HeandAraciAdvancesinDifferenceEquations2014, 2014:155 http://www.advancesindifferenceequations.com/content/2014/1/155 RESEARCH OpenAccess Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials YuanHe1*andSerkanAraci2 *Correspondence: [email protected] Abstract 1FacultyofScience,Kunming Inthispaper,afurtherinvestigationfortheApostol-BernoulliandApostol-Euler UniversityofScienceand Technology,Kunming,Yunnan polynomialsandnumbersisperformed.Someclosedformulaeofsumsofproducts 650500,People’sRepublicofChina ofanynumberofApostol-BernoulliandApostol-Eulerpolynomialsandnumbersare Fulllistofauthorinformationis establishedbyapplyingthegeneratingfunctionmethodsandsomesummation availableattheendofthearticle transformtechniques.Itturnsoutthatsomewell-knownresultsarederivedasspecial cases. MSC: 11B68;05A19 Keywords: Bernoullipolynomialsandnumbers;Eulerpolynomialsandnumbers; Apostol-Bernoullipolynomialsandnumbers;Apostol-Eulerpolynomialsand numbers;summationformulae 1 Introduction TheclassicalBernoullipolynomialsB (x)andEulerpolynomialsE (x)areusuallydefined n n bymeansofthefollowinggeneratingfunctions: text (cid:2)∞ tn (cid:3) (cid:4) ext (cid:2)∞ tn (cid:3) (cid:4) = B (x) |t|<π and = E (x) |t|<π . (.) et– n n! et+ n n! n= n= Inparticular,therationalnumbersB =B ()andintegersE =nE (/)arecalledthe n n n n classicalBernoullinumbersandEulernumbers,respectively. Asiswellknown,theclassicalBernoulliandEulerpolynomialsandnumbersplayim- portant roles in different areas of mathematics such as number theory, combinatorics, specialfunctionsandanalysis.Numerousinterestingpropertiesforthemcanbefoundin manybooks;see,forexample,[–].Hereisthewell-knownEulerformulaontheclassical Bernoullinumbers: (cid:5) (cid:6) (cid:2)n n B B =–nB –(n–)B (n≥). (.) k n–k n– n k k= Thisformulahasbeenextendedindifferentdirectionsbymanyauthors.Forexample,a directgeneralisationof(.)isthefollowingidentityontheclassicalBernoullipolynomials duetoNörlund[]: (cid:5) (cid:6) (cid:2)n n B (x)B (y)=–n(x+y–)B (x+y)–(n–)B (x+y) (n≥), (.) k n–k n– n k k= ©2014HeandAraci;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproduction inanymedium,providedtheoriginalworkisproperlycited. HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page2of13 http://www.advancesindifferenceequations.com/content/2014/1/155 whichhasbeengeneralisedtoasymmetricformbyHeandZhang[].Wealsomention [–]forfurtherdiscoveriesoftheaboveNörlundresultfollowingtheworkofCarlitz [],AgohandDilcher[,].Ontheotherhand,Eie[],SitaramachandraroandDavis []generalised(.)tosumsofproductsofthreeandfourBernoullinumbers.Afterthat, Sankaranarayanan[]gavetheclosedexpressionofsumsofproductsoffiveBernoulli numbers, and Zhang [] derived the closed ones of sums of products of less than and equaltosevenBernoullinumbers.Inparticular,Dilcher[]obtainedsomeclosedformu- laeofsumsofproductsofanynumberofclassicalBernoulliandEulerpolynomialsand numbers.PetojevićandSrivastava[–]gotseveralnewformulaeofsumsofproducts ofanynumberofclassicalBernoullinumbersincludingtheEulertypeandDilchertype sumsofproductsofBernoullinumbers.Recently,Kim[]developedanewapproachto givetheclosedformulaofsumsofproductsofanynumberofclassicalBernoullinumbers byusingtherelationofvaluesatnon-positiveintegersoftheimportantrepresentationof themultipleHurwitzzetafunctionintermsoftheHurwitzzetafunction.Further,Kim andHu[]obtainedtheclosedformulaofsumsofproductsofanynumberofApostol- BernoullinumbersbyexpressingthesumsofproductsoftheApostol-Bernoullipolynomi- alsintermsofthespecialvaluesofmultipleHurwitz-Lerchzetafunctionsatnon-positive integers. WenowturntotheApostol-BernoullipolynomialsB (x;λ)andApostol-Eulerpolyno- n mialsE (x;λ),whichareusuallydefinedbymeansofthefollowinggeneratingfunctions n (see,e.g.,[,]): text (cid:2)∞ tn (cid:3) (cid:4) = B (x;λ) |t|<π ifλ=;|t|<|logλ|otherwise (.) λet– n n! n= and ext (cid:2)∞ tn (cid:3) (cid:4) = E (x;λ) |t|<π ifλ=;|t|<|log(–λ)|otherwise . (.) λet+ n n! n= Moreover,B (λ)=B (;λ)andE (λ)=nE (/;λ)arecalledtheApostol-Bernoullinum- n n n n bersandApostol-Eulernumbers,respectively.Obviously B (x;λ)and E (x;λ)reduceto n n B (x)andE (x)whenλ=.ItisworthnoticingthattheApostol-Bernoullipolynomials n n werefirstlyintroducedbyApostol[](seealsoSrivastava[]forasystematicstudy)in ordertoevaluatethevalueoftheHurwitz-Lerchzetafunction.Forsomeelegantresults andnicemethodsonthesepolynomialsandnumbers,oneisreferredto[–]. Inthepresentpaper,wewillbeconcernedwithsomeclosedformulaeofsumsofprod- ucts of any number of Apostol-Bernoulli and Apostol-Euler polynomials and numbers. The idea stems from the two identities of Xu and Cen [] applying the famous Faà di BrunoformulatoansweraproblemposedbyGuoandQi[].Weprovethetworesults duetoXuandCeninabriefwayagain.Asfurtherapplications,weobtainsomeclosed formulaeofsumsofproductsofanynumberofApostol-BernoulliandApostol-Eulerpoly- nomialsandnumbersbyapplyingthegeneratingfunctionmethodsandsomesummation transformtechniques.Itturnsoutthatsomeknownresultsincludingtheonesstatedin [,]arederivedasspecialcases. HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page3of13 http://www.advancesindifferenceequations.com/content/2014/1/155 2 Someauxiliaryresults WefirstlyrecalltheStirlingnumbersofthefirstkinds(n,k)andtheStirlingnumbersofthe secondkindS(n,k)whichcanbefoundinthestandardbook[].TheStirlingnumbers ofthefirstkindarethecoefficientsintheexpansion (cid:2)n (x) = s(n,k)xk (n≥), (.) n k= andtheStirlingnumbersofthesecondkindarecharacterisedbytheidentity (cid:2)n xn= S(n,k)(x) (n≥). (.) k k= Thenotation(x) appearingin(.)and(.)standsforthefallingfactorial(x) ofordern n n definedby(x) =and(x) =x(x–)(x–)···(x–n+)forpositiveintegernandcomplex n numberx.Infact,theStirlingnumbersofthefirstkinds(n,k)andtheStirlingnumbersof thesecondkindS(n,k)canbedefinedbymeansofthefollowinggeneratingfunctions: (cid:2)∞ (cid:2)∞ (ln(+t))k tn (et–)k tn = s(n,k) and = S(n,k) . (.) k! n! k! n! n=k n=k Ifmakinguseof(.)thenonecaneasilyobtainthepairofclassicalinverserelations(see, e.g.,[,p.]): (cid:2)n (cid:2)n f(n)= s(n,k)g(k) ⇐⇒ g(n)= S(n,k)f(k), (.) k= k= withnbeingnon-negativeintegerandf(n)andg(n)beingtwosequences. Motivatedbytwoidentitiesappearingin[],GuoandQi[,]posedthefollowing problem:fort(cid:6)=andpositiveintegern,determinethenumbersa for≤k≤nsuch n,k– that (cid:5) (cid:6) (cid:2)n (k–) =+ a . (.) (–e–t)n n,k– et– k= Stimulatedbythisproblem,theauthors[]madeuseofthemathematicalinductionto establisheightidentitieswhichrevealthefunctions/(–e±t)nandthederivatives(/(e±t– ))(k)canbeexpressedbyeachotherbylinearcombinationswithcoefficientsinvolvingthe combinatorialnumbersandStirlingnumbersofthesecondkind.Further,XuandCen[] appliedthefamousFaàdiBrunoformulatounifytheeightidentitiesduetoGuoandQi []totwoidentitiesinvolvingtwoparametersα andλ.Wenextstatetheirresultsand giveabriefproof. Theorem.([]) Letnbeanon-negativeintegerandα,λtwoparameters.Then (cid:5) (cid:6) (n) (cid:2)n+ (–)n+k–αn(k–)!S(n+,k) = , (.) –λeαt (–λeαt)k k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page4of13 http://www.advancesindifferenceequations.com/content/2014/1/155 andforpositiveintegern, (cid:5) (cid:6) (cid:2)n (–)n–ks(n,k) (k–) = . (.) (–λeαt)n (n–)!αk– –λeαt k= Proof Inviewofthebinomialseries (cid:5) (cid:6) (cid:2)∞ β (+t)β = tn (βcomplexnumber), (.) n n= wediscover (cid:5) (cid:6) (cid:5) (cid:6) (cid:2)∞ (cid:3) (cid:4) (cid:2)∞ (cid:3) (cid:4) –n n+j– = –λeαt j= λeαt j. (.) (–λeαt)n j j j= j= Iftakingx=–jin(.)thenweobtain,forpositiveintegern, (cid:5) (cid:6) (cid:2)n n+j– s(n,k)(–)n–kjk–= . (.) (n–)! j k= Applying(.)to(.)yields (cid:2)n (cid:2)∞ (cid:3) (cid:4) = (–)n–ks(n,k) λeαt jjk–. (.) (–λeαt)n (n–)! k= j= Itiseasytoseefrom(.)that (cid:5) (cid:6) (k–) (cid:2)∞ (cid:3) (cid:4) (cid:2)∞ (cid:3) (cid:4) = λj eαtj (k–)=αk– λeαt jjk–. (.) –λeαt j= j= Thus,combining(.)and(.)givestheformula(.).Itfollowsfrom(.)and(.) that(.)iscomplete.Thisconcludestheproof. (cid:2) Itbecomesobviousthatinthecaseα=in(.)arises,forpositiveintegern, (cid:5) (cid:6) (cid:2)n (–)k–s(n,k) (k–) = (.) (λet–)n (n–)! λet– k= and (cid:5) (cid:6) (cid:2)n (–)n–ks(n,k) (k–) = . (.) (λet+)n (n–)! λet+ k= Wenextgiveanotherauxiliaryresultasfollows. Theorem. Letnbeanon-negativeinteger.Then (cid:7) (cid:5) (cid:6) (cid:8) (cid:3) (cid:4) (cid:2)∞ (cid:2)n n tm ext f(y,t) (n)= (–x)n–kf (x+y) , (.) m+k k m! m= k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page5of13 http://www.advancesindifferenceequations.com/content/2014/1/155 andforpositiveintegerr, (cid:7) (cid:5) (cid:6) (cid:3) (cid:4) (cid:2)∞ (cid:2)n n f (x+y) ext g(y,t) (n)= (–x)n–k m+k+r k (cid:8)m+k+(cid:9) r m= k= (cid:8) (cid:9) (–)n+xm+n+ tm + tm(–t)nf (x+y–xt)dt , (.) r– (r–)! m! where (cid:8)x(cid:9) denotes the rising factorial (cid:8)x(cid:9) of order n defined by (cid:8)x(cid:9) = and (cid:8)x(cid:9) = n n n x(x+)(x+)···(x+n–)forpositiveintegernandcomplexnumberx,f(y,t)isdenoted (cid:10) (cid:10) byf(y,t)= ∞ f (y)tm,g(y,t)isdenotedbyg(y,t)= ∞ fm+r(y) · tm and{f (x)}∞ isa m= m m! m= (cid:8)m+(cid:9)r m! n n= sequenceofpolynomialsgivenby (cid:2)∞ tn f (x) =F(t)e(x–/)t, (.) n n! n= withF(t)beingaformalpowerseries. Proof See[,(.),(.)]fordetails. (cid:2) TherefollowsomespecialcasesofTheorem..Bysettingy=andf(y,t)=/(λet+) in(.),weobtain,fornon-negativeintegersm,n, (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) (cid:5) (cid:6) tm (n) (cid:2)n n ext = (–x)n–kE (x;λ), (.) m! λet+ k m+k k= where[tn]f(t)standsforthecoefficientsof[tn]inf(t).Ontheotherhand,sinceB (x;λ)= whenλ=andB (x;λ)=whenλ(cid:6)=(see,e.g.,[]),sobysettingB (x;λ)=δ weget ,λ δ (cid:2)∞ B (λ) tm – ,λ = m+ · . (.) λet– t m+ m! m= It is easy to see from the properties of the Beta and Gamma functions that, for non- negativeintegersm,n, (cid:9) m!·n! tm(–t)ndt= . (.) (m+n+)! Thus,bysettingr=,y=andg(y,t)=/(λet–)–δ /tin(.),withthehelpof(.) ,λ and(.),weobtain,fornon-negativeintegersm,n, (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) (cid:5) (cid:6) tm (n) (cid:2)n n B (x;λ) ext = (–x)n–k m+k+ . (.) m! λet– k m+k+ k= Weshallmakeuseoftheaboveformulae(.),(.),(.)and(.)togivesomeclosed formulaeofsumsofproductsofanynumberofApostol-BernoulliandApostol-Eulerpoly- nomialsandnumbersinthenextsection. HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page6of13 http://www.advancesindifferenceequations.com/content/2014/1/155 3 Therestatementofmainresults (cid:13) (cid:14) Beforestating ourmainresults,webegin byintroducingtheStirlingcyclenumbers n k givenbytherelation (cid:11) (cid:12) (cid:2)n n x(x+)···(x +n–)= xk. (.) k k= (cid:13) (cid:14) Itisobviousfrom(.)thats(n,k)=(–)n–k n .Infact,theStirlingcyclenumberscanbe k definedrecursivelyby(see,e.g.,[,]) (cid:11) (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) n =, = = and n (cid:11) (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) (.) n+ n n =n + (n,k≥). k k k– Inthissectionwealwaysdenotebyp (x)apolynomialgivenby(see,e.g.,[,]) n,m (cid:5) (cid:6)(cid:11) (cid:12) (cid:2)n– k n p (x)= (–x)k–m n,m (n–)! m k+ k=m (cid:5) (cid:6) (–)n–m– (cid:2)n– k = s(n,k+)xk–m, (.) (n–)! m k=m (cid:3) (cid:4) andwealsodenoteby n themultinomialcoefficientdefinedby r,...,rk (cid:5) (cid:6) n n! = (n,r ,...,r ≥). (.) r ,...,r r !···r ! k k k We next explore the closed formulae of sums of products of any number of Apostol- Bernoulli and Apostol-Euler polynomials and numbers. The discovery depends on the followingidentity: (cid:5) (cid:6) (cid:5) (cid:6) t r m–r trm–reyt e(x+x+···+xm)t= , (.) λet– λet+ (λet–)r(λet+)m–r whererisanon-negativeinteger,misapositiveintegerwith≤r≤mandy=x +x + ···+x .Ontakingr=min(.)by(.)weget m (cid:11) (cid:12)(cid:5) (cid:6) (cid:5) (cid:6) (cid:2) tn tmeyt n = B (x ;λ)···B (x ;λ). (.) n! (λet–)m k ,...,k k km m k+···+km=n m k,...,km≥ Ontheotherhand,from(.)wediscover (cid:11) (cid:12)(cid:5) (cid:6) tn tmeyt n! (λet–)m (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) n! (cid:2)m (–)k–s(m,k) tn–m (k–) = eyt . (.) (n–m)! (m–)! (n–m)! λet– k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page7of13 http://www.advancesindifferenceequations.com/content/2014/1/155 Ifapplying(.)totheright-handsideof(.)then (cid:11) (cid:12)(cid:5) (cid:6) tn tmeyt n! (λet–)m (cid:5) (cid:6) n! (cid:2)m (–)k–s(m,k)(cid:2)k– k– B (y;λ) = (–y)k––j n+j+–m . (.) (n–m)! (m–)! j n+j+–m k= j= Changingtheorderofthesummationontheright-handsideof(.)gives (cid:11) (cid:12)(cid:5) (cid:6) tn tmeyt n! (λet–)m (cid:5) (cid:6) n! (cid:2)m– B (y;λ) (cid:2)m k– s(m,k)yk––j = (–)j n+j+–m (n–m)! n+j+–m j (m–)! j= k=j+ (cid:5) (cid:6) (–)m–n!(cid:2)m– B (y;λ) (cid:2)m k– s(m,k)yk–m+j = (–)j n–j (n–m)! n–j m–j– (m–)! j= k=m–j (–)m–n!(cid:2)m– B (y;λ) = (–)j n–j (n–m)! n–j j= (cid:5) (cid:6) (cid:2)m– k × s(m,k+)yk–(m–j–). (.) (m–)! m–j– k=m–j– Thus,byequating(.)and(.)andthenapplying(.)thefollowingresultarises. Theorem. Letmbeapositiveintegerandy=x +x +···+x .Then,forpositiveinteger m n≥m, (cid:5) (cid:6) (cid:2) n B (x ;λ)···B (x ;λ) k ,...,k k km m k+···+km=n m k,...,km≥ (–)m–n!(cid:2)m– B (y;λ) n–j = p (y) . (.) m,m–j– (n–m)! n–j j= TherefollowsomespecialcasesofTheorem..Obviouslythecaseλ=inTheorem. isanequivalentversionoftheclassicalformulaofDilcher[,Theorem]: (cid:5) (cid:6) (cid:2) n B (x )···B (x ) k ,...,k k km m k+···+km=n m k,...,km≥ (cid:5) (cid:6) (cid:15) (cid:5) (cid:6) (cid:16) (cid:2)m– (cid:2)j n m–j–+k =(–)m–m (–)j s(m,m–j+k)yk m k j= k= B (y) × n–j . (.) n–j Theorem.canalsobeusedtogivetheclosedformulaofsumsofproductsofanynumber ofApostol-Bernoullinumbersdescribedin[].Forexample,sincetheApostol-Bernoulli HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page8of13 http://www.advancesindifferenceequations.com/content/2014/1/155 polynomialsobeythesymmetricdistribution (cid:5) (cid:6) λB (–x;λ)=(–)nB x; (n≥), (.) n n λ andthedifferenceequation λB (+x;λ)–B (x;λ)=nxn– (n≥), (.) n n which can be found in [], by setting x =x =···=x = and replacing λ by /λ in m Theorem.,inviewof(.),wederive (cid:5) (cid:6) (cid:2) n (–)nλm B (λ)···B (λ) k ,...,k k km k+···+km=n m k,...,km≥ (–)m–n!(cid:2)m– B (m;) = p (m) n–j λ . (.) m,m–j– (n–m)! n–j j= On multiplying λx– in both sides of (.) and substituting x=,...,m –, in view of addingtheprecedingresults,wegetforpositiveintegermandnon-negativeintegern, (cid:2)m– λm–B (m;λ)=B (;λ)+n kn–λk–. (.) n n k= Wenoticethat,from(.),wehaveλB (;λ)=+B (λ)andλB (;λ)=B (λ)forpositive n n integern≥,andthefollowingrelation(see,e.g.,[]): (cid:2)n– p (n)mk= (m,n≥and≤m≤n–). (.) n,k k= Thus, by applying (.) and (.) to (.), one can obtain the closed formula for the Apostol-BernoullinumbersduetoKimandHu[,Theorem.],asfollows: (cid:5) (cid:6) (cid:2) n B (λ)···B (λ) k ,...,k k km k+···+km=n m k,...,k⎧m≥ (cid:10) ⎨(–)m+n+n! m–p (m)Bn–j(λ) ifn>m, = (n–m)! j= (cid:10)m,m–j– n–j (.) ⎩n!p B (λ)–n! n–p (n)Bn–j(λ) ifn=m. n, j= n,n–j– n–j Iftakingr=in(.)thenby(.)weobtain (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:5) (cid:6) (cid:2) n = E (x ;λ)···E (x ;λ). (.) k ,...,k k km m k+···+km=n m k,...,km≥ HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page9of13 http://www.advancesindifferenceequations.com/content/2014/1/155 Withthehelpof(.)and(.),werewritetheleft-handsideof(.)as (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:11) (cid:12)(cid:5) (cid:5) (cid:6) (cid:6) (cid:2)m (–)m–ks(m,k) tn (k–) =m– eyt (m–)! n! λet+ k= (cid:5) (cid:6) (cid:2)m (–)m–ks(m,k)(cid:2)k– k– =m– (–y)k––jE (y;λ). (.) n+j (m–)! j k= j= Changingtheorderofthesummationontheright-handsideof(.)arises (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:5) (cid:6) m– (cid:2)m– (cid:2)m k– = (–)m–j–E (y;λ) s(m,k)yk––j. (.) n+j (m–)! j j= k=j+ Thefollowingresultfollowsfrom(.),(.)and(.). Theorem. Letmbeapositiveintegerandy=x +x +···+x .Then,forpositiveinteger m n≥m, (cid:5) (cid:6) (cid:2) (cid:2)m– n E (x ;λ)···E (x ;λ)=m– p (y)E (y;λ). (.) k ,...,k k km m m,j n+j k+···+km=n m j= k,...,km≥ Itisworthynoticingthatsince(.)canberewrittenas (cid:11) (cid:12)(cid:5) (cid:6) tn meyt n! (λet+)m (cid:5) (cid:6) m– (cid:2)m– (cid:2)m k– = (–)jE (y;λ) s(m,k)yk–(m–j) n+m––j (m–)! m––j j= k=m–j m– (cid:2)m– = (–)jE (y;λ) n+m––j (m–)! j= (cid:5) (cid:6) (cid:2)j m+k–j– × s(m,m+k–j)yk, (.) k k= bycombining(.)and(.),weobtain (cid:5) (cid:6) (cid:2) n E (x ;λ)···E (x ;λ) k ,...,k k km m k+···+km=n m k,...,km≥ (cid:15) (cid:5) (cid:6) (cid:16) m– (cid:2)m– (cid:2)j m+k–j– = (–)j s(m,m+k–j)yk E (y;λ). (.) n+m––j (m–)! k j= k= HeandAraciAdvancesinDifferenceEquations2014, 2014:155 Page10of13 http://www.advancesindifferenceequations.com/content/2014/1/155 Obviously the case λ= in (.) gives the formula of Dilcher [, Theorem ] on the classicalEulerpolynomials. Wenextconsiderthecase≤r≤m–in(.).Forconvenience,inthefollowingwe alwaysdenotez=λet.Weapplythefamiliarpartialfractiondecompositionandlet (cid:2)r– M m(cid:2)–r– N i j = + . (.) (z–)r(z+)m–r (z–)r–i (z+)m–r–j i= j= WearenowinthepositiontodeterminethecoefficientsM andN in(.).Bymultiply- i j ingbothsidesin(.)by(z–)r andtakingz→,weobtain M =lim = . (.) z→(z+)m–r m–r For the case ≤i≤r– in (.), by multiplying (z–)r–i in both sides of (.) and (cid:10) (cid:3) (cid:4) taking z→, with the help of the binomial theorem (z+)n = n n (z–)kn–k for k= k non-negativeintegern,weget (cid:15) (cid:16) (cid:2)i– M M =lim(z–)r–i – k i z→ (z–)r(z+)m–r (z–)r–k k= (cid:10) –(z+)m–r i– M (z–)k = lim k= k m–r z→ (z–)i (cid:10) (cid:10) (cid:3) (cid:4) – mj=–r ik–= mj–r m–r–jMk(z–)k+j = lim . (.) m–r z→ (z–)i Inlightof(.),wecanmaketheL’Hôspitalrulefor(.).Infact,repeatedlyapplying theL’Hôspitalruleitimestherearises (cid:5) (cid:6) (cid:2)m–r(cid:2)i– m–r M (k+j) M =– lim k i(z–)k+j–i, (.) i i!z→ j j j= k= where(x) isthefallingfactorial(x) ofordernin(.).Hence,thecoefficientsM satisfy n n i (cid:5) (cid:6) (cid:2)i– m–r M M = and M =– k (≤i≤r–). (.) m–r i i–k i–k k= Itfollowsfrom(.)thatwecanclaim (cid:5) (cid:6) (–)i m–r+i– M = (≤i≤r–). (.) i m–r+i i Weshalluseinductiononi.Obviously(.)holdstriviallywheni=.Assumethat(.) iscompleteforanysmallervalueofi.From(.)and(.),wehave (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) (cid:2)i m–r m–r+k– (–)i m–r+i– M =– (–)k+ . (.) i m–r+i i–k k m–r+i i k=
Description: