ebook img

Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects PDF

248 Pages·2017·5.425 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects

Proceedings of the International Plant Sulfur Workshop Luit J. De Kok Malcolm J. Hawkesford Silvia H. Haneklaus Ewald Schnug Editors Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects Proceedings of the International Plant Sulfur Workshop Serieseditors LuitJ.DeKok,UniversityofGroningen,Groningen,TheNetherlands HeinzRennenberg,Universita¨tFreiburg,Freiburg,Germany MalcolmJ.Hawkesford,RothamstedResearch,Harpenden,UnitedKingdom More information about this series at http://www.springer.com/series/8885 Luit J. De Kok (cid:129) Malcolm J. Hawkesford Silvia H. Haneklaus (cid:129) Ewald Schnug Editors Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects Editors LuitJ.DeKok MalcolmJ.Hawkesford LaboratoryofPlantPhysiology PlantBiologyandCropScience GroningenInstituteforEvolutionary Department LifeSciences RothamstedResearch UniversityofGroningen Harpenden,Hertfordshire,UK Groningen,TheNetherlands EwaldSchnug SilviaH.Haneklaus FederalResearchCentreforCultivated FederalResearchCentreforCultivated Plants Plants InstituteforCropandSoilScience, InstituteforCropandSoilScience, JuliusKühn-Institut(JKI) JuliusKühn-Institut(JKI) Braunschweig,Germany Braunschweig,Germany ISSN2451-9073 ISSN2451-9081 (electronic) ProceedingsoftheInternationalPlantSulfurWorkshop ISBN978-3-319-56525-5 ISBN978-3-319-56526-2 (eBook) DOI10.1007/978-3-319-56526-2 LibraryofCongressControlNumber:2017943333 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Heinz Rennenberg Foreword: There Is (Almost) No Way to Escape from Sulfur in Plant Research This Sulfur Workshop in Plants series was initiated during a sabbatical stay in Groningenin1988asaresultofdiscussionsbetweenInekeStulen,LuitDeKok, andmyself.Therefore,itwaslogicalthatthefirstSulfurWorkshoponplantswas held in Groningen in 1989. At this time, plant research on sulfur was largely focusedonconsequencesofatmosphericpollutionwithSO forplantgrowthand 2 development, and studies on other aspects of sulfur metabolism in plants were not well developed (e.g., Rennenberg 1982) compared to studies in mammals (Meister and Anderson 1983). It is the merit of the highly successful first workshop on “Sulfur Nutrition and Sulfur Assimilation in Higher Plants” (sub- sequently abbreviated “Sulfur Workshop”) held in Groningen that the door became wide open for studies on sulfur metabolism of plants including funda- mental and applied aspects. In particular, it was the European plant science community that took advantage of this situation and soon played a leading role inthisareaofresearch. WhenthefirstSulfurWorkshopwasheldinGroningen,Ialreadycouldlook backtomorethanadecadeofstudiesonsulfurinplants.InmydiplomaandPhD thesis,Ihadworkedonglutathioneproductionintobaccosuspensioncultures,a system that subsequently became recognized as a useful tool for in-depth ana- lyses of glutathione synthesis and degradation in plants (Bergmann and Rennenberg 1993). At this time, it was also established that plants are not only asinkforatmosphericsulfurcompoundsbutarealsoabletoemitvolatilesulfur compounds into the atmosphere (Rennenberg 1991). This new view of a bidi- rectional flux of sulfur between plants and the atmosphere initiated numerous studies on sulfur metabolism in terrestrial and aquatic plants that included volatileproducts. Despitethemultitudeofvaluableresultsobtainedbystudieswithtissuecultures, it became obvious that sulfur compounds undergo long-distance transport (Bonas etal.1982)andthatregulationfromthecellularscale-uptotheseasonaldynamics of sulfur in plants requires studies at the whole-plant level (Herschbach and Rennenberg 1997; Herschbach et al. 2012). The significance of such studies was vii viii Foreword:ThereIs(Almost)NoWaytoEscapefromSulfurinPlantResearch fueled by the generation of transgenic poplar plants with modified glutathione synthesis and reduction capacity (Noctor etal. 1998). Withthese tools, sulfur in plantsenteredtheeraofmolecularbiology.Molecularresearchonsulfurbecame soon extended to the analyses of sulfate transporters (Smith et al. 1997; Hawkesford et al. 2003) and the cross talk of sulfur metabolism with nitrogen andcarbonmetabolism(KoprivaandRennenberg2004)thatconstituteimportant areas of plant research until today. The current view on molecular studies has changeddramaticallyfromtheinitialapproachesthatwerefocusedonanalysesof transcriptionofasetofenzymesandtransporters:today,itisgenerallyaccepted thatthecharacterizationofmetabolicprocessesandmetaboliccrosstalkrequires morethanquantificationofthetranscriptomeandlargelyreliesonanintegrative viewonmRNA,protein,andmetaboliteabundances,aswellasmetabolitefluxes (RennenbergandHerschbach2014;Kalloniatietal.2015). Transgenicpoplarswithmodifiedglutathionesynthesisandreductioncapacity becameausefultooltoanalyzetheroleofsulfurmetabolisminthecompensation ofabioticandbioticstress.Themultiplestresscompensationreactionsrelyingon sulfur metabolism include reactive oxygen species (ROS) scavenging, heavy metal detoxification, and hypersensitive responses to pathogen attack (Noctor et al. 1998; Foyer and Rennenberg 2000; Peuke and Rennenberg 2006; Rennenberg and Herschbach 2012; He et al. 2015). Among the stress factors studied,theconsequencesofSO exposureofplantsturnedouttobeofparticular 2 complexity, but surprisingly, this was only recognized in recent years (Ha¨nsch etal.2007).Asaradical,SO canmediateROSformationthatrequiresreduced 2 sulfur in the form of glutathione for scavenging in the Foyer-Halliwell-Asada cycle (Foyer and Rennenberg 2000); if involved in ROS formation in the apoplasticspace,SO caninteractwithligninformationandrequiresscavenging 2 byperoxidaseactivityforROShomeostasis(Hamischetal.2012);asanessential intermediate, sulfite derived from SO interacts with assimilatory sulfate reduc- 2 tion and, as a product of this pathway, also with sulfur nutrition (Rennenberg 1984;Takahashietal.2011;Herschbachetal.2012).Evensubsequenttooxida- tive and reductive SO detoxification (Hamisch et al. 2012), the detoxification 2 products, i.e., sulfate and sulfide, will interact with signaling processes at the cellularandwhole-plantlevel(Leitneretal.2009;Lisjaketal.2010;Garc´ıa-Mata and Lamattina 2013; Hancock and Whiteman 2014; Calderwood and Kopriva 2014).ThiswasindicatedalreadybyearlyH Sfumigationstudieswithdifferent 2 plant species (De Kok et al. 1991; Herschbach et al. 1995a, b, 2000) but only recentlyconnectedtotheconsequencesofSO exposure(Hamischetal.2012).In 2 the research area of sulfur-mediated signaling, the proposed role of sulfate as a root-to-shootsignalcontrollingstomatalapertureupondrought(Malcheskaetal. 2017) provides a new notion, why excess sulfur in the form of sulfate has to be sequestered in the vacuole but also needs to be mobilized from this pool under particular environmental conditions, processes that were already observed in earlystudiesonsulfurinplants(Rennenberg1984). Overtheyears,Imadeseveralattemptstoescapefromsulfur,e.g.,byfocusing onNandPnutrition,onradiativelyactivebiogenictracegasesintheatmospheres, Foreword:ThereIs(Almost)NoWaytoEscapefromSulfurinPlantResearch ix andrecentlyonplantcarnivory.Attheend,(almost)alloftheseattemptsendedup withstudiesonsulfurinplants.Evenforplantcarnivory,sulfurmetabolismturned outtobeofpivotalimportance.IntheVenusflytrap,aplantthatactivelycatchesits animalpreywithsnaptraps,thepreyisdigestedinhermeticallyclosedtrapsbythe release of an acidic, sulfur-rich enzyme cocktail from the gland-based secretory system on the inner surface of the traps (see Fasbender et al. 2017 and literature citedtherein).Theproductionofthesulfur-richhydrolyticenzymecocktailrequires stimulation of thiol synthesis from assimilatory sulfate reduction during prey digestion(Scherzeretal.2017).Thus,whateverprocessinplantsIfoundinteresting to study (almost) always ended up to be connected to sulfur. Therefore, finally, sulfurinplantsaccompaniedmefrommydiploma,PhD,andhabilitationthesisto mypositionasresearchassociateattheUniversityofCologneandtheDOEPlant Research Laboratory at Michigan State University in East Lansing, and to my professor positions at the University of Cologne, the Technical University of Munich, the Fraunhofer Institute of Atmospheric Environmental Research, and theUniversityofFreiburguptomyretirementin2017. Thebroadrangeofdifferentaspectsofsulfurmetabolismcouldonlybestudied in more than 40 years of my research activities in collaboration with numerous colleagues and friends, including, among many others (in alphabetical order), Ludwig Bergmann, Christian Brunold, Luit J. De Kok, Manolis Flemetakis, ChristineFoyer,DieterGrill,RobertHa¨nsch,RainerHedrich,RüdigerHell,Stani- slav Kopriva, Ralf R. Mendel, Andrea Polle, Winfried Rauser, Kazuki Saito, Andreas Weber, and Marcus Wirtz that in several cases stayed in my group for a period of time. In addition, work on sulfur in plants in my group would not have been possible without additional strong partners such as Cornelia Herschbach, Jürgen Kreuzwieser, and Monika Eiblmeier who have accompanied me in my research at the University of Freiburg until today. It is time to thank them all for creatingsuchafruitfulandpleasantworkingatmosphere. InstitutfürForstwissenschaften HeinzRennenberg Universita¨tFreiburg Freiburg,Germany References BergmannL,RennenbergH(1993)Glutathionemetabolisminplants.In:DeKokLJ,StulenI, RennenbergH,BrunoldC,RauserW(eds)Sulfurnutritionandsulfurassimilationinhigher plants.SPBAcademicPublishing,TheHague,pp109–123 BonasU,SchmitzK,RennenbergH,BergmannL(1982)PhloemtransportofsulfurinRicinus. Planta155:82–88 Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess to signalingmolecule.NitricOxide41:72–78 x Foreword:ThereIs(Almost)NoWaytoEscapefromSulfurinPlantResearch De Kok LJ, Rennenberg H, Kuiper PJC (1991) The internal resistance in spinach shoots to atmosphericH Sdepositionisdeterminedbymetabolism.PlantPhysiolBiochem29:463–470 2 FasbenderL,MaurerD,KreuzwieserJ,KreuzerI,SchulzeWX,KruseJ,BeckerD,AlfarrajS, HedrichR,WernerC,RennenbergH(2017)ThecarnivorousVenusflytrapusespreyderived aminoacidcarbontofuelrespiration.NewPhytol(inpress) FoyerCH,RennenbergH(2000)Regulationofglutathionesynthesisanditsroleinabioticand bioticstressdefense.In:BrunoldC,RennenbergH,DeKokLJ,StulenI,DavidianJ-C(eds) Sulfurnutritionandsulfurassimilationinhigherplants:molecular,biochemicalandphysio- logicalaspects.PaulHaupt,Bern,pp127–153 Garc´ıa-MataC,LamattinaL(2013)Gasotransmittersareemergingasnewguardcellsignaling moleculesandregulatorsofleafgasexchange.PlantSci201–201:66–73 HamischD,RandewigD,SchlieskyS,WeberAPM,GeffersR,HerschbachC,RennenbergH, Mendel RR, Ha¨nsch R (2012) Impact of SO on Arabidopsis thaliana transcriptome in 2 wildtypeandsulfiteoxidaseknock-outplantsanalyzedbyRNAdeepsequencing.NewPhytol 196:1074–1085 HancockJT,Whiteman M(2014)Hydrogensulfide andcellsignaling: teamplayerorreferee? PlantPhysiolBiochem78:37–42 Ha¨nschR,LangC,RennenbergH,MendelRR(2007)Significanceofplantsulfiteoxidase.Plant Biol9:589–595 HawkesfordMJ,BuchnerP,HopkinsL,HowarthJR(2003)Theplantsulfatetransporterfamily: specializedfunctionsandintegrationwithwholeplantnutrition.In:DavidianJ-C,DeKokLJ, StulenI,HawkesfordMJ,SchnugE,RennenbergH(eds)Sulfurtransportandassimilationin plants:regulation,Interaction,Signaling.BackhuysPublishers,Leiden,pp1–10 HeJ,LiH,MaC,ZhangY,PolleA,RennenbergH,ChengX,LuoZ-B(2015)Over-expressionof γ-glutamylcysteinesynthetasemediateschangesincadmiuminflux,allocation,anddetoxifi- cationinpoplar.NewPhytol205:240–254 Herschbach C, Rennenberg H (1997) Sulfur nutrition of conifers and deciduous trees. In: RennenbergH,EschrichW,ZieglerH(eds)Trees–Contributionstomoderntreephysiology. BackhuysPublishers,Leiden,pp293–311 HerschbachC,DeKokLJ,RennenbergH(1995a)Netuptakeofsulphateanditstransporttothe shootintobaccoplantsfumigatedwithH SorSO .PlantSoil175:75–84 2 2 HerschbachC,DeKokLJ,RennenbergH(1995b)Netuptakeofsulfateanditstransporttothe shootinspinachplantsfumigatedwithH SorSO :doesatmosphericsulfuraffectthe‘inter- 2 2 organ’regulationofsulfurnutrition?BotActa108:41–46 Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulphur nutrition in wildtype and transgenic poplar overexpressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H S. Plant Physiol 2 124:461–473 HerschbachC,GesslerA,RennenbergH(2012)Long-distancetransportandplantinternalcycling ofN-andS-compounds.ProgrBot73:161–188 KalloniatiC,KrompasP,KaraliasG,UdvardiMK,RennenbergH,HerschbachC,FlemetakisM (2015)Nitrogen-fixingnodulesasanewstrongsourceofreducedsulfurtriggerglobalchanges insulfurmetabolisminLotusjaponicus.PlantCell27:2384–2400 LeitnerM,VandelleE,GaupelsF,BellinD,BelledonneM(2009)NOsignalsinthehaze–nitric oxidesignallinginplantdefense.CurrOpinPlantBiol12:451–458 LisjakM,SrivastavaN,TeklicT,CivaleL,LewandowskiK,WilsonI,WoodME,WhitemanM, Hancock JT (2010)A novel hydrogen sulphide donor causes stomatal opening andreduces nitricoxideaccumulation.PlantPhysiolBiochem48:931–935 Malcheska F, Ahmad A, Batoo S, Ludwig-Müller J, Kreuzwieser J, Randewig D, Hedrich R, HellR,WirtzM,HerschbachC,RennenbergH(2017)Droughtenhancedxylemsapsulfate

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.