:12) (cid:2)n–  k n p (x)= (–x)k–m n,m (n–)! m k+ k=m (cid:5) (cid:6) (–)n–m– (cid:2)n– k = s(n,k+)xk–m, (.) (n–)! m k=m (cid:3) (cid:4) andwealsodenoteby n themultinomialcoefficientdefinedby r,...,rk (cid:5) (cid:6) n n! = (n,r ,...,r ≥). (.) r ,...,r r !···r !  k  k  k We next explore the closed formulae of sums of products of any number of Apostol- Bernoulli and Apostol-Euler polynomials and numbers. The discovery depends on the followingidentity: (cid:5) (cid:6) (cid:5) (cid:6) t r  m–r trm–reyt e(x+x+···+xm)t= , (.) λet– λet+ (λet–)r(λet+)m–r whererisanon-negativeinteger,misapositiveintegerwith≤r≤mandy=x +x +   ···+x .Ontakingr=min(.)by(.)weget m (cid:11) (cid:12)(cid:5) (cid:6) (cid:5) (cid:6) (cid:2) tn tmeyt n = B (x ;λ)···B (x ;λ). (.) n! (λet–)m k ,...,k k  km m k+···+km=n  m k,...,km≥ Ontheotherhand,from(.)wediscover (cid:11) (cid:12)(cid:5) (cid:6) tn tmeyt n! (λet–)m (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) n! (cid:2)m (–)k–s(m,k) tn–m  (k–) = eyt . (.) (n–m)! (m–)! (n–m)! λet– k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page7of13 http://www.advancesindifferenceequations.com/content/2014/1/155 Ifapplying(.)totheright-handsideof(.)then (cid:11) (cid:12)(cid:5) (cid:6) tn tmeyt n! (λet–)m (cid:5) (cid:6) n! (cid:2)m (–)k–s(m,k)(cid:2)k– k– B (y;λ) = (–y)k––j n+j+–m . (.) (n–m)! (m–)! j n+j+–m k= j= Changingtheorderofthesummationontheright-handsideof(.)gives (cid:11) (cid:12)(cid:5) (cid:6) tn tmeyt n! (λet–)m (cid:5) (cid:6) n! (cid:2)m– B (y;λ) (cid:2)m k– s(m,k)yk––j = (–)j n+j+–m (n–m)! n+j+–m j (m–)! j= k=j+ (cid:5) (cid:6) (–)m–n!(cid:2)m– B (y;λ) (cid:2)m k– s(m,k)yk–m+j = (–)j n–j (n–m)! n–j m–j– (m–)! j= k=m–j (–)m–n!(cid:2)m– B (y;λ) = (–)j n–j (n–m)! n–j j= (cid:5) (cid:6) (cid:2)m–  k × s(m,k+)yk–(m–j–). (.) (m–)! m–j– k=m–j– Thus,byequating(.)and(.)andthenapplying(.)thefollowingresultarises. Theorem. Letmbeapositiveintegerandy=x +x +···+x .Then,forpositiveinteger   m n≥m, (cid:5) (cid:6) (cid:2) n B (x ;λ)···B (x ;λ) k ,...,k k  km m k+···+km=n  m k,...,km≥ (–)m–n!(cid:2)m– B (y;λ) n–j = p (y) . (.) m,m–j– (n–m)! n–j j= TherefollowsomespecialcasesofTheorem..Obviouslythecaseλ=inTheorem. isanequivalentversionoftheclassicalformulaofDilcher[,Theorem]: (cid:5) (cid:6) (cid:2) n B (x )···B (x ) k ,...,k k  km m k+···+km=n  m k,...,km≥ (cid:5) (cid:6) (cid:15) (cid:5) (cid:6) (cid:16) (cid:2)m– (cid:2)j n m–j–+k =(–)m–m (–)j s(m,m–j+k)yk m k j= k= B (y) × n–j . (.) n–j Theorem.canalsobeusedtogivetheclosedformulaofsumsofproductsofanynumber ofApostol-Bernoullinumbersdescribedin[].Forexample,sincetheApostol-Bernoulli HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page8of13 http://www.advancesindifferenceequations.com/content/2014/1/155 polynomialsobeythesymmetricdistribution (cid:5) (cid:6)  λB (–x;λ)=(–)nB x; (n≥), (.) n n λ andthedifferenceequation λB (+x;λ)–B (x;λ)=nxn– (n≥), (.) n n which can be found in [], by setting x =x =···=x = and replacing λ by /λ in   m Theorem.,inviewof(.),wederive (cid:5) (cid:6) (cid:2) n (–)nλm B (λ)···B (λ) k ,...,k k km k+···+km=n  m k,...,km≥ (–)m–n!(cid:2)m– B (m;) = p (m) n–j λ . (.) m,m–j– (n–m)! n–j j= On multiplying λx– in both sides of (.) and substituting x=,...,m –, in view of addingtheprecedingresults,wegetforpositiveintegermandnon-negativeintegern, (cid:2)m– λm–B (m;λ)=B (;λ)+n kn–λk–. (.) n n k= Wenoticethat,from(.),wehaveλB (;λ)=+B (λ)andλB (;λ)=B (λ)forpositive   n n integern≥,andthefollowingrelation(see,e.g.,[]): (cid:2)n– p (n)mk= (m,n≥and≤m≤n–). (.) n,k k= Thus, by applying (.) and (.) to (.), one can obtain the closed formula for the Apostol-BernoullinumbersduetoKimandHu[,Theorem.],asfollows: (cid:5) (cid:6) (cid:2) n B (λ)···B (λ) k ,...,k k km k+···+km=n  m k,...,k⎧m≥ (cid:10) ⎨(–)m+n+n! m–p (m)Bn–j(λ) ifn>m, = (n–m)! j= (cid:10)m,m–j– n–j (.) ⎩n!p B (λ)–n! n–p (n)Bn–j(λ) ifn=m. n,  j= n,n–j– n–j Iftakingr=in(.)thenby(.)weobtain (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:5) (cid:6) (cid:2) n = E (x ;λ)···E (x ;λ). (.) k ,...,k k  km m k+···+km=n  m k,...,km≥ HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page9of13 http://www.advancesindifferenceequations.com/content/2014/1/155 Withthehelpof(.)and(.),werewritetheleft-handsideof(.)as (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) (cid:2)m (–)m–ks(m,k) tn  (k–) =m– eyt (m–)! n! λet+ k= (cid:5) (cid:6) (cid:2)m (–)m–ks(m,k)(cid:2)k– k– =m– (–y)k––jE (y;λ). (.) n+j (m–)! j k= j= Changingtheorderofthesummationontheright-handsideof(.)arises (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:5) (cid:6) m– (cid:2)m– (cid:2)m k– = (–)m–j–E (y;λ) s(m,k)yk––j. (.) n+j (m–)! j j= k=j+ Thefollowingresultfollowsfrom(.),(.)and(.). Theorem. Letmbeapositiveintegerandy=x +x +···+x .Then,forpositiveinteger   m n≥m, (cid:5) (cid:6) (cid:2) (cid:2)m– n E (x ;λ)···E (x ;λ)=m– p (y)E (y;λ). (.) k ,...,k k  km m m,j n+j k+···+km=n  m j= k,...,km≥ Itisworthynoticingthatsince(.)canberewrittenas (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:5) (cid:6) m– (cid:2)m– (cid:2)m k– = (–)jE (y;λ) s(m,k)yk–(m–j) n+m––j (m–)! m––j j= k=m–j m– (cid:2)m– = (–)jE (y;λ) n+m––j (m–)! j= (cid:5) (cid:6) (cid:2)j m+k–j– × s(m,m+k–j)yk, (.) k k= bycombining(.)and(.),weobtain (cid:5) (cid:6) (cid:2) n E (x ;λ)···E (x ;λ) k ,...,k k  km m k+···+km=n  m k,...,km≥ (cid:15) (cid:5) (cid:6) (cid:16) m– (cid:2)m– (cid:2)j m+k–j– = (–)j s(m,m+k–j)yk E (y;λ). (.) n+m––j (m–)! k j= k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page10of13 http://www.advancesindifferenceequations.com/content/2014/1/155 Obviously the case λ= in (.) gives the formula of Dilcher [, Theorem ] on the classicalEulerpolynomials. Wenextconsiderthecase≤r≤m–in(.).Forconvenience,inthefollowingwe alwaysdenotez=λet.Weapplythefamiliarpartialfractiondecompositionandlet  (cid:2)r– M m(cid:2)–r– N i j = + . (.) (z–)r(z+)m–r (z–)r–i (z+)m–r–j i= j= WearenowinthepositiontodeterminethecoefficientsM andN in(.).Bymultiply- i j ingbothsidesin(.)by(z–)r andtakingz→,weobtain   M =lim = . (.)  z→(z+)m–r m–r For the case ≤i≤r– in (.), by multiplying (z–)r–i in both sides of (.) and (cid:10) (cid:3) (cid:4) taking z→, with the help of the binomial theorem (z+)n = n n (z–)kn–k for k= k non-negativeintegern,weget (cid:15) (cid:16) (cid:2)i–  M M =lim(z–)r–i – k i z→ (z–)r(z+)m–r (z–)r–k k= (cid:10)  –(z+)m–r i– M (z–)k = lim k= k m–r z→ (z–)i (cid:10) (cid:10) (cid:3) (cid:4)  – mj=–r ik–= mj–r m–r–jMk(z–)k+j = lim . (.) m–r z→ (z–)i Inlightof(.),wecanmaketheL’Hôspitalrulefor(.).Infact,repeatedlyapplying theL’Hôspitalruleitimestherearises (cid:5) (cid:6) (cid:2)m–r(cid:2)i–  m–r M (k+j) M =– lim k i(z–)k+j–i, (.) i i!z→ j j j= k= where(x) isthefallingfactorial(x) ofordernin(.).Hence,thecoefficientsM satisfy n n i (cid:5) (cid:6) (cid:2)i–  m–r M M = and M =– k (≤i≤r–). (.)  m–r i i–k i–k k= Itfollowsfrom(.)thatwecanclaim (cid:5) (cid:6) (–)i m–r+i– M = (≤i≤r–). (.) i m–r+i i Weshalluseinductiononi.Obviously(.)holdstriviallywheni=.Assumethat(.) iscompleteforanysmallervalueofi.From(.)and(.),wehave (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6)  (cid:2)i m–r m–r+k– (–)i m–r+i– M =– (–)k+ . (.) i m–r+i i–k k m–r+i i k=

Description:
In this paper, a further investigation for the Apostol-Bernoulli and Apostol-Euler polynomials and numbers is performed. Some closed formulae of sums
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.