ebook img

Suite of Hydrodynamical Simulations for the Lyman-Alpha Forest with Massive Neutrinos PDF

1.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Suite of Hydrodynamical Simulations for the Lyman-Alpha Forest with Massive Neutrinos

Astronomy&Astrophysicsmanuscriptno.rossi_etal_2014 (cid:13)cESO2014 June23,2014 Suite of hydrodynamical simulations for the Lyman-alpha forest with massive neutrinos ⋆ GrazianoRossi1,2 ,NathaliePalanque-Delabrouille1,3,ArnaudBorde1,MatteoViel4,5,ChristopheYèche1,JamesS. Bolton6,JamesRich1,Jean-Marc LeGoff1 1CEA,CentredeSaclay,Irfu/SPP,F-91191Gif-sur-Yvette,France 2DepartmentofAstronomyandSpaceScience,SejongUniversity,Seoul,143-747,Korea 3LawrenceBerkeleyNationalLaboratory,Berkeley,CA94720,USA 4 4INAF,OsservatorioAstronomicodiTrieste,viaG.B.Tiepolo11,34131Trieste,Italy 1 5INFN/NationalInstituteforNuclearPhysics,viaValerio2,34127Trieste,Italy 0 6SchoolofPhysicsandAstronomy,UniversityofNottingham,UniversityPark,NottinghamNG72RD 2 June23,2014 n u J ABSTRACT 0 2 ThesignatureleftinquasarspectrabyneutralhydrogenintheUniverseallowsconstrainingthesumoftheneutrinomasseswitha bettersensitivitythanlaboratoryexperimentsandmayshednewlightontheneutrinomasshierarchyandtheabsolutemass-scaleof ] neutrinos.Constraintsoncosmologicalparametersandonthedarkenergyequationofstatecanalsobederivedfromajointparameter O estimationprocedure.However,thisrequiresadetailedmodelingoftheline-of-sightpowerspectrumofthetransmittedfluxinthe Lyman-α(Lyα)forestonscalesrangingfromafewtohundreds ofmegaparsecs, whichinturndemandstheinclusionandcareful C treatmentofcosmologicalneutrinos.Tothisend,wepresenthereasuiteofstate-of-the-arthydrodynamicalsimulationswithcolddark h. matter(CDM),baryonsandmassiveneutrinos,specificallytargetedformodelingthelow-densityregionsoftheintergalacticmedium p (IGM) asprobed by theLyαforest at high-redshift. Thesimulations spanvolumes ranging from(25h−1Mpc)3 to(100 h−1Mpc)3, - andweremadeusingeither3×1923 ≃21millionor3×7683 ≃1.4billionparticles.Theresolutionofthevariousrunswasfurther o enhanced,sothatwereachedtheequivalentof3×30723 ≃87billionparticlesina(100h−1Mpc)3boxsize.Thechosencosmological r parametersarecompatiblewiththelatestPlanck(2013)results,althoughwealsoexploredtheeffectofslightvariationsinthemain t s cosmological and astrophysical parameters. We adopted a particle-type implementation of massive neutrinos, and consider three a degeneratespecieswithmasses m =0.1,0.2,0.3,0.4,and0.8eV,respectively.Weimprovedonpreviousstudiesinseveralways, ν [ in particular with updated routinPes for IGM radiative cooling and heating processes, and initial conditions based on second-order Lagrangianperturbationtheory(2LPT)ratherthantheZel’dovichapproximation.Thisallowedustosafelystartourrunsatrelatively 2 lowredshift(z=30),whichreducedtheshot-noisecontaminationintheneutrinocomponentandtheCPUconsumption.Inaddition v toprovidingtechnicaldetailsonthesimulations,wepresentthefirstanalysisofthenonlinearthree-andone-dimensionalmatterand 4 flux power spectra from these models, and characterize the statisticsof the transmitted flux in the Lyα forest including the effect 6 ofmassiveneutrinos.InsynergywithrecentdatafromtheBaryonAcousticSpectroscopicSurvey(BOSS)andthePlancksatellite, 4 andwithagridofcorrespondingneutrino-lesssimulations,ourrealizationswillallowustoconstraincosmologicalparametersand 6 neutrinomassesdirectlyfromtheLyαforestwithimprovedsensitivity.Inaddition,oursimulationscanbeusefulforabroadervariety . 1 ofcosmologicalandastrophysicalapplications,rangingfromthethree-dimensionalmodelingoftheLyαforesttocross-correlations 0 between different probes, studying theexpansion historyof theUniverseincluding massive neutrinos, and particle-physicsrelated 4 topics.Moreover,whileoursimulationshavebeenspecificallydesignedtomeettherequirementsoftheBOSSsurvey,theycanalso 1 beusedforupcomingorfutureexperiments–suchaseBOSSandDESI. : v Key words. large-scale structure of Universe – cosmology: theory, observations, numerical simulations, intergalactic medium, i neutrinos–methods:numerical X r a 1. INTRODUCTION encestherein),asprimordialmassiveneutrinoscompriseasmall portionofthedarkmatter(DM)andthereforemustsignificantly Neutrinoscience has receiveda boostof attentionrecently,be- alter structure formation. Potentially, combining cosmological cause the breakthrough discovery in particle physics over the andparticlephysicsresults,itisexpectedthatwewillbeableto last decade that neutrinos are indeed massive. However, at the determinetheabsolutemassscale ofneutrinosin theverynear present time we only know their mass differences, because so- future,andsolveoneofthekeyquestionsinneutrinophysicsto- lar, atmospheric, reactor, and accelerator observations of neu- day–namely,thenatureoftheirmasshierarchyandperhapsthe trinooscillationsaresensitiveonlytodifferencesinthesquares originofmass. of neutrino masses, requiring that there be at least one species with mass m ≥ 0.06 eV. On the other hand, cosmology offers Neutrino physics also provides one of the best exam- a unique ‘laboratory’ with the best sensitivity to the neutrino ples of the interplay between particle physics and cosmol- mass (see for example Lesgourgues & Pastor 2012, and refer- ogy/astrophysics. For instance, the measurement of neutrino masses could point to a new fundamentaltheory, of which the ⋆ e-mail:[email protected] standard model (SM) is the low-energy limit (Lesgourgues & Articlenumber,page1of22 A&Aproofs:manuscriptno.rossi_etal_2014 Pastor 2006) – hence calling for new physics beyond the SM. high-redshiftUniverse,becauseitisataredshiftrangeinacces- Inaddition,astrophysicalneutrinofluxescanbeexploitedtotest sible tootherLSSprobesandspansa wide intervalin redshift. the SM, with experiments of neutrino decays, oscillations, and For this reason, it was recently possible, for instance, to detect searchesfornonzeroneutrinoelectromagneticmoments. forthefirsttimethebaryonacousticoscillation(BAO)signaldi- In a cosmological context, the effect of massive neutrinos rectlyfromtheLyαforest(Buscaetal.2013;Slosaretal.2013). isessentiallytwofold.Firstly,neutrinoscontributetotheexpan- Thiswill be evenmore so with future surveys,such as eBOSS sionrateduringtheradiationepochasoneofN neutrinos(with (Comparatetal.2013)andDESI(Schlegeletal.2011). eff N theeffectivenumberofneutrinospecies;arecentconstraint The Lyα forest is particularly well suited to constrain neu- eff from the Planck data is N = 3.36 ± 0.34 – see Ade et al. trinomasses,sincemassiveneutrinosleavearedshift-andmass- eff 2013)and later as a nonrelativisticcomponentof matter. Com- dependent signature in the one-dimensional flux power spec- paredwithmasslessmodels,thismodifiesthetimingofmatter- trum because the growth of cosmological structures on scales radiation equality and the distance-redshift relation. Secondly, smallerthantheneutrinofree-streamingdistanceissuppressed. aftertheybecomenon-relativistic,neutrinosparticipateinstruc- Todetectthiseffect,carefulmodelingoftheline-of-sight(LOS) tureformation,butonlyonscalesgreaterthanthefree-streaming powerspectrumofthetransmittedLyαfluxisrequired.Pioneer- scale.Becauseofthesetwoeffects,modelswithneutrinomasses ing work along these lines has been carried out by Croft et al. greaterthan0.1eVgivepredictionsdifferentfromstandardcold (1998, 2002), Zaldarriaga, Hui & Tegmark (2001), Viel et al. darkmatter(CDM)scenarioswithacosmologicalconstant(i.e., (2004,2006,2010),Seljaketal.(2005),McDonaldetal.(2006), LCDMmodels),whichgenerallyincorporateaminimalneutrino Seljak,Slosar&McDonald(2006),andKim&Croft(2008).In massof0.06eV. particular,McDonaldetal.(2006)andSeljaketal.(2006)used Hence, while the most recent results from the cosmic mi- a sample of 3035 moderate-resolution forest spectra from the crowavebackground(CMB),suchasdatafromthePlancksatel- SDSS to measure the one-dimensionalflux power spectrum at lite(Adeetal.2013),theAtacamaCosmologyTelescope(ACT; z=2.2−4.2.Theyplacedconstraintsonthelinearmatterpower Sieversetal.2013)ortheSouthPoleTelescope(SPT;Houetal. spectrumandonneutrinomasses,whileVieletal.(2010)stud- 2012),and fromthe large-scalestructure(LSS) as in the Sloan iedtheimpactofmassiveneutrinosinthetransmittedLyαflux. Digital Sky Survey (SDSS; York et al. 2000, Eisenstein et al. Atpresent,themostprecisemeasurementoftheLyαfluxpower 2011)or in the WiggleZsurvey(Drinkwateret al. 2010;Blake spectrum comes from the Baryon Acoustic Spectroscopic Sur- etal.2012)areconsistentwiththeΛCDMmodeldominatedby vey(BOSS;Dawsonetal.2013),withasampleofforestspectra a dark energy(DE) component,with baryonsconstitutingonly almost two ordersof magnitudelarger than in previousstudies 4.5%ofthetotalmatter-energycontent,apureCDMscenariois (Palanque-Delabrouilleetal.2013).TheseLyαforestmeasure- stillunsatisfactoryandincomplete–sinceevenasmallamount ments supplementthose obtained from the populationof lumi- of neutrinos can significantly impact structure formation. Im- nousredgalaxies(LRGs),andconsiderablyextendtheredshift provingourknowledgeofcosmologicalneutrinosisessentialfor rangethatcanbestudied. anaccurateandconsistentminimalcosmologicalmodel,andthe TheLyαforestalsooffersoneofthestrongestreportedcon- presentstudyisaneffortinthisdirection. straints on neutrino mass when combined with WMAP 3-year Incosmology,neutrinoshavebeenstudiedwithalargenum- CMBdata(i.e. m < 0.17eVat95%CL;Seljaketal.2006), ν ber of probes and complementary techniques. The most direct buttheconstrainPtdependsonthenormalizationoftheobserved way is through the analysis of the CMB radiation, because for LSS power spectrum relative to the CMB power spectrum;us- thecurrentmasslimitstheirprimordialsignaturedoesnotvanish ing recent data from the Planck satellite instead of those from althoughneutrinosarestillrelativisticatthetimeofrecombina- WMAP, the previous constraints are weakened. Nevertheless, tion(Lesgourgues&Pastor2006).Whiletheoverallsensitivity current neutrino mass limits are on the verge of distinguishing ofmassiveneutrinosimpactstheCMBtemperaturepowerspec- betweenanormal(onespecieswithm ∼ 0.06eV)andinverted trumverymarginally,thereare non-negligibleconsequencesin (two species with m ∼ 0.06 eV) hierarchy, and in the near fu- the polarizationmapsthroughtheearlyintegratedSachsWolfe turethedegeneracyofneutrinomasseswillberemovedbycom- (ISW)effect(Hinshawetal.2013),anddistinctsignaturesfrom biningcosmologicalresultswithatmosphericandsolarneutrino thegravitationallensingoftheCMBbyLSS–bothintempera- constraints.Forexample,thecombinationofPlanckCMBdata, tureandpolarization(seeforinstanceSantosetal.2013orBat- WMAP9-yearCMBpolarizationdata(Bennettetal.2013),and tye&Moss2013).Othermethodsforquantifyingtheimpactof a measurement of BAO from BOSS, SDSS, WiggleZ, and the massive neutrinos involve baryonic tracers of the LSS cluster- 6dFgalaxyredshiftsurvey(Jonesetal.2009)producesanupper ing of matter, and high-redshift surveys. Examples include the limit of m < 0.23 (95% CL), while a more aggressive use ν measurement of the three-dimensional matter power spectrum of galaxyPclustering into smaller scales and the nonlinearclus- obtainedfromgalaxysurveys,Lyman-α(Lyα),or21cmprobes teringregimecanleadtostringentconstraints(Zhaoetal.2012; wherethe underlyingtracer is neutralhydrogen(HI),the study Riemer-Sørensenetal.2013). of galaxy clusters via the Sunyaev-Zel’dovich(SZ) effect, and However,thevalidityofthecurrentlimitsonneutrinomasses the characterization of the cosmic shear through weak lensing dependson the assumption that there are no systematic offsets (Kaiser 1992; Jain & Seljak 1997; Zaldarriaga & Seljak 1998; between estimates of the matter power spectrum obtained with Abazajian&Dodelson2003). differentmethods; according to Viel et al. (2010), these uncer- Whilemosttechniquesusedincosmologytoconstrainneu- tainties are not reflected in the quoted measurement errors. To trino masses are based on the CMB or on galaxy clustering, this end, one needs to gain a better understanding of the char- fewerstudiesinvolvetheLyαforest–thatis,theabsorptionlines acteristicsignaturesofmassiveneutrinosinthepowerspectrum in the spectra of high-redshift quasars, that are due to neutral across differentredshift slices, and be in controlof the various hydrogenin the interveningphotoionizedintergalacticmedium systematicsinvolved,especiallyatlowerredshifts(z=2−4)and (IGM).ThankstodatafromtheSDSS(Yorketal.2000),thesta- atsmallscales(1−40h−1Mpc)–wherethenonlinearevolution tisticalpoweroftheLyαforesthasgreatlyincreased,sothatitis of density fluctuations for massive neutrinos is non-negligible. nowemergingasaverypromisinganduniquewindowintothe Particularly for the Lyα forest, constraints on neutrino masses Articlenumber,page2of22 G.Rossietal.2014: Lyman-αforestandmassiveneutrinos are onlylimitedby thesystematic accuracywith whichwe can laterwasitrealizedthatthenumerousabsorptionfeaturesinthe makethesetheoreticalpredictions.Thisisonlypossiblethrough spectraofhigh-redshiftquasars,bluewardsoftheredshiftedres- more and more sophisticated numericalsimulations, where the onant1215.67Åemissionline,directlytracetheunderlyingdark fullhydrodynamicaltreatmentisperformedatscaleswherenon- matter fluctuations (Cen et al. 1994; Bi et al. 1995; Zhang et lineareffectsbecomeimportantforthe neutrinocomponent;so al. 1995;Hernquistet al. 1996;Miralda-Escudeet al. 1996;Bi far,onlyahandfulstudiesintheliteraturehaveaddressedthese & Davidsen 1997; Hui, Gnedin & Zhang 1997; Theuns et al. aspectsfortheLyαforestinsomedetail.Giventhatcurrentand 1998). Clearly, since hydrogenmakes up most of the baryonic plannedexperimentssuchasBOSS,eBOSSandDESIwillpro- densityoftheUniverse,the Lyαforestisalso a directtracerof videexcellent-qualitydatafortheLyαforest(seealsotherecent thebaryonicmatterdistributionoverawiderangeofscalesand American2013report‘CosmicFrontierVision’,andinparticu- redshifts–i.e.k∼0.1−10hMpc−1;1≤z≤6. larConnollyetal.2013),itisnowtimelytodesignandperform Since then, considerable progress has been made toward a accurate numerical simulations capable of reproducing the ef- thorough understanding of the nature of these absorption fea- fectsofmassiveneutrinos. tures and of the properties of the IGM. We now have observa- The present study aims at filling this gap by presenting a tional evidence that at high redshift the IGM contains the ma- suite of state-of-the-art hydrodynamical simulations with cold jority of baryonspresentin the Universe(Petitjean et al. 1993; darkmatter,baryonsandmassiveneutrinos,specificallytargeted Fukugitaetal.1998),ishighlyionizedbytheultra-violet(UV) for modelingthe low-densityregionsof the IGM as probedby backgroundproducedbygalaxiesandquasars,andbecomesin- theLyαforestathigh-redshift.Inadditiontoprovidingtechnical creasingly neutral from z = 0 to z = 7 (Mortlock et al. 2011). details on the simulations and on the improvementsmade with Theoverallphysicalpicturethatemergesisrelativelysimple:the respecttopre-existingliterature,weshowheremeasurementsof IGMprobedbytheLyαforestconsistsof mildlynonlineargas the simulated nonlinear three- and one-dimensionalmatter and density fluctuations; low column-density absorption lines trace fluxpowerspectra,andcharacterizethestatisticsofthetransmit- the filaments of the cosmic web; high column-density absorp- tedfluxintheLyαforestinpresenceofmassiveneutrinos.This tion lines trace the surrondings of galaxies; the gas traces the isthefirstofaseriesofpapersdedicatedtoquantifytheeffects dark matter, and is photoionized and photoheated by the UV- of massive neutrinos in the Lyα forest across different redshift background. Although metals are present in the IGM (Cowie slices and at nonlinear scales. In addition, we are planning to et al. 1995; Schaye et al. 2003; Aracil et al. 2004), stirring of makethesimulationsavailabletothescientificcommunityupon the IGM due to feedback from galaxies or active galactic nu- request;hence,thepresentworkmayserveasaguideforadirect clei (AGNs) does not significantly affect the vast majority of useofthesimulationsandoftheproductsprovided. the baryons (Theuns et al. 2002; McDonald et al. 2005). Pho- The layout of the paper is organizedas follows: in Section toionization heating and expansion cooling cause the gas den- 2,webrieflyoutlinethetheorybehindthemodelingoftheLyα sity(ρ)andtemperature(T)tobecloselyrelated,exceptwhere forest,alongwiththemostcommonlyusednumericaltechniques mildshocksheatthegas(seeSchayeetal.2000),sothatinlow- available.InSection3,wefocusonneutrinoscienceandonthe density regions a simple redshift-dependent polytropic power- implementation of massive neutrinos in cosmological N-body lawtemperature-densityrelationholds(Katz,Weinberg&Hern- simulations and explain the method of our choice. In Section quist1996;Hui&Gnedin1997): 4,wepresentournovelsuiteofhydrodynamicalsimulationsand ρ γ(z)−1 provideseveraltechnicaldetailsonthecodeusedfortherun,ini- T(z)=T (z) , (1) 0 ρ tial conditions, optimization strategies and performance, along (cid:16) 0(cid:17) withvariousimprovementsandadescriptionofthepipelinede- where T and ρ are the corresponding gas mean temperature 0 0 velopedtoextractthesyntheticLyαtransmittedflux;intheap- and density, while the parameter γ depends on redshift, reion- pendix,wealsodescribeasanitycheckweperformedtoensure izationhistorymodel,andspectralshapeoftheUVbackground. thatwecorrectlyrecoverthelimitofmasslessneutrinos.InSec- Itisinterestingtoaddressthemodificationstothissimplerela- tion 5, we presentthe first analysis of our suite of simulations, tioncausedbymassiveneutrinos,andwereturntothisissuein whereinparticularwecomputethethree-andone-dimensional Section5. matter and flux powerspectra, focusingon the imprintof mas- ThegasoftheIGMisgenerallyassumedtobeinphotoion- siveneutrinos.WeconcludeinSection6,wherewesummarize ization equilibriumwith the UV background,and it can be de- ourmainachievementsandexplainhowwewillusethesimula- scribed by an optical depth τ(z) that depends on the evolving tions presentedhereto constrainneutrinomasses directly from photoionizationrate (Peebles 1993).The optical depthfor Lyα theLyαforest,withimprovedsensitivity. absorptionisproportionaltotheneutralhydrogendensity(Gunn & Peterson 1965), which – since the gas is in photoionization equilibrium–canalsobeexpressedas 2. MODELINGTHELYMAN-ALPHAFOREST ρ β InthissectionwebrieflysummarizethebasictheoryoftheLyα τ= A , (2) ρ forestasacosmologicalprobeandthemostcommonlyusednu- (cid:16) 0(cid:17) mericaltechniquesformodelingthe low-densityregionsof the whereβ=2.7−0.7γandAdependsonredshift,baryondensity, IGM.Inparticular,wefocusonthespecificrequirementsneces- temperatureatthemeandensity,Hubbleconstant,andphotoion- sarytoaccuratelyreconstructtheLyαtransmittedflux. izationrate.Whiletheopticaldepthisatracerofthematterdis- tributiononscaleslargerthantheJeanslengthofthephotoion- ized IGM, it is more conventionalto use the mean transmitted 2.1.Lyαforest:overviewandchallenges fluxF¯ instead,anddefineaneffectiveopticaldepthτ sothat eff The observational discovery of the Lyα forest traces back to τ =−lnF¯. (3) Lynds(1971),althoughthe actualexistenceof an ionizedIGM eff was already postulated back in the 1960s (Bahcall & Salpeter Thepreviousexpressioncontainstheuncertaintiesintheinten- 1965;Gunn&Peterson1965).However,onlysometwentyyears sityoftheUVbackground,themeanbaryondensity,andother Articlenumber,page3of22 A&Aproofs:manuscriptno.rossi_etal_2014 parametersthatsetthenormalizationoftherelationbetweenop- mayprovideasuperiorresolutionofthelow-densityregionsof tical depth and density of the gas. Measurements of the mean theIGMandmoreaccuratetreatmentsofshocks,butatahigher transmissionandofitsevolutionallowonetoconstrainthebasic computational cost. For more details on hydrodynamicaltech- cosmological parameters (see Jenkins & Ostriker 1991; Hern- niquesrelevanttothisstudy,seeKatzetal.(1996). quistetal.1996;Rauchetal.1997;Rauch1998;McDonald& Both approacheshave been successfully used to model the Miralda-Escude2001).Thegasdensityisalsocloselyrelatedto Lyα forest at low- and high-redshift and to obtain quantitative thatoftheDMonlargescales,whileonsmallscalestheeffects estimatesoftheclusteringamplitudeandconstraintsoncosmo- of thermal broadening and Jeans smoothing must be included. logicaland astrophysicalparameters. The numberof dedicated FormoredetailsonthephysicsoftheIGManditspotentialfor studieshasincreasedinrecentyears,sincetheforestisemerging cosmology,seeMeiksin(2009). asa keyprobeofthe hydrogenreionizationepoch.A long,but Dynamicalandthermalprocessesare essential in modeling stillincompletelistofrelevantnumericalworksincludesGnedin the Lyα forest: therefore, the effects of baryon pressure, non- & Hui (1996,1998),Croftet al. (1998,1999,2002),Huiet al. linear evolutionof density perturbations,thermaland chemical (2001),McDonaldet al. (2000,2001,2005),Meiksin & White evolutionsuch as adiabaticcoolingdueto the expansionof the (2001), Gnedin & Hamilton (2002), Zaldarriaga et al. (2001, Universe, UV background photoionization heating, as well as 2003),Seljaketal.(2003),Bolton&Haehnelt(2007),Vieletal. Compton and recombination cooling need to be taken into ac- (2003,2004,2010,2012),Crainetal.(2009),Bolton&Becker count. For instance, the Lyα flux power spectrum depends not (2009),Schayeetal.(2010). only on the DM distribution, but also on the thermal state of The importance of having full hydrodynamicalsimulations the IGM, and on feedback effects due to star formation and cannot be stressed enough. To provide an example, McDonald AGNs. Hence, a full hydrodynamical modeling including ef- et al. (2005) used hydrodynamical simulations extended with fects of galaxy formationphysicsis necessary.While there ex- hydro-particle-mesh (HPM) realizations to analyze the SDSS ist several numerical challenges in simulating the Lyα forest, Lyα forest power spectrum and infer the corresponding linear along with a series of physical mechanisms still poorly under- theorypowerspectrum.However,theirHPMsimulations–cali- stood, today we do have the computationalcapability of carry- bratedbyalimitednumberofhydrodynamicalruns–werefound ing out full hydrodynamical treatments, as we perform in this tobediscrepantbyupto20%whencomparedwithfullhydro- work.Despite hydrodynamicuncertainties,hierarchicalmodels dynamicalsimulations, with respectto the statistical properties ofstructureformationarenowcapableofreproducingalmostall oftheLyαfluxdistribution(Vieletal.2006).Hence,whileus- the aspects of the Lyα forest. We also note that once the spec- ingapproximatenumericalcalculationsiscertainlyattractivebe- trumismodeledasa continuousphenomenon,thereisnoneed causecomputationallylessdemanding,acompletehydrodynam- to resolveeverysingle feature(Weinbergetal. 1999,2003),so ical treatment is mandatoryto reach the precision that data are thattheforestcanbestudiedwithrelativelymoderateresolution nowbeginningtoshow. spectra. Beforemovingontothetreatmentofmassiveneutrinos,we stressthatthedevelopmentofprogressivelymoresophisticated numericalsimulationsisanareaofrapidprogress–particularly 2.2.Hydrodynamicalsimulationsinanutshell crucialforarealistic modelingoftheLyαforest.With increas- Therapidprogressmadeinourtheoreticalunderstandingofthe ingcomputationalpower,thereiscurrentlylessmotivationtouse Lyαforestismainlyduetothe improvedabilitytosimulateall approximationmethods–althoughmoreworkisneededtoun- thephysicaleffectsthatimpacttheIGMmoreandmorerealisti- derstandamultitudeofcomplexbaryonicprocesses.Thisiseven cally–thankstostate-of-the-artcomputationalfacilities.Infact, moresowhenmassiveneutrinosareincludedinthepicture,and while the forest has been traditionally studied using a variety thescopeofthepresentworkisto addmoreknowledgein this of analytical techniques such as the Zel’dovich approximation direction. (Doroshkevich & Shandarin 1977; McGill 1990; Hui, Gnedin & Zhang 1997; Matarrese & Mohayaee 2002), the lognormal approximation(Hamilton 1985;Coles & Jones 1991;Bi 1993; 3. IMPLEMENTINGMASSIVENEUTRINOS Bouchet et al. 1993;Kofman et al. 1994;Gnedin & Hui 1996; Bi & Davidsen 1997; Viel et al. 2002), or semi-analytic mod- Inthissectionwefirstprovideasyntheticoverviewoftheeffects els (Balian & Schaeffer 1989; Bernardeau & Schaeffer 1992, ofmassiveneutrinosincosmology–focusingontheLyαforest; 1999; Valageas, Schaeffer & Silk 1999; Pichon et al. 2001), it in particular,we presentthe expectedlinear predictionsfor the is only with hydrodynamicalsimulations that the interplay be- matterpowerspectrainpresenceofmassiveneutrinos,withthe tweengravityandgaspressureonthestructureofthephotoion- set of cosmologicalparametersadoptedin oursimulations. We ized IGM can be modeled self-consistently – so that most of thenbrieflydescribehowneutrinosareimplemented.InSection the observed properties of the Lyα forest are successfully re- 5,thelinearpredictionsshownherearecomparedwithnonlinear producedandtheuncertaintiesinthetheoreticalmodelingover- measurementsobtainedfromoursimulations. come. Traditionally, cosmological hydro-simulationscome in two 3.1.Revivalofneutrinoscience basic flavors:smoothedparticlehydrodynamics(SPH;Gingold &Monaghan1977;Lucy1977),andgrid-basedmethods;there Theimpactofmassiveneutrinoson theCMB andLSSwasin- arealsomoresophisticatedcombinationsofthetwocategories. vestigated long ago (see for example Bond, Efstathiou & Silk The SPH technique – adopted in this study – uses particles 1980; Klypin et al. 1993; Ma & Bertschinger 1995; Dodelson to represent the baryonic fluid, employs an artificial viscosity et al. 1996; Hu, Eisenstein & Tegmark 1998; Hu & Dodelson to simulate shocks (Springel & Hernquist 2002), and it is La- 2002;Abazajianetal.2005;Hannestad2005;Seljaketal.2006), grangian in nature: this implies that the resolution is concen- andwitharenewedinterestquiterecently(e.g.Saitoetal.2008, tratedinregionsofhigh-density.Ontheotherhand,grid-based 2009;Wong2008;Brandbygeetal.2008;Brandbyge&Hannes- methodsuseagridofcellstorepresentthegasproperties,which tad 2009;Viel et al 2010;Marulli et al. 2011;Bird et al 2012; Articlenumber,page4of22 G.Rossietal.2014: Lyman-αforestandmassiveneutrinos free-streaminglengthequaltotheHubbleradius,andasanaddi- tionalCDMcomponentwhentheybecomenon-relativistic.Sub- sequently,massiveneutrinosaffectstructureformationby free- streamingandbydelayingmatterdomination.Theseeffectscan beparameterizedbytheirultimatefractionalcontributiontothe matterdensity: M f =Ω /Ω , Ω h2 = ν , (6) ν ν m ν 93.14eV where h is the presentvalue of the Hubble constantin units of 100kms−1Mpc−1,M = m isthesumoftheneutrinomasses ν ν ofthethreespeciesconsidPered,andΩmisthematterenergyden- sityintermsofthecriticaldensity. Neutrinosinthemassrange0.05eV≤m ≤1.5eVbecome ν non-relativisticintheredshiftinterval3000≥z≥100,approxi- matelyaroundz ∼2000(m /1eV)–duringthematterdomina- nr ν tionera;forthegivenmass-intervalsconsideredinthisstudy,all ourrunsstartedwellinthenon-relativisticregime.Whenneutri- nosarenon-relativistic,thereisaminimumwavenumber k ∼0.018Ω1/2 mν 1/2hMpc−1 (7) nr m 1eV h i abovewhichthephysicaleffectproducedbytheirfree-streaming Fig.1.Lineartheorypredictionsforthematterpowerspectrawithmas- dampssmall-scaledensityfluctuations,whilemodeswithk<knr siveneutrinos,normalizedbythecorrespondingcaseofmasslessneu- evolveaccordingtolineartheory.Thefree-streamingleadstoa trinos.Thecosmologicalparametersconsideredarethoseusedforour suppressionof power on small scales; with increasing neutrino simulations(seeSection4);theneutrinomassrangeisindicatedinthe mass, thissuppressionbecomesstrongerandits shapeandam- figure. Different colors (andsimilar linestyles) show theevolution in plitude depend mainly on the total mass, but only weakly on redshiftforz=0,2,4,respectively,asafunctionoftheneutrinomass. redshift(Bond, Efstathiou & Silk 1980). At scales k > 0.1 the Theyellowareacorrespondstovaluesofk<k ,wherealinear nr,Mν=0.8eV suppressionisconstant,whileat0.01< k < 0.1itgraduallyde- descriptionfortheneutrinoevolutionissufficient;thegrayzonehigh- creases to zero – with k expressed in units of h Mpc−1. When lightstherangeofkapproximatelycoveredbytheone-dimensionalflux k ≪ 0.01 (very large scales), the influence of neutrinos in the powerspectrumobtainedfromtheLyαBOSSsurvey. matterpowerspectrumbecomesnegligible.Alltheseeffectsare clearlyseeninFigure1,whereweshowthelineartheorypredic- Carbone et al. 2012; Hou et al. 2012; Lesgourgues & Pastor tionsfor the matter power spectra, whichinclude massive neu- 2012).Therenewedinterestismainlydrivenbythelargeamount trinos(Pk,Mν),normalizedbythecorrespondingcaseofmassless ofcosmologicaldataavailabletoday,whichallowplacingcom- neutrinos (Pk,Mν=0). The cosmological parameters adopted are petitivelimitsontheneutrinomass-scaleandhierarchy.Forin- thoseusedforoursimulationsandreportedinSection4;wecon- stance, simply with the improvement of a factor of two from sider the followingneutrinomasses: Mν = 0.1,0.2,0.3,0.4,0.8 Seljak et al. (2006),one should be able to distinguish between eV. With different colors but similar line styles, we also show a normalhierarchyandaninvertedone–a factwithinreachin the evolution in redshift for three significant intervals, namely theverynearfuture,givenhigh-qualityupcomingsurveyssuch z=0(red),z=2(green),andz=4(blue).Allthevariouslinear aseBOSSandDESI. predictionswerecomputedwiththeCAMBcode(Lewis,Challi- The effects of cosmological neutrinos on the evolution of nor&Lasenby2000).Theyellowareainthefigurecorresponds densityperturbationsinthelinearregimeiswellunderstood.In to values of k lower than knr for Mν = 0.8 eV (i.e., the most whatfollows,we onlydiscussa few generalaspectsof cosmo- massive case considered here) obtained from (7), below which logical neutrinos relevant for the Lyα forest, and refer to Les- a linear description for the neutrino evolution is sufficient. For gourgues&Pastor(2006,2012)foramoreexhaustivetreatment. masses Mν < 0.8eV, the correspondingknr,Mν valuesare lower Neutrinos decouple from the cosmic plasma before the than knr,Mν=0.8eV. The gray area in the same figure shows the electron-positronannihilation(around∼ 1MeV),resultingina k-range approximately covered by the BOSS survey, relatively subsequentneutrinotemperatureT thatislowerthanthephoton to the one-dimensional Lyα forest power spectrum. As can be ν temperatureT ,namely clearly seen, our primaryrangeof interest lies well outside the γ zoneinwhich a lineardescriptionwouldbe sufficient– forthe T =(4/11)1/3T , (4) neutrinomassesconsideredinthisstudy;hence,afullnonlinear ν γ treatment of the neutrino component is mandatory. In Section andanumberdensityn lowerthanthephotonnumberdensity: 5, we compare these linear predictions with the corresponding ν nonlinearevolutionsasafunctionofneutrinomassandquantify 3 4 thedeparturesfromlinearity;wealsodetermineatwhichkthese n = N n , (5) ν eff γ departuresaremaximized. 4 11 (cid:16) (cid:17)(cid:16) (cid:17) Figure2presentsthedimensionlesslinearpowerspectraper wheren isthedensityoftheCMBphotons,andthefactor3/4 componentwhenmassiveneutrinosareincluded,normalizedby γ comes from the difference between the Fermi-Dirac and Bose- thecorrespondingzero-neutrino-masscase.Thegeneralconven- Einstein statistics. Moreover, they behave as additional radia- tion used in this paper sets ∆2 = k3P(k)/2π2, where the sub- i i tionwhileultra-relativistic,travelingatthespeedoflightwitha script i specifies the component considered. In detail, the left Articlenumber,page5of22 A&Aproofs:manuscriptno.rossi_etal_2014 Fig.2.Dimensionlesslinearpowerspectrapercomponent inpresenceofmassiveneutrinos,normalizedbythecorrespondingcaseofmassless neutrinos – as defined in the main text. The left panel shows the linear evolution of the CDM component, while the right panel displays the correspondingbaryonicevolution.Thelinearevolutionofthetwocomponentsisverysimilar.Linestyles,redshifts,coloredareas,andneutrino massrangesaresameasinthepreviousfigure. Finally,Figure3showstheneutrinolineartransferfunctions T (k)forthesamemassandredshiftrangesasconsideredbefore, ν witharbitrarynormalization. Itisofconsiderableinteresttoinvestigatehowtheseeffects propagate in the nonlinear regime, not only at the level of the three-dimensionalmatterpowerspectrum,butalso fortheone- dimensional Lyα flux power spectrum: we address these ques- tionsinSection5. 3.2.Particleimplementationofmassiveneutrinos Implementing massive neutrinos in cosmological N-body sim- ulations is a delicate subject. Firstly, neutrinos can be treated either as a fluid or as an ensemble of particles. Secondly, one maydescribetheirevolutionwithlineartheoryorperformafull nonlineartreatment;clearly,thesecondoptioncomeswithase- riesofnumericalchallenges,inprimistheproblemofshotnoise introducedbythehighthermalvelocitiesoftheneutrinocompo- nent. Severalattemptsalongtheselineshavealreadybeenmadein theliterature,evenlongago(e.g.,White, Frenk& Davis1983; Fig.3.NeutrinolineartransferfunctionsTν(k)forthesamemassand Klypin et al. 1993; Ma & Bertschinger 1994). More recently, redshift ranges considered intheprevious figure; thenormalization is Brandbygeet al. (2008) described a simple method for includ- arbitrary.TheyellowareaissameasinFigure1. ingtheeffectofmassiveneutrinosinlarge-scaleN-bodysimula- tions,usingahybridTreePMapproach,butneglectingallthehy- drodynamics;theirfindingsalreadyshowedthatthesuppression panelshowstheCDMlinearevolution,whiletherightpaneldis- ofpowerduetothepresenceofmassiveneutrinosisincreasedby plays the evolution of the baryonic component; neutrino mass nonlineareffects.Subsequently,Brandbyge&Hannestad(2009) ranges, redshifts, and line styles are the same as in Figure 1. modeledneutrinosasafluidwithagridmethod,andpointedout Evidently, the linear evolution of the two components is very therelativebenefitsanddrawbacksofimplementingthe effects similarandcloselycoupled,withslightdeparturesatincreasing ofneutrinosin the formofparticlesversusa grid-basedimple- redshifts.Notealsotheremarkablesuppressionofpower(about mentation.Intheircode,thegravitationalforceduetoneutrinos 40%),causedsolelybya6%component. is calculated using the linearly evolved density distribution of Articlenumber,page6of22 G.Rossietal.2014: Lyman-αforestandmassiveneutrinos the neutrinos in Fourier space. Obviously, this technique elim- Table1.Basicparametersofoursimulations,commontoalltheruns– ifnotspecifiedotherwise. inates the Poisson noise at small scales introducedby an alter- native particle representation, which results in higher accuracy in regions where the effect of the nonlinear neutrino evolution Parameter Value is mild. With this approacha seriesof computationalproblems σ (z=0) 0.83 are avoided or drastically reduced, such as memory and CPU 8 time consumption– as one does notneed to store neutrinopo- n 0.96 s sitions and velocities. In another study, Brandbyge & Hannes- H [kms−1Mpc−1] 67.5 tad (2010) combined grid- and particle-based methods with a 0 hybrid technique to achieve good accuracy at small and large Ω 0.31 m scaleswhilekeepingtheCPUconsumptionundercontrol:neu- Ω 0.044 trinosarefirstdiscretizedonagrid,andsubsequentlypartofthe b gridisconvertedintoN-bodyparticles,whenthethermalmotion Ω 0.69 Λ of neutrinosdecreases to a few times the flow velocities in the T (z=3)[K] 15000 simulation.Instead,Ali-Haïmoud&Bird(2013)usedadifferent 0 technique:theCDMcomponentisobtainedviaN-bodycompu- γ(z=3) 1.3 tations,whilethesmoothneutrinocomponentisevaluatedfrom Startingredshift 30 that background by solving the Boltzmann equation linearized withrespecttotheneutrinooverdensity. Inthepresentwork,wechooseamoredirectandcomputa- tionallyintensiveapproach–followingVieletal.(2010):neutri- nosaremodeledasanadditionaltypeofparticleinthe N-body 4.1.Suiteofsimulationswithmassiveneutrinos setup(ontopofgasandDM),andafullhydrodynamicaltreat- We performed a total of 48 hydrodynamical simulations, both mentiscarriedout,well-insidethenonlinearregime–including with varying neutrino mass and fixed cosmological and astro- theeffectsofbaryonicphysicswhichaffecttheIGM.Inparticu- physicalparameters(groupI),orwithafixedneutrinomassand lar,wemakenoapproximationsfortheevolutionoftheneutrino slightvariationsinthebasiccosmologicalandastrophysicalpa- component, nor interchange between grid- and particle-based rameters(groupII)aroundwhatweindicateasthe‘best-guess’ implementations to save CPU time or speed up the computa- run–thisisthereferencesimulationsetwithoutmassiveneutri- tions.Theadoptedimplementationtechniqueisprimarilydriven nos(butamasslessneutrinocomponent)andacosmologycom- byourmaingoaltoaccuratelyreproduceallthemainfeaturesof patiblewiththelatestPlanck(2013)results.Thebasicparame- theLyαforest,atthequalitylevelofBOSSorfuturedeepLyα terscommontoalltherealizationsarereportedinTable1. surveys. As evident from Figure 1 (i.e., yellow versus gray ar- For a given neutrino mass, we always performed a set of eas),theone-dimensionalLyαforestdataprovidedbyBOSSlies three simulations with different box sizes and number of par- inak-rangewherenonlinearevolutionofcosmologicalneutrinos ticles (their combinations determine the lowest and highest k- cannotbeneglected:hence,anyattempttospeed-upcalculations modesthatcanberesolved),whichareappropriateforthequal- by using approximate linear solutions for the neutrino compo- ityofBOSS;specifically,weadoptedaboxsizeof100h−1Mpc nent would compromise our ability to accurately reproduce all forlarge-scalepowerwithanumberofparticlespercomponent the features of the forest. To this end, Viel et al. (2010) previ- N = 7683(simulations‘a’inTables2and3),andaboxsizeof ously compared particle and grid neutrino representations and p foundthattheirdifferenceintermsofpowerspectraaremainly 25 h−1Mpc for small-scale power, in this case with Np = 7683 drivenbythefactthatthenonlinearevolutionatsmallscalesis or1923,respectively(simulations‘b’and‘c’inTables2and3). not properly reproduced by the grid method; they also argued Extensiveconvergenceandresolutiontestsinsupportofourset- thatonscalesrelevantfortheLyαforestitprovideshigheraccu- tingshavebeencarriedoutinBordeetal.(2014)–butseealso racy to accountfor the nonlinearevolution rather than limiting Section5.1. Inparticular,thereasonbehindourspecificchoice the descriptiontothe linearcase,despite theeffectofthePois- istheabilitytomatchthesensitivityoftheBOSSquasarcatalog soncontributionontheneutrinopowerspectrumintroducedby (Paˆris et al. 2012) from Data Release 9 (Ahn et al. 2012), and theparticle-basedmodeling.Thisfactalonewouldbesufficient is also related to the application of the splicing technique pro- to justify our choice of the particle-based implementation for posedbyMcDonald(2003),whichallowscorrectingthe larger neutrinos.Inaddition,wearenotlimitedbycomputationaltime boxsizesimulationforthelackofresolutionandthesmallbox ormemorybecausewehaveaccesstostate-of-the-artcomputa- forthelackofnonlinearcouplingbetweenthehighestandlow- tionalfacilitiestoperformacompletehydrodynamicaltreatment est k-modes; in this way, we are able to achieve an equivalent –aswedescribenext. resolutionof3×30723≃87billionparticlesina(100h−1Mpc)3 boxsize–optimalalsoforeBOSSandDESI–withouttheneed of running a single but computationally prohibitive numerical simulation. 4. OURSIMULATIONS Whenwe includedmassiveneutrinoswealwayskeptΩΛ + Ω fixedtogiveaflatgeometry(withΩ = Ω +Ω +Ω ) m m b ν CDM Inthissectionwepresentournewsuiteofhydrodynamicalsim- andvariedtheadditionalmassiveneutrinocomponentΩ tothe ν ulationswithmassiveneutrinosandprovideseveraltechnicalde- detriment of Ω . Moreover,most of our runs were tuned to CDM tailsonthecodesusedfortheruns,theperformance,andthevar- haveσ = 0.83atz = 0byconstruction,whichistheobserved 8 iousoptimizationstrategies.We also brieflydescribethe work- Planck(2013)value.However,tocharacterizetheeffectofmas- flowpipelineandthepost-processingproceduredevelopedtoex- siveneutrinoswithrespecttothecaseofmasslessneutrinos,we tract the line of sight (LOS) and particle samples to accurately alsoran simulationswiththe initialspectralamplitude A fixed s modeltheLyαtransmittedflux. as in the best-guess, and therefore with values of σ changing 8 Articlenumber,page7of22 A&Aproofs:manuscriptno.rossi_etal_2014 Table2.Listofoursimulationsuite(groupI)–best-guess(BG)andneutrino(NU)runs∗. Simulationset M [eV] σ (z=0) Boxes[Mpc/h] N1/3 Meanparticleseparation[Mpc/h] ν 8 p BGa/b/c 0 0.830 100/25/25 768/768/192 0.1302/0.0325/0.1302 NUBGa/b/c 0.01 0.830 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU01a/b/c 0.1 0.830 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU01-norma/b/c 0.1 0.810 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU02a/b/c 0.2 0.830 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU03a/b/c 0.3 0.830 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU04a/b/c 0.4 0.830 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU04-norma/b/c 0.4 0.733 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU08a/b/c 0.8 0.830 100/25/25 768/768/192 0.1302/0.0325/0.1302 NU08-norma/b/c 0.8 0.644 100/25/25 768/768/192 0.1302/0.0325/0.1302 Table3.Listofoursimulationsuite(groupII)–neutrinocross-terms∗. Simulationset M [eV] σ (z=0) Boxes[Mpc/h] N1/3 γ H n Ω T ν 8 p 0 s m 0 γ+NU08a/b/c 0.8 0.83 100/25/25 768/768/192 1.6 67.5 0.96 0.31 15000 H +NU08a/b/c 0.8 0.83 100/25/25 768/768/192 1.3 72.5 0.96 0.31 15000 0 n +NU08a/b/c 0.8 0.83 100/25/25 768/768/192 1.3 67.5 1.01 0.31 15000 s Ω +NU08a/b/c 0.8 0.83 100/25/25 768/768/192 1.3 67.5 0.96 0.36 15000 m σ +NU08a/b/c 0.8 0.88 100/25/25 768/768/192 1.3 67.5 0.96 0.31 15000 8 T +NU08a/b/c 0.8 0.83 100/25/25 768/768/192 1.3 67.5 0.96 0.31 21000 0 ∗a/b/cindicatethedifferentboxsizeandnumberofparticlesinthesimulation. acrossredshifts;theseadditionalsimulationsaretermednormal- (groupI)–includingrunswithdifferentnormalizations–issum- izedandareusedheretoquantifytheimpactofmassiveneutri- marizedinTable2;therealizationsindicatedasneutrinocross- nosonthematterpowerspectrum;inmodelswithmassiveneu- terms (group II), in which we kept the neutrino mass fixed to trinos, the power is suppressed on scales smaller than the free- be M = 0.8eV butvariedcosmologyandastrophysicsaround ν streaming scale when the normalization is fixed, as explained the best-guess, are listed in Table 3. To this end, we note that previously. thereasonforproducingcross-termsismotivatedbythemulti- dimensionalparameterestimationprocedureoutlinedin Vielet Aside from the best-guess run, which only has a massless al.(2010);inaforthcomingstudy,wewillapplythistechnique neutrinocomponent,allourothersimulationscontainthreede- toconstraincosmologicalparametersandneutrinomassesfrom generate species of massive neutrinos implemented as a single theLyαforestbycombiningresultsfromthesesimulationsand particle-type, where M = 0.1,0.2,0.3,0.4,and 0.8 eV. To en- ν BOSSLyαdata. surethatthevariousrealizationscorrectlyconvergewhen M = ν 0eV,wealsoranasimulationsetwithaverylowneutrinomass, Allourrunsstartedatz = 30,withinitialconditionshaving i.e.M =0.01eV–indicatedasNUbest-guess(seetheappendix thesamerandomseedandbasedonthesecond-orderLagrangian ν forasanitychecktest).Inaddition,weperformedaseriesofre- perturbationtheory(2LPT;Crocceetal.2006)insteadofonthe alizationswith theneutrinomassfixedtobe M = 0.8eV,and Zel’dovichapproximation.Snapshots were producedat regular ν slightlyvariedthebasiccosmologicalandastrophysicalparame- intervalsinredshiftbetweenz = 4.6−2.2,with∆z = 0.2;fora tersaroundthebest-guessreference.Specifically,weconsidered fewruns,wealsoreachedz=0.Weprovidevisualexamplesof variations of ±0.05 in the amplitude of the matter power spec- oursnapshotoutputsatz = 2.2andz = 0inFigures4and5for trumσ ,inthespectralindexoftheprimordialdensityfluctua- the gas (left panels), dark matter (central panels), and neutrino 8 tionsn , andin thematterdensitycontentΩ ,while we varied (rightpanels)components–whenpresent.Theuppertoppanels s m the Hubble constant H by ±5; regardingastrophysicalparam- are projectionsof the densityfield along the x and y directions 0 eters, we altered both T and γ, the former by ±7000 and the (andacross z) from our best-guessreferencesimulation, which 0 latterby±0.3.Thesuiteofsimulationswithbest-guesscosmo- onlycontainsmasslessneutrinos,withaboxsizeof25h−1Mpc logicalandastrophysicalparametersandvaryingneutrinomass anda relativelylow resolutionN = 1923 particlespertype;in p Articlenumber,page8of22 G.Rossietal.2014: Lyman-αforestandmassiveneutrinos GAS z =2.2 DARK MATTER z =2.2 20 Mν=0 eV 20 Mν=0 eV h] h] pc/ pc/ M M y[ 10 y[ 10 0 0 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 log density log density Mν=0.1 eV z =2.2 Mν=0.1 eV z =2.2 NEUTRINOS z =2.2 20 20 20 Mν=0.1 eV h] h] h] pc/ pc/ pc/ M M M y[ 10 y[ 10 y[ 10 0 0 0 0 10 20 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 -9.1 -9 -8.9 -8.8 -8.7 log density log density log density Mν=0.4 eV z =2.2 Mν=0.4 eV z =2.2 Mν=0.4 eV z =2.2 20 20 20 h] h] h] pc/ pc/ pc/ M M M y[ 10 y[ 10 y[ 10 0 0 0 0 10 20 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 -8.5 -8.4 -8.3 -8.2 log density log density log density Mν=0.8 eV z =2.2 Mν=0.8 eV z =2.2 Mν=0.8 eV z =2.2 20 20 20 h] h] h] pc/ pc/ pc/ M M M y[ 10 y[ 10 y[ 10 0 0 0 0 10 20 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 -8.1 -8 -7.9 log density log density log density Fig.4.Visualexamplesofsnapshotsatz=2.2fromsimulationswithaboxsizeof25h−1MpcandaresolutionofN =1923 particlespertype. p Theuppertoppanelsarefullprojectionsofthedensityfieldinthe xandydirectionsacrosszfromourbest-guessreferencesimulationwithout massiveneutrinos(butwithamasslessneutrinocomponent),whileindescendingordertheotherpanelsarefor M = 0.1,0.4,and0.8eV.Gas ν (leftpanels),darkmatter(centralpanels),andneutrino(rightpanels)components–whenpresent–areshown.TheaxisscalesareinMpc/h.The variousplotsaresmoothedwithacubicsplinekernel,andboththeDMandneutrinocomponentsaretreatedinthesamewayasthegas.Seethe textformoredetails. Articlenumber,page9of22 A&Aproofs:manuscriptno.rossi_etal_2014 z =0 z =0 (cid:0)(cid:1) (cid:2)(cid:3)(cid:4)#(cid:5)(cid:3)$$(cid:6)(cid:4) 20 Mν=0 eV 20 Mν=0 eV h] h] pc/ pc/ M M y[ 10 y[ 10 0 0 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 log density log density Mν=0.1 eV z =0 Mν=0.1 eV z =0 NEUTRINOS z =0 20 20 20 Mν=0.1 eV h] h] h] pc/ pc/ pc/ M M M y[ 10 y[ 10 y[ 10 0 0 0 0 10 20 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 -9.1 -9 -8.9 -8.8 -8.7 log density log density log density Mν=0.4 eV z =0 Mν=0.4 eV z =0 Mν=0.4 eV z =0 20 20 20 h] h] h] pc/ pc/ pc/ M M M y[ 10 y[ 10 y[ 10 0 0 0 0 10 20 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 -8.5 -8.4 -8.3 -8.2 log density log density log density Mν=0.8 eV z =0 Mν=0.8 eV z =0 Mν=0.8 eV z =0 20 20 20 h] h] h] pc/ pc/ pc/ M M M y[ 10 y[ 10 y[ 10 0 0 0 0 10 20 0 10 20 0 10 20 x[Mpc/h] x[Mpc/h] x[Mpc/h] -8 -7 -6 -5 -7.5 -7 -6.5 -6 -5.5 -8.1 -8 -7.9 log density log density log density Fig.5.Sameasinthepreviousfigure,butnowatz=0. Articlenumber,page10of22

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.