©EntomologicaFennica.7September2018 Suction duration and numbers of Araneae and Auchenorrhyncha collected in grassland when using an open-ended cylinder to define the sample area AndrewCherrill,RichardBurkmar,HenryQuenu&EmanZentane Cherrill,A.,Burkmar,R.,Quenu,H.&Zentane,E.2018:Suctiondurationand numbersofAraneaeandAuchenorrhynchacollectedingrasslandwhenusingan open-endedcylindertodefinethesamplearea.—Entomol.Fennica29:105– 111. Suctionsamplersaretypicallyusedwithtouch-downsamples,wherethenozzle isheldstationaryontheground,orwithinanopen-endedcylinder,wherethenoz- zleismovedthroughtheenclosedvegetation.Withtouch-downsampling,pub- lishedestimatessuggestthatvirtuallyallindividualsandspeciesofgrasslandin- vertebrate are captured within 3 s. Effects of suction duration on catch when samplingwithinacylinderhaverarelybeeninvestigated.Here,itwasfoundthat extrapolationfromstudiesoftouch-downsampling,basedontherelativeareasof theG-vacnozzleandthecylinder,canbeusedtoguideminimumsamplingdura- tionsforAuchenorrhyncha(leafhoppersandplanthoppers)whenusingaG-vac. Additionaltime,however,maybenecessarywhensamplingAraneae(spiders), probablybecausemovementoftheG-vacnozzlewithinthecylinderresultsin disturbanceofthevegetationsuchthatmorespecimensaremadeavailabletobe capturedthanwithtouch-downsampling. A.Cherrill,CentreforIntegratedPestManagement,DepartmentofCropand EnvironmentSciences,HarperAdamsUniversity,Shropshire,TF108NB,United Kingdom;E-mail:[email protected] R. Burkmar, Field Studies Council, Preston Montford, Shropshire, SY4 1HW, UnitedKingdom H.Quenu,DepartmentofAgriculture,PurpanSchoolofEngineering,Toulouse Cedex3,France E.Zentane,PlantProtectionDepartment,CollegeofAgriculture,Universityof Tripoli,Libya. Received26July2017,accepted23November2017 1.Introduction morpha and Fulgoromorpha) (Southwood & Henderson 2000, Hill et al. 2005). G-vacs are Modifiedgardenblow-vacs,commonlyreferred popularbecausetheyarerelativelyinexpensive, toasG-vacs,areusedwidelytosamplegrassland andbecausetheycapturegrasslandinvertebrates invertebrates and particularly Araneae (spiders) whichliveclosetotheground.Suchspeciesare and Auchenorrhyncha (leafhoppers and plant- often under-represented in sweep-net samples hoppers of the Hemipteran suborders Cicado- (Samu & Sarospataki 1995, Stewart & Wright 106 Cherrilletal. (cid:127) ENTOMOL.FENNICAVol.29 1995,Stewart2002).G-vacscanalsobeusedto 2.Methods obtaincrudedensityestimateswheresamplingis conductedwithinanenclosedarea–typicallyde- 2.1.Studysites fined by an open-ended cylinder many times wider thantheG-vacnozzle(Samuetal. 1997, Threegrassland sites with flatterrain and inter- Hilletal.2005).Thetimerequiredtocaptureall, nallyhomogenousvegetationwereselectedtoin- or most invertebrates, when using a suction de- clude a range of agricultural management re- vicewithinanopen-endedsamplingcylinderhas, gimes.Site1wasanungrazedgrassland,mownat however,beeninvestigatedrarely(Henderson& intervalsfrommid-Julyonwards(altitude60m, Whitaker1977,Törmälä1982). latitude52°46’N,longitude2°25’W).Site2was Incontrast,Brooketal.(2008)estimatedthat anunmownpasturegrazedbydairycattleandsit- 90% of Coleoptera, Araneae and Auchenor- uated within 500 mof Site 1. Site 3 was unim- rhynchaspeciesarecapturedinthefirst3sofsuc- proved sheep-grazed grassy heath (altitude 420 tionwhenthenozzleofaVortisdeviceisheldsta- m,latitude52°31’N,longitude2°53’W).Vegeta- tionaryonthegroundatasingleunenclosedpoint tion at Sites 1 and 2 was dominated by sown (commonly known as a “touch-down” sample). grasses and was representative of mesotrophic Moreover,Belletal.(2000)foundnoincreasein grasslandtypeMG7aLoliumperenne–Trifolium numbersofAraneaecapturedbeyondthefirst1s repensleywithintheNationalVegetationClassi- suctionofatouch-downsamplewhenusingaG- fication(NVC)(Rodwell1992).Site3wasdomi- vac. natedbysemi-naturalvegetationcharacteristicof When using a cylinder, the time needed to poor acidic soils and was most similar to NVC capture a representative sample of invertebrates type U1 Festuca ovina – Agrostis capillaris – willbeatleasttheminimumtimerequiredfora Rumexacetosella. singletouch-downsamplemultipliedbytheratio Ateachsite,agrid12mby20mwasmarked of the area of the cylinder to that of the nozzle. outandsub-dividedintofifteen4mby4mgrid- Longer may be required, however, because squares.Vegetationheightwasquantifiedusinga movementofthenozzlewithinthecylindermay singledrop-platemeasurement(Cherrill&Rush- enhancecaptureofspecimensthatwouldother- ton1993)atthecentreofeachgrid-square(x± wisebehiddenbeneaththevegetation.Thepres- SD:Site1,12.3±2.2cm;Site2,15.1±3.4cm; entstudyaddressesthisproblembyinvestigating Site3,3.7±1.0cm)(n=15ateachsite). the numbers of individuals and species of AraneaeandAuchenorrhynchacapturedwithin- 2.2.Suctionsampling creasing sample duration when using a G-vac within an open-ended cylinder at each of three TheG-vacsuctionsamplerwasamodifiedMc- grasslands.Inthisstudy,theG-vacnozzlehadan CullochGBV345gardenblower/vacuum(Stew- areaof0.01m2,whiletheareaofthecylinderwas art&Wright1995,Stewart2002).Theendofthe 0.18m2. collectingpipewassawnoffperpendiculartoits Ifitisassumedthataperiodof3sisappropri- lengthtogiveanozzlewithacrosssectionalarea ate for a touch-down sample, then most speci- of0.01m2.Anylon1mmmeshbagwasheldin mens would be expected to have been captured placeattheendofthepipebyarubberband.Esti- fromthecylinderinjustunder60s(i.e.18multi- mated air velocity within the nozzle was20.3 pliedby3stogiveanequivalentsamplinginten- ms–1(Zentaneetal.2016). sityintermsofsecondsperm2).Totestthishypo- Suctionsamplesateachsiteweretakenona thesisthreesuccessivesamplesof30sweretaken singledayonly(15th,17thand21stJuly2014for fromwithinthecylindersuchthattheaccumula- Sites1,2and3respectively).Minimumairtem- tion of specimens and species could be investi- peraturesduringsampling,measuredinshadeat1 gatedafter30s,60sand90ssampling. mabovegroundusingadrybulbmercuryther- mometer,atthethreesiteswere30°C,26°Cand 24°Crespectively.Vegetationandleaflitterwas drytothetouch. ENTOMOL.FENNICAVol.29 (cid:127) G-vacsuctionduration 107 Table1.TotalnumbersofindividualsandspeciesofAraneaecollectedafter90ssuctionsampling. Site1 Site2 Site3 Theridiidae EnoplognathalatimanaHippa&Oksala,1982 4 0 0 Linyphiidae Dicymbiumnigrum(Blackwall,1834) 1 1 0 Entelecaraflavipes(Blackwall,1834) 0 0 1 Dismodicusbifrons(Blackwall,1841) 0 0 0 Oedothoraxfuscus(Blackwall,1834) 7 6 4 Oedothoraxretusus(Westring,1851) 12 2 0 Gongylidiellumvivum(O.P.-Cambridge,1875) 2 0 0 Micrargusherbigradus(Blackwall,1854) 0 0 1 Micrargussubaequalis(Westring,1851) 1 0 0 SavigniafrontataBlackwall,1833 5 6 1 Millerianainerrans(O.P.-Cambridge,1885) 1 0 0 Erigonedentipalpis(Wider,1834) 2 17 3 ErigoneatraBlackwall,1833 9 44 3 Agynetadecora(O.P.-Cambridge,1871) 2 0 0 Meionetarurestris(C.L.Koch,1836) 0 2 0 Bathyphantesgracilis(Blackwall,1841) 18 53 0 Tenuiphantestenuis(Blackwall,1852) 13 42 0 Microlinyphiapusilla(Sundevall,1830) 3 0 0 Thomisidae Xysticuscristatus(Clerck,1757) 1 0 0 Immatures Unidentifiedfamilies 162 182 7 Linyphiidae 100 193 7 Tetragnathidae 6 0 0 Lycosidae 29 0 0 Thomisidae 1 0 1 Totalnumberofindividuals 379 548 28 Numberofspecies 15 9 6 G-vac samples were taken within an open- sand,althoughnotquantified,itispossiblethata endedplasticcylinderwithacross-sectionalarea smallnumberofactivefliersmay haveescaped of0.18m2,heightof60cminheightandweight fromthecylinderwhilethiswasbeingdone. of5kg(sufficienttoformasealwiththeground surface).Thecylinderwasplacedatthecentreof 2.3.Treatmentofinvertebratesamples a grid-square. The G-vac was then used to take threesuccessive30ssub-samplesbeforethecyl- Materialfromthethree30ssub-samplesineach inderwasmovedtothenextgrid-square.Themo- grid-square were counted separately. Adult torwasrunonfull-throttlewhilstthenozzlewas AraneaeandAuchenorrhynchawereidentifiedto withinthecylinder,butwasidledwhilstthemesh species,whileimmaturespecimenswereidenti- bag was replaced between 30 s sub-samples. fied to family. Nomenclature follows Merrett et Within each 30 s sub-sample, the G-vac nozzle al.(2014)andWilsonetal.(2015). wassweptoverthesurfaceofthevegetationfor5 s before the nozzle was repeatedly lowered and 2.4.Statisticalanalysis raisedfromthegroundsurfaceinaseriesofover- lapping “touch-downs” covering the enclosed Repeated measures Generalised Linear Model areafortheremaining25s.Changingthemesh with negative binomial error distribution was bagbetweensub-samplestookapproximately15 usedwithinIBMSPSSver24totestforaneffect 108 Cherrilletal. (cid:127) ENTOMOL.FENNICAVol.29 Table2.TotalnumbersofindividualsandspeciesofAuchenorrhynchacollectedafter90ssuctionsampling. Site1 Site2 Site3 Cicadellidae Aphrodesbicinctus(Schrank,1776) 3 0 0 Anoscopusalbifrons(Linnaeus,1758) 2 0 0 Anoscopusserratulae(Fabricius,1775) 3 0 0 Anoscopusunidentifiedfemales 2 0 0 Deltocephaluspulicaris(Fallen,1806) 0 0 19 Arocephaluspunctum(Flor,1861) 0 0 2 Arthaldeuspascuellus(Fallen,1826) 60 2 0 Psammotettixnodosus(Ribaut,1925) 0 0 2 Euscelisincisus(Kirshbaum,1858) 37 0 0 Cicadulapersimilis(Edwards,1920) 1 0 0 Zyginidiascutellaris(Herrich-Schaeffer,1838) 22 0 0 Delphacidae Javesellaobscurella(Boheman,1847) 0 4 0 Javesellapellucida(Boheman,1847) 202 30 0 Javesellaunidentifiedfemales 0 23 0 Immatures Cicadellidae 116 3 3 Delphacidae 292 23 0 Totalnumberofindividuals 740 85 26 Numberofspecies 8 3 3 of the independent variable “sample duration” 3.1.Numbersofindividuals (30,60and90s)onthedependentvariablewhich was the accumulated number of individuals (or Sample duration had a significant effect on the species).TheanalysiswasconductedforAraneae cumulativenumberofAraneaecapturedatSite1 and Auchenorrhyncha within each site sepa- (¤2=14.56, d.f. =2, P=0.01) andSite2(¤2= rately.Ineachanalysis,thebetween-subjectfac- 70.54,d.f.=2,P=<0.001),butnotSite3(¤2= torwasgrid-squareandthewithin-subjectfactor 3.21, d.f. = 2, P= 0.20). At both Sites 1 and 2, was sample duration. Detection of a significant numbersincreasedwitheachadditional30ssub- effect of sample duration, based on Walds Chi- sample.Incontrast,atSite3veryfewadditional squareTest(withcriticalPof0.05),wasfollowed Araneaewerecapturedinthesecondandthird30 by Bonferroni-corrected pairwise comparisons ssub-samples(Fig.1a). betweenaccumulatednumberscapturedafter30, 60and90s. Sample duration had a significant effect on AtSites1and2,allmeans(andStandardEr- the cumulative number of Auchenorrhyncha at rors,SE)arebasedondatafrom15grid-squares, Site1(¤2=21.15,d.f.=2,P=<0.001).Thenum- whileatSite3somesamplesweremislaidleaving berofindividualAuchenorrhynchaincreasedin datafor10grid-squaresonly. thesecond30ssub-sampleonly,withfewadded inthethird30s(Fig.1c).Sampledurationhadno significant effect on cumulative numbers cap- 3.Results turedatSite2(¤2=2.07,d.f.=1,P=0.15)orSite 3(¤2=2.05,d.f.=1,P=0.11).Atthesesites,very In total 955 specimens of Araneae and 851 few additional specimens were captured in the Auchenorrhynchawerecapturedacrossthethree second30ssub-sample,andnonewerecaptured sites. Nineteen species of Araneae and twelve in the third 30 s (with the consequence that the speciesofAuchenorrhynchawerefound(Tables thirdsub-samplewasomittedfromtheseanaly- 1and2). ses)(Fig.1c). ENTOMOL.FENNICAVol.29 (cid:127) G-vacsuctionduration 109 Fig.1.Mean(±SE)foraccumulativenumbersofindividualsandspeciesofAraneaeandAuchenorrhynchacap- turedafter30s,60sand90s.Columnswithinasite,andbearingthesameletter,weresubjecttostatistical analysisandwerefoundtobenotsignificantlydifferent(atP=0.05).Columnswithoutaletterhaveidentical meanandSEtotheadjacentcolumn(s).Meansarebasedonn=15atSites1and2,andn=10atSite3. 3.2.Numbersofspecies 4.Discussion Sample duration had a significant effect on the Several studies have investigated how numbers cumulative number of species of Araneae cap- of species and specimens increase with suction turedatSite1(¤2=11.82,d.f.=2,P=<0.01)and timeusingtouch-downsamples(Macleod etal. Site2(¤2=27.48,d.f.=2,P=<0.001).Themean 1994,Belletal.2000,Brooketal.2008).Mac- numberofAraneaespeciesincreasedinthethird leod et al. (1994) used a G-vac to repeatedly 30ssub-sampleatSite1,andinthesecond30s samplethesameunenclosedpointwithconsecu- sub-sampleatSite2(Fig.1b).AtSite3,noaddi- tivetouch-downsuptoatotaldurationof160s. tionalspecieswerefoundinthesecondorthird30 CumulativenumbersofColeopteraandAraneae ssub-samplesandhencethesedatawerenotsub- increasedfromthefirst5ssub-sampleto30sbut jecttostatisticalanalysis(Fig.1b). not thereafter. The time after which no further At Site 1, the number of Auchenorrhyncha benefitaccruedmayhavebeenoverestimatedbe- speciesshowedasmallnon-significantincrease cause specimens were probably drawn in from inthesecond30ssub-sample(¤2=3.16,d.f.=1, surroundingvegetationastheG-vacwasrepeat- P=0.08),butnoadditionalspecieswerecaptured edly raised and lowered (Samu et al. 1997, inthefinal30s(Fig.1d).Moreover,noadditional Cherrill 2015). This problem was overcome by species were captured after the first 30 s sub- Bell et al. (2000) and Brook et al. (2008) who sampleateitherSite2or3andhencethesedata sampled independent points for different dura- werenotsubjecttostatisticalanalysis(Fig.1d). tions. These authors suggest that most Araneae and Auchenorrhyncha are captured within the firstfewsecondsofatouch-downsample.Bellet al.(2000)foundnoincreaseinnumbersorspe- ciesofspidersbetween1sand10ssuctionwitha 110 Cherrilletal. (cid:127) ENTOMOL.FENNICAVol.29 G-vac.Brooketal.(2008)estimatedthat90%of suctiondurationcanbeextrapolatedfromstudies individuals and species of Coleoptera, Araneae using the alternative touch-down approach. A andAuchenorrhynchaarecapturedwithin3sus- samplingintensityequivalentto3sperunitarea ing a similar Vortis suction device. In a direct (whereunitareaisdefinedbythecross-sectional comparison of the two devices, Zentane et al. areaofthenozzle)issufficienttocaptureallspe- (2016)foundtheVortistobelessefficientthana cies and nearly all individuals of Auchenor- G-vac,hencetheseestimatescanbeviewedasbe- rhyncha,butlongermaybeneededforAraneae, ingbroadlycomparable. and particularly in taller grass. This is probably In the present study, the G-vac nozzle was becausemovementofthenozzlewithinacylin- usedtosweeptheupperlayersofthevegetation derresultsindisturbanceofthevegetationsuch before being applied in a series of overlapping thatmoreAraneaearemadeavailabletobecap- touch-downswithinacylinderofarea0.18m2.A turedthanwithtouch-downsampling. 30 s sub-sample therefore approximates to a sampling intensity of approximately 1.7 s per Acknowledgements. We thank Chris Hickman for assis- 0.01m2(i.e.30sdividedby18).BasedonBellet tancewithfieldwork,NigelCane-Honeysettforassistance with spider identification, Simon Jeffery for assistance al. (2000) and Brook et al. (2008), touch-down with producing the figure, and two anonymous referees samplingwithinthecylinderfor60s(i.e.equiva- whosecommentsgreatlyimprovedthemanuscript.DrE. lent to approximately 3.4 s per 0.01 m2 touch- ZentanewassupportedbyasabbaticalfromtheUniversity down) would be predicted to have captured ofTripoli.HenryQuenuwassupportedbytheinternship nearly all specimens and species therein. Al- programmeatPurpanSchoolofEngineering,France. though the approach to sampling within these studies was not identical, the prediction agrees References with the results reported here for Auchenor- rhyncha.Numbersofindividualsandspeciesdid not increase after 60 s at any of the three sites Bell,J.,Wheater,C.P.,Henderson,R.&Cullen,R.2000: Testingtheefficiencyofsuctionsamplers(G-vacs)on (Figs.1cand1d). spiders:theeffectofincreasingnozzlesizeandsuction In contrast, numbers ofindividuals and spe- time.—In:Toft,S.&Scharff,N.(eds.),European ciesofAraneaeaccumulatedbeyond60ssamp- Arachnology: 285–290. Aarhus University Press, ling, except at Site 3 where Araneae were rela- Denmark.358pp. tivelyscarce(Figs.1aand1b).Overall,theresults Brook,A.J.,Woodcock,B.A.,Sinka,M.&Vanbergen,A. J.2008:Experimentalverificationofsuctionsampler suggestthatsamplingwithinthecylinderfor60s captureefficiencyingrasslandsofdifferingvegetation (crudely equivalent to a series of twenty 3 s heightandstructure.—JournalofAppliedEcology touch-downs) was sufficient for Auchenor- 45:1357–1363. rhyncha. Longer may be needed, however, to Cherrill,A.J.2015:Suctionsamplingofgrasslandinverte- reachthepointwherefurthersamplingcaptures bratesusingtheG-vac:Quantifyingandavoidingpe- ripheralsuctioneffects.—EuropeanJournalofEnto- no additional Araneae. The efficiency of samp- mology112:520–524. lingmayberelatedtothestructuralcomplexityof Cherrill,A.J.&Rushton,S.P.1993:TheAuchenorrhyn- thevegetation,becauseatthesitewiththeshort- chaofanunimprovedmoorlandinnorthernEngland. est grass (Site 3) no additional Araneae were —EcologicalEntomology18:95–103. caughtafterthefirst30s(Figs.1aand1b).Suc- Henderson,I.&Whitaker,T.1977:Theefficiencyofanin- tionsamplingisgenerallymoreefficientinshort sectsampleringrassland.—EcologicalEntomology 2:57–60. vegetation (Henderson & Whitaker 1997, Hos- Hill,D.,Fasham,M.,Tucker,G.,Shrewry,M.&Shaw,P. sainetal.1999,Brooketal.2008,butseeSan- 2005: Handbook of biodiversity methods. — Cam- ders&Entling2011)anditisalsoknownthatless bridgeUniversityPress,Cambridge.588pp. structurally complex grasslands tend to support Horvath,R.,Magura,T.,Szinetar,C.&Tothmeresz,B. fewer invertebrates (Langellotto et al. 2004, 2009:Spidersarenotlessdiverseinsmallandisolated grasslands,butlessdiverseinovergrazedgrasslands: Horvathetal.2009). Afieldstudy(EastHungary,Nyirseg).—Agriculture, Thepresentstudyprovidespartialsupportfor EcosystemsandEnvironment130:16–22. thehypothesisthatwhenusingaG-vacwithinan Hossain,Z.,Gurr,G.M.&Wratten,S.D.1999:Capture open-ended cylinder, the minimum necessary efficiencyofinsectnaturalenemiesfromtallandshort ENTOMOL.FENNICAVol.29 (cid:127) G-vacsuctionduration 111 vegetation using vacuum sampling. — Annals of Sanders,D.&Entling,M.H.2011:Largevariationofsuc- AppliedBiology135:463–467. tion sampling efficiency depending on arthropod Langellotto,G.A.&Denno,R.F.2004:Responsesofin- groups,speciestraitsandhabitatproperties.—Ento- vertebratenaturalenemiestocomplex-structuredha- mologiaExperimentalisetApplicata138:234–243. bitats:ameta-analyticalsynthesis.—Oecologia139: Southwood,T.R.E.&Henderson,P.A.2000:Ecological 1–10. methods.3rdEd.—BlackwellScience,Oxford.575 Macleod,A.,Wratten,S.D.&Harwood,R.W.J.1994: pp. Theefficiencyofanewlightweightsuctionsampler StewartA.J.A.&WrightA.F.1995:Anewinexpensive forsamplingaphidsandtheirpredatorsinarableland. suction apparatus for sampling arthropods in —AnnalsofAppliedBiology124:11–17. grasslands.—EcologicalEntomology20:98–102. Merrett,P.,Russell-Smith,A.&Harvey,P.2014:Arevised Stewart,A.J.A.2002:TechniquesforsamplingAuche- checklistofBritishspiders.—Arachnology16:134– norrhynchaingrasslands.—Denisia4:491–512. 144. Törmaälä,T.1982:Evaluationoffivemethodsofsamp- Rodwell,J.S.1992:BritishPlantCommunities.Volume3. lingfieldlayerarthropods,particularlytheleafhopper Grasslandsandmontanecommunities.—Cambridge community, in grassland. — Annales Entomologici UniversityPress,Cambridge.552pp. Fennici48:1–16. Samu,F.,Nemeth,J.&Kiss,B.1997:Assessmentofthe Wilson,M.,Stewart,A.,Biedermann,R.,Nickel,H.&Ni- efficiencyofahand-heldsuctiondeviceforsampling edringhaus,R.2015:Theplanthoppersandleafhop- spiders: improved density estimation or oversam- persofBritainandIreland.—Cicadina–Supplement pling?—AnnalsofAppliedBiology130:371–378. 2:1–138. Samu, F. & Sarospataki, M. 1995: Design and use of a Zentane,E.,Quenu,H.,Graham,R.I.&Cherrill,A.2016: hand-held suction sampler, and its comparison with Suctionsamplersforgrasslandinvertebrates:compa- sweepnetandpitfalltrapsampling.—FoliaEntomo- risonofnumberscaughtusingVortisandG-vacdevi- logiaHungarica56:195–203. ces.—InsectConservationandDiversity9:470–474.