ebook img

Summary of Long-Baseline Systematics Session at CETUP*2014 PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Summary of Long-Baseline Systematics Session at CETUP*2014

Summary of Long-Baseline Systematics Session at CETUP*2014 Daniel Cherdack∗ and Elizabeth Worcester† ∗ColoradoStateUniversity †BrookhavenNationalLaboratory 5 1 Abstract. Asessionstudyingsystematicsinlong-baselineneutrinooscillationphysicswasheldJuly14-18,2014aspartof 0 CETUP*2014.Systematiceffectsfromfluxnormalizationandmodeling,modelingofcrosssectionsandnuclearinteractions, 2 andfardetectoreffectswereaddressed.Expertspresentedthecapabilitiesofexistingandplannedtools.Aprogramofstudy todetermineestimatesofandrequirementsforthesizeoftheseeffectswasdesigned.Thisdocumentsummarizestheresults n of the CETUP* systematics workshop and the current status of systematic uncertainty studies in long-baseline neutrino a J oscillationmeasurements. 1 Keywords: neutrinooscillation,systematicuncertainty 2 PACS: 14.60.Pq,13.15.+g ] x 1. INTRODUCTION e - p For discovery of CP violation, precise understanding of systematic uncertainty will be required. Until recently, the e expectedlevelofsystematicuncertaintyforalong-baselineexperimentatFermilab’sLong-BaselineNeutrinoFacility h (LBNF) has been estimated based on experience with existing experiments and estimates of the performance of the [ next-generationdetectorsbeingdesignedforexperimentsatLBNF.Thesesystematicuncertaintiesareapproximated 1 insensitivitycalculationsbynormalizationuncertaintiesthatcovertheuncertaintiesinallofthemodelsusedinthe v MC generation chain. These include the flux model, neutrino interaction cross section models, nuclear models, and 4 modelsofthenearandfardetectorresponse. 5 0 At the CETUP* workshop, our goal was to summarize existing knowledge of the the leading systematic effects 5 and to develop a program of study to determine a quantitative prediction for the size of each effect in a long- 0 baselineneutrinoexperimentatLBNF.Theultimategoalofthisprogramistoperformdetailedstudiesofeachsource 1. of systematic uncertainty that will determine detector design and analysis performance requirements to constrain 0 systematicuncertaintytotheprojectedlevels.Inthisdocument,thetoolsthathavebeendevelopedtostudysystematic 5 uncertaintyinLBNEaredescribedinSection3,thestatusofexistingstudiesisdescribedinSection4,andplansfor 1 futurestudiesaredescribedinSection5.ThestudiespresentedherewereperformedinthecontextofLBNE,butare : v largelyapplicabletothenewinternationalexperimentalcollaborationatLBNF[1]. i X r 2. WORKSHOPDETAILS a The CETUP* 2014 systematics workshop had 21 registered participants, some of whom were participating in the concurrent Near Detector workshop and some of whom were focused exclusively on the systematics workshop. Additionally,severalexpertswhowereunabletoattendinpersongavepresentationsoverthephone.Eachdayofthe workshopfocusedonaparticularsourceofsystematicuncertainty.Table1istheagendaforeachday.Eachday,there wereapproximatelytwohoursofpresentationswithmostofthedayreservedforworkingtimeinwhichparticipants discussedissuesarisingfromthepresentationsanddevelopedalistofspecificstudiesthatarerequiredtounderstand eachsystematiceffect.Requirementsfordevelopmentoftoolsandacquisitionofexternalinputwerealsodetermined. Detectorrequirementsweredeterminedwhenpossible,thoughgenerallythesewillbeanoutputofstudiesthathave notyetbeenperformed. TABLE1. AgendaofCETUP*SystematicsWorkshop Day Topic Presentation Speaker 1 Introduction Welcome BarbaraSzczerbinska WorkshopGoalsandCharge ElizabethWorcester ToolsforStudyingSystematicUncertainty DanCherdack Flux FluxSystematicUncertainties PaulLebrun NDFluxConstraints XinchunTian ConstrainingtheNuMIFlux DebbieHarris 2 Crosssections NDCross-SectionConstraints(FastMC) XinchunTian NDFluxandCross-SectionConstraints(VALOR) CostasAndreopoulos Hadronization(GENIE/VALOR) CostasAndreopoulos FDCross-SectionConstraints(FastMC) DanCherdack SystematicEffectsfromQE,MEC,andRES RikGran 3 NuclearModel NearDetectorConstraints RobertoPetti GENIEvsGiBUU MindyJen ReducingEnergyResolutionUncertainty UlrichMosel GENIEFSIModel/Systematics SteveDytman 4 FarDetector LArSimulationsandReconstruction TomJunk ConstraintsfromTestBeamExperiments XinQian AlternativeFDDesigns:ImplicationsforSystematics NunoBarros TourofSURF4850-L 5 Discussion 3. TOOLS Theworkpresentedheremakesuseofanumberoftools,someofwhicharecommonlyusedintheHEPcommunity and others of which have been developed by the LBNE collaboration specifically for analysis of long-baseline systematics and sensitivity calculations. GLoBES[2, 3] is a software package developed to calculate sensitivities for neutrino oscillation experiments. The LBNE Fast Monte Carlo (Fast MC) is a simulation suite, combining flux simulations from G4LBNE (a GEANT4[4]-based beam simulation), the GENIE[5] neutrino event generator, and a parameterizeddetectorresponseusedtosimulatetheenergydepositionofeachfinal-stateparticle.TheNDFastMC is an implementation of a fine-grained tracker (FGT) near detector (ND) in the Fast MC framework. My GLoBES Tools(MGT)isananalysisframeworkusingGLoBESlibrariesthatcalculatesexperimentalsensitivity,includingthe effectofsystematicvariations,usinginputsfromasimulationsuchastheFastMC.VALORisafittingframeworkthat performsamaximumlikelihoodfitofneardetectordatatoconstrainsystematicuncertaintiesandthenappliesthese constraintstooscillationparameterfitsoffardetectoreventsamples.LArSoft[6]isafulldetectorresponsesimulation and reconstruction package for liquid argon TPCs, used by multiple experiments. Reconstruction algorithms within LArSoft are under development. Once further development is complete, the LArSoft simulation will be used in conjunctionwithwiththesamefluxandcrosssectionsimulationsasthecurrentFastMCtoprovidefullsimulations ofaLArTPCfardetectoratLBNF. 4. CURRENTRESULTS 4.1. GLoBESStudies Expected systematic uncertainties on the ν appearance samples in the three-flavor fit for LBNE are extrapolated e from the current performance of the MINOS [7, 8] and T2K [9] experiments, as shown in Table 2. The sensitivity of long-baseline oscillation parameter measurements has been evaluated in GLoBES fits that account for statistical uncertainties, oscillation parameter uncertainties, and these non-oscillation systematic uncertainties. The latter is accomplished via eight normalization parameters; one each for the signal and background of four simultaneously fit analysis samples (ν , ν , ν , ν ). These eight parameters are assumed to be completely uncorrelated, as any e e µ µ correlated uncertainty is expected to cancel. Estimates for these normalization uncertainties are 5% (1%) signal and 10%(5%)backgroundfortheν (ν )samples.Thesevaluesreflecttheuncorrelatedportionofthetotaluncertainty µ e projectionsforeachsample,includingconstraintsfromexternalandneardetectordata.Theportionofthesystematics uncertaintiesthatarecorrelatedamongstanalysissampleareexpectedtolargelycancelincombinedfits. The sensitivity of the mass hierarchy determination and the CP violation measurement to possible values for the uncorrelated ν signal and background normalization uncertainties in the GLoBES-based calculation are shown in e Fig. 1. The impact of systematic uncertainty on the CP violation sensitivity is clear; the normalization of the ν e sample,relativetotheν ,ν ,andν samplesafterallconstraintsfromexternal,neardetector,andfardetectordata e µ µ havebeenapplied,mustbedeterminedatthe1-2%levelinordertoreach5σ sensitivityforexposureslessthan900 kt-MW-years. An important goal of the long-baseline community and the CETUP*2014 systematics workshop is to individually evaluate the effect of individual systematic uncertainties from flux determination, neutrino interaction cross section models, nuclear models, and near and far detector response rather than relying on these expected normalizationuncertainties. 4.2. Flux Theuncertaintiesfromthegenerationofhadronsthatdecayintoneutrinos,whichareproducedoffthetargetand bysecondaryandtertiaryinteractionsinthetargethallandthedecaypipe,areknowntobelarge(∼10%)andarethe leading source of uncertainty in conventional neutrino beamlines. Studies of ND constraints are the best handle on howtheresultingfluxuncertaintieswillbepropagatedtoFDmeasurements. Toevaluatethecapabilitiesofproposedneardetectorstoconstraintheflux,initialstudieshavebeenperformedfor a FGT ND design making use of the ND Fast MC. These studies demonstrate the capability of a FGT to constrain theabsolutefluxusingfully-leptonicinteractionchannels,aswellasthefluxshapeandtheFD/NDfluxratio.Initial TABLE2. Thedominantsystematicuncertaintiesontheνe appearancesignalpredictioninMINOS andT2KandaconservativeprojectionoftheexpecteduncertaintiesinanexperimentatLBNF.Ineach case,thequoteduncertaintyistheeffectontheνe appearancesignalonly.Theseuncertaintiesarethe totalexpecteduncertaintiesontheνe appearancesignalwhichincludebothcorrelatedanduncorrelated uncertaintiesinthethree-flavorfit. Sourceof MINOS T2K ELBNF Comments Uncertainty νe νe νe FluxDetermination BeamFlux 0.3% 2.9% 2% MINOSisnormalizationonly. afterN/F ELBNFnormalizationandshape extrapolation highlycorrelatedbetweenνµ/νe. Neutrinointeractionmodeling Simulation 2.7% 7.5% ∼2% Hadronizationmodelsarebetter includes: constrainedintheELBNFLArTPC. hadronization N/FcancellationlargerinMINOS/ELBNF. crosssections X-sectionuncertaintieslargeratT2Kenergies. nuclearmodels SpectralanalysisinELBNFprovides extraconstraint. Detectoreffects Energyscale 3.5% included (2%) IncludedinELBNFνµ sample (νµ) above uncertaintyonlyin3-flavorfit. MINOSdominatedbyhadronicscale. Energyscale 2.7% 3.4% 2% TotallyactiveLArTPCwithcalibration (νe) includes andtestbeamdatalowersuncertainty. allFD effects Fiducial 2.4% 1% 1% Largerdetectors=smalleruncertainty. volume Total 5.7% 8.8% 3.6% Uncorrelatedνeuncertaintyin fullELBNF3-flavorfit=1-2%. FIGURE1. ExpectedsensitivityofanexperimentatLBNFtodeterminationoftheneutrinomasshierarchy(left)anddiscovery of CP violation, i.e. δCP (cid:54)= 0 or π, (right) as a function of exposure in kt-MW-years, assuming equal running in neutrino and antineutrino mode, for a range of values for the residual νe and νe signal and background normalization uncertainties. The sensitivities quoted are the minimum sensitivity for 100% of δCP values in the case of mass hierarchy and 50% of δCP values inthecaseofCPviolation.Sensitivitiesarefortruenormalhierarchy;neutrinomasshierarchyisassumedtobeunknowninthe CPVfits.Valuesoftheoscillationparametersandtheiruncertaintiesusedinthiscalculationaretakenfrom[10]. studies predict a 2% statistical uncertainty for neutrino-electron scattering which can be used to constrain the flux below∼5GeV,anda3%statisticaluncertaintyforinversemuondecay,whichcanbeusedtomeasurethefluxabove ∼10 GeV. The low-ν method [11, 12, 13] can be used to constrain the shape of the flux as well as FD/ND shape 0 differencesandisexpectedtodosoatthe1-2%level. StudiesusingtheVALORanalysistechniquetoconstrainsimulateddataderivedfromtheFastMCeventsamples also demonstrate the significant ability of a FGT ND to constrain the flux rate and shape. As shown in Fig. 2, the post-fituncertaintyinmostfluxbinsforasampleVALORfitislessthan5%,whichisconsistentwiththeuncorrelated ν signalnormalizationuncertaintyassumedbythesensitivitycalculations.Sincethefluxfortheν (ν )appearance µ e e and the ν (ν )-disapearance analysis samples are identical, the unceratinties are 100% correlated; i.e., the ν (ν ) µ µ µ µ sampleconstrainsthefluxfortheν (ν )sample. e e Systematicuncertaintyinthefardetectorfluxarisingfromuncertaintiesinpositionsofbeamlineelementsinduce significantreductioninsensitivityintheabsenceofneardetectorconstraints,butpreliminarystudiesindicatethatthe neardetectorwillsignificantlyconstraintheflux,sotheseeffectsarenotexpectedtobealeadingsourceofsystematic uncertainty.Furthermore,theseuncertaintieshavebeenevaluatedusingbeamsimulationsandthequadraturesumof theuncertaintypropagatedtotheND/FDratioisdeterminedtobeatthe1%level. 4.3. CrossSectionsandNuclearInteractions AsseeninFig.3,atLBNFthefardetectoreventsampleswillcontainsignificantcontributionsfromquasielastic, resonance production, and deep inelastic scattering (DIS) interactions, so it is important to understand systematics arising from uncertainty in the cross-section models for each of these neutrino interaction processes. Results from MGT using Fast MC inputs show that a fit to all four far detector samples (ν , ν , ν , ν ) significantly constrains e e µ µ cross-section systematic uncertainty even in the case where multiple cross-section parameters are allowed to vary simultaneouslywithintheirGENIEuncertainties.Forexample,fitsareperformedinwhichMQE andMRESforcharged A A current(CC)interactionsarebothallowedtovarywithintheirGENIEuncertaintiesof∼±20%.Thisessentiallyallows theconstituentsamplenormalizationsinthereconstructedenergyspectratovaryby∼20%.Asseenintheexample fitshowninFig.4,thislevelofallowedvariationresultsinadramaticreductioninsensitivityifonefitsonlytheν e s e nti 0.3 Prior uncertainties i a t Postfit uncertainties r e c n 0.2 u t i f s o p 0.1 / r o i r P 0 012345678901234012012345601234567012ec0hcc _fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0_fhc_flux_numu0c_flux_numubar0c_flux_numubar0c_flux_numubar0c_flux_numubar0c_flux_numubar0f_fhc_flux_nue0f_fhc_flux_nue0f_fhc_flux_nue0_rhc_flux_numu0_rhc_flux_numu0_rhc_flux_numu0_rhc_flux_numu0_rhc_flux_numu0_rhc_flux_numu0_rhc_flux_numu0c_flux_numubar0c_flux_numubar0c_flux_numubar0c_flux_numubar0c_flux_numubar0c_flux_numubar0c_flux_numubar0c_flux_numubar0f_rhc_flux_nue0f_rhc_flux_nue0f_rhc_flux_nue0f_ccqf_cc1pif_cc1pif_ccotf_nf_nuecc_numuc ffffffffffhhhhh fffffffhhhhhhhh _f_f_f_f_f _r_r_r_r_r_r_r_r fffff ffffffff FIGURE 2. Example of prior uncertainties (blue) compared with post-fit uncertainties (red) on binned flux normalization parameters from a VALOR fit of simulated near-detector data. In this fit, the true values of all the FHC νµ flux parameters are settobe10%greaterthannominalandthetruevaluesoftheotherparametersaresettobenominal.Nostatisticalfluctuationsare applied.Near-detectorefficiencyparametersareincludedinthenear-detectorfitbutarethenmarginalized.Thepost-fituncertainties intheRHCνe fluxparametersareidenticaltotheprioruncertaintiessincethereisnoRHCνe sampleincludedinthisfit,which meansthattheseparametersarenotconstrainedbythisfit. appearancesignalwithoutconstraintfromtheν andν /ν samples.Incontrast,forafour-samplefit,thesamelevel e µ µ of allowed fluctuations lead to a significantly smaller degradation of the CPV sensitivity. Comparing the fraction of δ values for which a 3σ discovery of CP violation can be made with an exposure of 245 kt-MW-years, i.e., 3σ CP CPVcoverage,betweenthetwofits,wefinda54%reductionin3σ CPVcoveragefortheν appearance-onlyfitis e reducedtoa2%reductionin3σ CPVcoverageforthefour-samplefit.Thisresultincludesa10%uncertaintyinthe ν/ν cross-sectionratioanda2.5%uncertaintyintheν /ν cross-sectionratio.PreliminarystudiesfromVALORand e µ theNDFastMCdemonstratesignificantconstraintoncross-sectionsystematicsfromtheneardetectoraswell. Nuclearmodelsenterintothesimulationofneutrinointeractionsboththroughmodelingofinitial-stateinteractions, i.e.,interactionsbetweentheinitialstateofthenucleonsandvirtualparticleswithinthenucleuswiththeneutrino,and modelingoffinal-stateinteractions(FSI),i.e.,interactionsoftheparticlesexitingtheprimaryinteractionvertexwith thenuclearmedium.Uncertaintiesininitial-stateinteractionsduetonaivemodelingoftheenvironmentofthenucleus have thus far been taken into account through inflation of the uncertainties on the free nucleon or quark interaction model,suchasMQE.Final-stateinteractionscanaltereventreconstructionintwodistinctways.Thefirstisasmearing A ofthetotalenergyavailabletobedepositedinthedetector.Thesecondisthemisidentificationofeventtopologiesused toclassifytheneutrinoflavorandinteractionmode.Uncertaintiesinselectionefficienciesandevent-samplemigrations duetointranuclearrescatteringcanbestudiedwiththeFastMCandhavebeenimplementedinVALOR. FIGURE3. ExampleνeappearancespectrumatLBNF.EventsareseparatedbyinteractiontypeusingFastMCsignalselection criteria. FIGURE4. TheCPviolationsensitivityforthenominal245kt-MW-yearsofexposurecalculatedusinginputsfromtheFastMC inafittoallfour(νe,νe,νµ,νµ)samples(red)andafittotheνe appearancesampleonly(blue),forthecaseofnosystematic uncertainty(solid)andthecaseinwhichbothMQE,CCandMRES,CCareallowedtovarywitha1σ uncertaintyof20%(dashed). A A 4.4. DetectorEffects Methods to estimate far detector properties, such as single-particle energy resolutions, missing hadronic energy, energy-scale uncertainties, event selection efficiencies, and background rejection rates have been implemented in the Fast MC. The parameters that control these effects are determined by GENIE event kinematics, typical event selectioncriteria,ICARUS[14,15]andT2K[16]results,andLArSoft-basedsimulations.CurrentFastMCsensitivity calculationsreflectthenominalinputvaluesfortheenergyresolutionsandmissingenergy. 5. PLANNEDWORK AttheCETUP*2014systematicsworkshop,wedevelopedalistofstudiesthatwouldinformthestudyofsystematic uncertaintyinalong-baselineneutrinooscillationanalysis.Inthissection,wedescribethestatusofin-progressand plannedstudies.Inmanycases,thisworkisacollaborationamongmultipleexperimentalefforts,phenomonologists, andsimulationgroups.Animportantpartofthisprogramissupportfortheeffortsofphenomonologistsandsimulation groupstoimplementarangeofmodelsintoneutrinoeventgeneratorsforcomparisontoexperimentalresults. 5.1. GLoBESStudies The developers of GLoBES have implemented more sophisticated treatment of systematic uncertainty into an unreleased version of the software, which has been used in [17, 18, 19]. This updated version of GLoBES has been madeavailabletoLBNEcollaboratorsandisbeingincorporatedintofuturesensitivitystudies. 5.2. Flux Initialstudiesofneutrino-electronscattering,inversemuondecay,andthelow-ν method,whichcurrentlypredict 0 absolute flux normalization at the 2-3% level and relative normalization and ND/FD ratio at the 1-2% level, must be followed up with more detailed treatment of systematic uncertainties affecting these results. For example, event selections for purely lepton interactions rely heavily on the angle of the final-state lepton, and uncertainties of the angular dispersion of the beam must be included to validate the current results. Such studies are planned and in progress. Ithasbeenproposedthatcoherentpionproduction,whichhasthesamecrosssectionfromneutrinosandantineu- trinosanddoesnotsufferfromnucleareffects,willhelptoconstraintheν/ν¯ fluxratio.Alternatemodelsofcoherent production[20,21,22,23],whichareknowntovarygreatlyintheirpredictionofthecoherentinteractioncrosssec- tions,areexpectedtobeincludedinanupcomingGENIErelease,allowingfordetailedstudyofthisproposal. More work is needed to asses the impact of hadronization model uncertainties, which are the leading source of uncertaintyinthefluxprediction.Minerva[24]measurementsoftheNuMIfluxhavebeenobtainedintheformofa flux correlation matrix[25]; flux uncertainties based on this data are being implemented in the Fast MC and will be propagated to LBNF analyses. Since the NuMI and LBNF beams share many key properties, this technique should providereasonablyaccurateresults.AfluxdriverwithMinervafluxre-weightingtoolsisalsobeingimplementedin GENIEtoallowreweightingofeventsbasedonthesetofinteractionsthatproducedtheneutrino.Oncethesetoolsare available,additionalstudieswillbeperformedtodeterminetheprecisionwithwhichtheabsoluteflux,fluxshape,and ND/FDfluxratiocanbemeasuredgivenrealisticuncertaintiesinthehadronizationmodel. Extrapolation of the flux at the near detector, measured using the methods described above, to the far detector willrequireunderstandingoftherelativeenergyscalebetweenthenearandfardetectors.Todeterminetherequired precisionontherelativeenergyscale,whichweassumewillbedominatedbythefardetectorenergyreconstruction, wewillexplorethevariationinphysicssensitivityforarangeofvaluesformuonenergybiasandresolution,hadron energy resolution, and energy reconstruction bias from undetected and mis-identified particles. Undetected particles includeneutronsandparticlesbelowthreshold. 5.3. CrossSectionsandNuclearInteractions CurrentstudiesbasedonFastMCsamplesaddresscross-sectionparametervariationsforwhichGENIEreweights areavailable.Toevaluatecross-sectionuncertaintiesbeyondthoseconsideredbyGENIE,wewillmakecomparisons between observables from the Fast MC generated using the nominal GENIE and with alternate versions of GENIE. Thesealterationsincludeadjustingnon-reweightableparametersandtheuseofadditionalandalternatecross-section models.Inparticular,modelsthatdescribeinitial-stateinteractions,includingmodelsoflong-andshort-rangecorrela- tionsamongstnucleons[26,27],randomphaseapproximation(RPA)effects,meson-exchangecurrents(MEC),2p-2h effectsinCCQEinteractions[28,29,30,31],andextensionsofthesemodelstoresonanceproductioninteractionsmust beimplemented.Theeffectivespectralfunctionmodel[32]includesalloftheseeffectsbytuningtoelectronscattering data.ThesemodelsareallinvariousdevelopmentstagesforGENIE.ImplementationsoftheAlvarez-Ruso[21,22,23] andBerger-Sehgal[20]modelsofcoherentpionproductionarealsoexpectedinupcomingversionsofGENIE.These modelscanbecomparedwiththefluctuationsthatareallowbyuncertaintiesineffectiveparameterslikeMQE,which A havesubsumedtheuncertaintiesinducedbynucleareffects.Wecanalsocomparesystematicerrorcoverageagainst recentdata(e.g.Minervaresults)andalternategenerators(e.g.NuWro[33]andGiBUU[34]). An alternate model for DIS interactions[35] will also be implemented in GENIE and predictions from this new model will be compared to the current implementation based on Bodek-Yang to determine if the two models are consistent within their uncertainties. Models of DIS interactions predict only the bulk properties of the final-state hadronic system; other models are required to predict the particle content of the hadronic system as well as the momentaofeachfinal-statehadron.InGENIEthisisdonewiththeAGKYmodel,whichisdifficulttoreweight.To testtheuncertaintiesintheAGKYmodel,newGENIEsamplesaregeneratedinwhichallofthetunableparameters areadjustedbytheir±1σ uncertainties;anyparametervariationresultinginsignificantchangestotheenergyspectra willbestudiedfurtherusingaparameterizedreweightfunction.Uncertaintiesintheformationlength,thedistancea hadrontravelswithinthenucelusbeforeitcaninteractwiththenuclearmedium,willalsobestudied. StudiestodetermineifthereweightableparametersintheGENIEintranuclearrescatteringmodeladequatelycover themodeluncertaintieswillcomefromcomparisonswithexternaldata,eg:[36,37,38],andcomparisonswithalternate models, in this case GiBUU. Additionally, tests in which tunable, but currently non-reweightable, parameters in the GENIEintranuclearrescatteringmodelarefluctuatedwithinreasonablerangeswillberequiredtodetermineifthey willleadtouncertaintiesonoscillationparametermeasurements.Theeffectofuncertaintyintheamountofundetected energy is being studied in the Fast MC and will be used to determine the neutron response calibration required to achieve the necessary energy resolution for accurate determination of CPV. Measurements and simulations by CAPTAIN[39]willbeextrapolatedtodetermineiftherequiredlevelofenergyresolutionispossiblewiththecurrent FDdesign. There is concern that it will be difficult to isolate nuclear reinteraction uncertainties from flux, cross-section, and detector model uncertainties, especially with regard to ν/ν differences. This could lead to differences in the ν and e ν appearanceenergyspectrathatcouldbemistakenforCPV.Amethodtocombatthisbycomparingtheν andν e e e samplestotheν andν samples,whereCPVeffectsinoscillationprobabilitiesarenegligible,hasbeensuggested. µ µ However, this requires that the hadronic final states in the appearance and disappearance samples are comparable. Furtherworkisneededtodevelopthismethodandevaluatethepotentialreductioninrelatedsystematicuncertainties. 5.4. FarDetectorEffects Propagation of uncertainty in energy scale and energy resolution inputs into the Fast MC sensitivity calculations is in progress. The initial plan of study is to determine required constraints on these effects using the Fast MC and to interact with the various near-term short-baseline neutrino and test-beam experiments to ensure that the required constraintswillbeavailable.Inthelongerterm,moresophisticatedsimulationandanalysisalgorithmswillbeincluded intheFastMCandtherequirementsandsensitivitieswillbere-evaluatedasmoreinformationbecomesavailable. DevelopmentofaMicroBooNE[40]configurationoftheFastMCandLArSoftstudiesofsingleparticleresponse will allow for some level of validation of the single-particle energy resolutions, missing hadronic energy, energy- scaleuncertainties,eventselectionefficiencies,andbackgroundrejectionrateswhichareinputtotheFastMC.Future improvementstotheseestimateswillcomefromdataanddata-MCcomparisonsfromtheLBNE35-tprototype,the CERNNeutrinoPlatform[41]prototypes,MicroBooNE,LAr1-ND[42],LArIAT[43],andCAPTAIN. 6. CONCLUSION TheCETUP*2014systematicssessionwasavaluableopportunityfordetailedandproductivediscussionofsystematic uncertainty in long-baseline physics measurements. The primary result of the workshop is an understanding of availabletools,thepresentstatusofuncertaintystudies,andadetailedplanoffurtherstudythatisneeded.Asummary oftheseresultsisprovidedinthisdocument;detailedreportsonspecifictopicsareavailableinothercontributionsto theCETUP*2014proceedings. ACKNOWLEDGMENTS WewouldliketothankCETUP*(CenterforTheoreticalUndergroundPhysicsandRelatedAreas)foritshospitality and partial support during the 2014 summer program. In addition, we would like to thank the CETUP* organizers, Baha Balantekin and Barbara Szczerbinska, for their efforts to organize this valuable opportunity for collaboration andallofthespeakersandparticipantsintheCETUP*2014systematicssessionfortheircontributions.Thisworkis supportedinpartbytheUnitedStatesDepartmentofEnergy,includingcontractDE-SC0012704. REFERENCES 1. ELBNF(2014),https://indico.fnal.gov/getFile.py/access?resId=0&materialId=0&confId= 9214. 2. P.Huber,etal.,Comput.Phys.Commun.167,195(2005). 3. P.Huber,etal.(2007),arXiv:hep-ph/0701187. 4. S.Agostinelli,etal.,Nucl.Instrum.Meth.A506,250–303(2003). 5. C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, et al., Nucl.Instrum.Meth. A614, 87–104 (2010), 0905.2517. 6. E.D.Church(2013),1311.6774. 7. P.Adamson,etal.,Phys.Rev.Lett.110,171801(2013),1301.4581. 8. P.Adamson,etal.,Phys.Rev.Lett.107(2011),1108.0015. 9. K.Abe,etal.(2013),1311.4750. 10. M.Gonzalez-Garcia,M.Maltoni,andT.Schwetz,JHEP1411,052(2014),1409.5439. 11. S.R.Mishra(1990),reviewtalkpresentedatWorkshoponHadronStructureFunctionsandPartonDistributions,Fermilab. 12. P.Adamson,etal.,Phys.Rev.D81,072002(2010),0910.2201. 13. A.Bodek,U.Sarica,K.Kuzmin,andV.Naumov,AIPConf.Proc.1560,193–197(2013),1207.1247. 14. S.Amoruso,etal.,Eur.Phys.J.C33,233–241(2004),hep-ex/0311040. 15. A.Ankowski,etal.,Eur.Phys.J.C48,667–676(2006),hep-ex/0606006. 16. T2K Collaboration, A Proposal for a Detector 2km Away from the T2K Neutrino Source (2005), URL {http: //www.phy.duke.edu/~cwalter/nusag-members/2km-proposal-05-05-30.pdf}. 17. P.Coloma,P.Huber,J.Kopp,andW.Winter,Phys.Rev.D87,033004(2013),1209.5973. 18. P.Coloma,andP.Huber(2013),1307.1243. 19. P.Coloma,P.Huber,C.-M.Jen,andC.Mariani,Phys.Rev.D89,073015(2014),1311.4506. 20. C.Berger,andL.Sehgal,Phys.Rev.D79,053003(2009). 21. L.Alvarez-Ruso,etal.,Phys.Rev.C75,055501(2007). 22. L.Alvarez-Ruso,etal.,Phys.Rev.C80,019906(E)(2009). 23. L.Alvarez-Ruso,etal.,Phys.Rev.C76,068501(2007). 24. B.Osmanov(2011),1109.2855. 25. A.Higuera,etal.,Phys.Rev.Lett.113,261802(2014),1409.3835. 26. O.Benhar,A.Fabrocini,S.Fantoni,andI.Sick,NuclearPhysicsA579,493–517(1994),ISSN0375-9474. 27. C.M.Jen,A.Ankowski,O.Benhar,A.Furmanski,L.Kalousis,etal.,Phys.Rev.D90,093004(2014),1402.6651. 28. J.Nieves,J.E.Amaro,andM.Valverde,Nucl.Phys.Proc.Suppl.139,195–200(2005),nucl-th/0408008. 29. M.Martini,M.Ericson,G.Chanfray,andJ.Marteau,Phys.Rev.C80,065501(2009),0910.2622. 30. R.Gran,J.Nieves,F.Sanchez,andM.VicenteVacas,Phys.Rev.D88,113007(2013),1307.8105. 31. J.Nieves,I.RuizSimo,andM.VicenteVacas,Phys.Lett.B721,90–93(2013),1302.0703. 32. A.Bodek,M.Christy,andB.Coopersmith,Eur.Phys.J.C74,3091(2014),1405.0583. 33. C.Juszczak,J.A.Nowak,andJ.T.Sobczyk,Nucl.Phys.Proc.Suppl.159,211–216(2006),hep-ph/0512365. 34. O.Buss,T.Gaitanos,K.Gallmeister,H.vanHees,M.Kaskulov,etal.,Phys.Rept.512,1–124(2012),1106.1344. 35. S.A.Kulagin,andR.Petti,Phys.Rev.D76,094023(2007),hep-ph/0703033. 36. S.A.Dytman,andA.S.Meyer,“FinalStateInteractionsinGENIE,”inAmericanInstituteofPhysicsConferenceSeries, editedbyS.K.Singh,J.G.Morfin,M.Sakuda,andK.D.Purohit,2011,vol.1405ofAmericanInstituteofPhysicsConference Series,pp.213–218. 37. B.Eberly(2013). 38. T.Walton,etal.(2014),1409.4497. 39. H.Berns,etal.(2013),1309.1740. 40. H.Chen,etal.(2007). 41. A. D. Rosso (2014), http://cds.cern.ch/journal/CERNBulletin/2014/51/News%20Articles/ 1975980?ln=en. 42. C.Adams,etal.(2013),1309.7987. 43. F.Cavanna,M.Kordosky,J.Raaf,andB.Rebel(2014),1406.5560.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.