Summary Results for Brine Migration Modeling Performed by LANL, LBNL, and SNL for the UFD Program Prepared for U.S. Department of Energy Used Fuel Disposition Campaign Kristopher L. Kuhlman Sandia National Laboratories September 25, 2014 FCRD-UFD-2014-000071 SAND2014-18217 R DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. Prepared by: Sandia National Laboratories Albuquerque, New Mexico 87185 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. RECENT BRINE MODELING IN GEOLOGIC SALT September 25, 2014 iii RECENT BRINE MODELING IN GEOLOGIC SALT iv September 25, 2014 Acknowledgments The author thanks Lupe Argu¨ello and Frank Hansen from Sandia; Phil Stauffer and Florie Capor- usciofromLosAlamos;JonnyRutqvistandLauraBlancoMart´ınfromBerkeley;andJo¨rgMo¨nig, Jens Wolf, and Anke Schneider from GRS for providing reports and answering questions about theirrecentsalt-relatedmodelingwork. TheauthorthanksBwalyaMalama,DaveSassani,ErnieHardin,FrankHansen,andcolleagues at the fifth US/German Workshop on Salt Repository Research, Design, and Operation for discus- sions on facets of the topic of brine migration in salt. The author thanks Heeho Park and Glenn HammondforassistancewiththePFLOTRANsimulations. Finally,theauthorthanksErnieHardinforhisdetailedandinsightfulreviewoftheentirereport. RECENT BRINE MODELING IN GEOLOGIC SALT September 25, 2014 v Summary This report summarizes laboratory and field observations and numerical modeling related to cou- pled processes involving brine and vapor migration in geologic salt, focusing on recent develop- ments and studies conducted at Sandia, Los Alamos, and Berkeley National Laboratories. Interest into the disposal of heat-generating waste in salt has led to interest into water distribution and migrationinbothrun-of-minecrushedandintactgeologicsalt. Ideally a fully coupled thermal-hydraulic-mechanical-chemical simulation is performed using numerical models with validated constitutive models and parameters. When mechanical coupling is not available, mechanical effects are prescribed in hydraulic models as source, boundary, or initialconditions. Thisreportpresentsmaterialassociatedwithdevelopingappropriateinitialcon- ditions for a non-mechanical hydrologic simulation of brine migration in salt. Due to the strong coupling between the mechanical and hydrologic problems, the initial saturation will be low for theexcavationdisturbedzonesurroundingtheexcavation. Although most of the material in this report is not new, the author hopes it is presented in a formatmakingitusefultoothersaltresearchers. Thisreport(FCRD-UFD-2014-000071)satisfiesaLevel-2milestone(M2FT-14SN0818011) in the DOE-NE Used Fuel Disposition Campaign in work package “DR Salt R&D – SNL” under WBS1.02.08.18. Thisreport(particularlySection5)alsosatisfiesaLevel-4milestonetitled“Summarizecurrent THMCmodelingresultssupportingtestingofmechanicalandhydrologicbehaviorofthenear-field host rock surrounding excavations” (M4FT-14SN0818053) in the “Salt R&D to Support Field Studies–SNL”workpackageunderthesameWBS. RECENT BRINE MODELING IN GEOLOGIC SALT vi September 25, 2014 Contents ListofFigures vii ListofTables ix Acronyms xi 1 Introduction 1 1.1 BrineinSalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 CoupledTHMCProcessesinSalt . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 NumericalModelingofWaterinSalt 6 2.1 CurrentTHM,THC,andTHMCnumericalmodels . . . . . . . . . . . . . . . . . 6 2.1.1 CODE BRIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 FEHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 TOUGH-FLACandFLAC-TOUGH . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 d3fandr3t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.5 SIERRAMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.6 PFLOTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Salt-RelevantModelBenchmarkingExercises . . . . . . . . . . . . . . . . . . . . 9 2.3 PointsofComparisonforCoupledProcessModels . . . . . . . . . . . . . . . . . 12 3 ProcessesAffectingWaterMovementinSalt 15 3.1 RepresentativeScalesinSalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 WaterDistributioninIntactSalt . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Intergranularbrineandvapor . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Intragranularbrine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 Brineinnon-saltlayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.4 Waterofhydration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.5 Waterinrun-of-minesaltvs. intactsalt . . . . . . . . . . . . . . . . . . . 21 3.3 WaterDrivingForcesinSalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Hygroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 Capillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.4 Gravityanddensityeffects . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.5 Diffusivetransport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 RECENT BRINE MODELING IN GEOLOGIC SALT September 25, 2014 vii 3.3.6 Temperatureeffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 DistributionofPermeabilityandPorosity . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 Permeabilityofheterogeneouslayers . . . . . . . . . . . . . . . . . . . . 31 3.4.2 DRZpermeabilitysurroundingexcavations . . . . . . . . . . . . . . . . . 31 3.4.3 Saltpermeabilityasafunctionofmechanicalproperties . . . . . . . . . . 33 3.4.4 Porositychangesduetodissolutionandprecipitation . . . . . . . . . . . . 38 3.4.5 Permeabilitychangesduetovariablesaturation . . . . . . . . . . . . . . . 39 3.5 ChemicalProcessesinSaltandBrine . . . . . . . . . . . . . . . . . . . . . . . . 39 3.6 BalanceofDimensionlessQuantities . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6.1 Thermalcharacteristictime . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.6.2 Hydrauliccharacteristictime . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6.3 Masstransportcharacteristictime . . . . . . . . . . . . . . . . . . . . . . 42 4 RecentHydrologicModelDevelopmentandLabTestingforWaterinSalt 45 4.1 LosAlamosNationalLaboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 LawrenceBerkeleyNationalLaboratory . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 SandiaNationalLaboratories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 HydrologicInitialConditionsinSaltRepositories 48 5.1 EvolutionoftheDRZAroundExcavations . . . . . . . . . . . . . . . . . . . . . . 49 5.2 EffectofDRZDry-outonHydrologicModelingInitialConditions . . . . . . . . . 52 5.3 WIPPObservationsofDRZDry-out . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.1 MB139watertable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.2 WIPPsmall-scalemine-by . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.3 WIPPlarge-scalebrineinflow(RoomQ) . . . . . . . . . . . . . . . . . . 57 6 SummaryandConclusions 64 References 65 A PFLOTRANinputfiles 85 A.1 SaturatedInitialCondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A.2 NonuniformSaturationInitialCondition . . . . . . . . . . . . . . . . . . . . . . . 89 RECENT BRINE MODELING IN GEOLOGIC SALT viii September 25, 2014 List of Figures 1.1 MapofsaltdistributionintheUS(JohnsonandGonzales,1978) . . . . . . . . . . 1 1.2 Intragranular brine inclusions and intergranular pore fluids in salt (Olivella et al., 1995) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Cartoon representation of coupling in THMC systems (Cosenza and Ghoreychi, 1993). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1 Relation between brine types and flow mechanisms. Adapted from Shefelbine (1982)andSchlichandJockwer(1985). . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Proposed reduction of connectivity at constant porosity in intergranular porosity duringsaltreconsolidationandhealing(Hansenetal.,2014a) . . . . . . . . . . . . 18 3.3 Characteristicthermogravimetricanalysesfrombeddedsaltsamples(Powersetal., 1978) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 StaticformationporepressuresinterpretedfromWIPPtests(BeauheimandRoberts, 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Rangeofsaltporosityandporesize(CosenzaandGhoreychi,1993) . . . . . . . . 25 3.6 SaltpetrofabricstudyresultsforWIPPandAssesalt(Bechtholdetal.,2004). . . . 25 3.7 Capillary pressure data from WIPP anhydrite marker bed cores (Howarth and Christian-Frear,1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.8 Capillary pressure data for fine-grained crushed salt (Cinar et al., 2006); Brooks and Corey (1966) and van Genuchten (1980) model parameters indicated; MRSM =steady-statemodifiedrestored-statemethod,CPDM=dynamicconstantpressure desaturationmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.9 Capillarypressuredataforfine-grainedcrushedsaltat5%and10%porosity(Olivella etal.,2011);vanGenuchten(1980)modelparametersindicated . . . . . . . . . . 28 3.10 Correlation between intrinsic permeability and gas-threshold pressure; see Salzer etal.(2007)forreferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.11 Idealizedlithologyofatypicalnon-saltcomponentofbeddedsalt: MB139(Borns, 1985) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.12 Permeability and porosity estimates from WIPP Small-scale Mine-by test (Stor- montetal.,1991a);power-lawmodelsuggestedbyCosenza(1996) . . . . . . . . 33 3.13 Brine permeabilities interpreted from tests conducted at WIPP (Beauheim and Roberts,2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.14 Typicalmacrofracturinganddamagesurroundingaroomexcavatedinbeddedsalt (BornsandStormont,1988) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 RECENT BRINE MODELING IN GEOLOGIC SALT September 25, 2014 ix 3.15 Trends in permeability and porosity for dilating (orange) and healing (blue) salt (Hansenetal.,2014a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.16 Salt permeability against net confining pressure (σ ) and octahedral shear stress m (τ )(Lai,1971). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 o 3.17 Experimental results showing redistribution of porosity due to precipitation and dissolutionincrushedsalt,asafactorofinitialsaltporosityforinitialsaturationof 40% (left) and initial brine saturation for initial porosity of 30% (right) (Olivella etal.,2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1 Directional nature of damage surrounding a rectangular excavation in salt (Gram- bergandRoest,1984;BornsandStormont,1988). . . . . . . . . . . . . . . . . . . 50 5.2 Numerical prediction of damage distribution around a WIPP disposal room (D giveninEquation(5.1))(VanSambeeketal.,1993a) . . . . . . . . . . . . . . . . 50 5.3 Photo of en echelon (large aperture sub-parallel) fracturing at change in roof ele- vation at WIPP (Hansen, 2003), with orientation drawings at left illustrating roof geometryandrockbolts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.4 One-dimensionaltwo-phaseflowmodelinginbrineusingPFLOTRAN.Initialcon- ditionsstartingfromnearlybrine-saturatedandhydrostatic(6MPa)pressure. . . . 54 5.5 One-dimensionaltwo-phaseflowmodelinginbrineusingPFLOTRAN.Initialcon- ditionsfrom20%brinesaturationinDRZand100%brinesaturationinintactsalt, withhydrostatic(6MPa)pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.6 Water table observed with shallow MB139 boreholes in the DRZ at WIPP. Modi- fiedfrom(Dealetal.,1995,App.E). . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.7 WIPPSmall-scaleMine-byboreholelayout(Stormontetal.,1991a) . . . . . . . . 57 5.8 WIPP Small-scale Mine-by brine (left) and gas (right) pressures in observation boreholes before, during, and after excavation of the central borehole (Stormont etal.,1991a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.9 WIPPSmall-scaleMine-byexperimentresultsshowingextentofDRZ(bluedotted line)anddesaturatedzone(greendashedline);modifiedfromStormontetal.(1991a) 59 5.10 WIPPRoomQinflowdata(Freezeetal.,1997) . . . . . . . . . . . . . . . . . . . 60 5.11 RoomQporosityincreasepredictedbySPECTROM-32(Freezeetal.,1997) . . . 61 5.12 Room Q TOUGH2 baseline porosity case inflow predictions, showing constant- porositymodel(dashed),variableporositymodel(solid)(Freezeetal.,1997) . . . 62 5.13 Room Q TOUGH2 increased porosity case inflow predictions, showing baseline porosityincrease(solid)and5%and10%additionalDRZporosity(dashed)(Freeze etal.,1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 RECENT BRINE MODELING IN GEOLOGIC SALT x September 25, 2014 List of Tables 3.1 Hydrous evaporite minerals in geologic salt; upper 4 minerals more common than lower4. SeereferencesandnotesinRoedderandBassett(1981) . . . . . . . . . . 22 3.2 Values of characteristic times; characteristic length L = 1 m (Cosenza and Ghor- eychi,1993;Cosenzaetal.,1998) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Typical thermal properties for salt (Cosenza and Ghoreychi, 1993; Cosenza et al., 1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 ThermalPecletnumbersfordifferentsalttypes(Cosenzaetal.,1998) . . . . . . . 42 3.5 Typicalhydraulicpropertiesforsalt(CosenzaandGhoreychi,1993;Cosenzaetal., 1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 Typicalmass-transportpropertiesforsalt(CosenzaandGhoreychi,1993;Cosenza etal.,1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.7 TransportPecletnumbersfordifferentsalttypes(CosenzaandGhoreychi,1993) . 44
Description: