ebook img

Substrate selection in larval Calopteryx splendens (Harris) (Zygoptera: Calopterygidae) PDF

2008·1.6 MB·English
by  WardL
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Substrate selection in larval Calopteryx splendens (Harris) (Zygoptera: Calopterygidae)

Odonatologica37(1):69-77 March I.2008 Substrate selection inlarval Calopteryxsplendens (Harris) (Zygoptera: Calopterygidae) L. Ward¹* andP.J.Mil²l 1Askham BryanCollege,AskhamBryan,York,YD233FR,United Kingdom 2School ofBiologicalSciences,UniversityofLeeds,Leeds,LS29JT, United Kingdom ReceivedJuly18,2007/RevisedandAcceptedAugust10,2007 Underexperimental conditions,the relationshipbetween substratecomposition, with andwithoutthepresence ofanemergencesupport, andlarval distributionwas investigated.Resultsrevealed thatC. splendenslarvaeshowedaclearpreferencefora pebblesubstrate asopposedtosand orsilt,when all 3substrateswereequally avail- able.However,thesubstrate typedecreasedinimportanceasthedensityoftheemer- gence supportincreased. Resultssuggestthat themorphologicaladaptationsofC. splendenslarvae,toclingtoasubstrate,canbeutilisedequallyinavegetatedhabitat andahabitat predominatedbypebblesandcobbles.Thishasimplicationsforthedis- persalofC.splendenstoareascontaining, traditionally,lessfavoured habitat. Range expansionofC. splendensonitsnorthernborders,whereaquatichabitatcharacteris- tics candiffermarkedlyfromwaterwaysinlowland southernEngland,isdiscussed. INTRODUCTION Thesubstrate inan aquatic environmentcan consist of varioustypes ofor- ganicand inorganic materialsandprovides something sufficiently stable forin- vertebratesto crawlon, cling to orburrow in (MINSHALL, 1984). Theleaves andstemsofriparian vegetation andaquatic macrophytes constitutetheorganic substrate. Thenature ofthe inorganic componentis largely determinedby the underlying geology. Inorganic substratesare usually sedimentary materialsand canrangefrommicroscopic siltandclay particles to largeboulders. Apreliminary studyoninvertebrate-substraterelationships wasmadebyPER- CIVAL& WHITE(1929),whoinvestigated themacroinvertebratefaunaassoci- atedwithseven substratetypeswithdifferingamounts ofplantcover, instreams *CorrespondingAuthor 70 L. Ward&PJ. Mill innortheasternEngland. Morerecent studiesof aquaticinvertebratelarvalhab- itat selection haveconcentratedon burrowing species, including gomphid odo- nates (KEETCH & MORAN, 1966;HUGGINS&DUBOIS, 1982;SUHLING, 1994, 1996),and research onsubstrateselection withregard toodonatespecies thatdo notburrowis scarce. Previous work has shown that substrateparticle size and composition, and the presence orabsence ofaquatic vegetation, can directly affect themicrodis- tribution of aquatic insects (CUMMINS & LAUFF, 1969; SUHLING, 1996), although otherfactorssuch as prey distributionandpredation, as wellas com- petitionforspace,canresultina variationinabundancefromonesubstratetype toanother(BAKER, 1981;BRUSVEN&ROSE, 1981;McPEEK, 1990). Inad- dition,thebehaviourofovipositing femalesdetermines, tosomeextent,thetypes ofresources availableto theiroffspring, andmanylarvalspecies are aggregated initially asaresultofthe patchiness oftheoviposition substrate.Theseoffspring normally selectmicrohabitatswithinthegeneral vicinityof theoviposition site (JAENIKE &HOLT, 1991).Nevertheless, movementsbetweenmicrohabitatsare commonplace duringlarvaldevelopment (CORBET.1962). MACAN(1966) re- ported that larvalLestessponsadisperse soon afterhatching fromthemarginal plants inwhichtheeggs werelaidandJOHANSSON (1978)showedthatEryth- romma najas larvaemovefromopenmudbeneathoviposition sites toreedbeds. Other factors implicated in the microdistributionof larvae includeseasonality (LAWTON, 1970)andthelarvalstage(MIYAKAWA (1969) citedin CORBET, 1999). Recentinvestigation ofthedistributionofC.splendens intheUK suggests that the species has undergone rangeexpansion (WARD & MILL, 2007). Indeed, in 2004 itwas reported in large numbers nearDalbeattie, south-west Scotland by B.& R. Mearns(BATTY, 2007) havingpreviously beenunrecordedinScotland, except forcasualsighting. In2006 C. splendens was recorded on thestony Urr Waterin Kirkcudbrightshire, againinsouth-westScotland(BATTY, 2007). This contradicts the widely heldview that C. splendens larvae preferentially inhabit silt substrate.Previously consideredas a‘southernspecies’(e.g. BROOKS, 2004), where thereareextensiveslowflowing rivers inlowlandhabitats, withwell-veg- etatedbanks. C. splendens cannowbe consideredasmorewideranging. Indeed, thepresenceofthespeciesinsouth-westScotland,onwaterwayswithcontrasting physicochemical featuresto thosefurthersouth, suggests itcan adapt to condi- tionswhichfacilitateitsmovement northward. Morphologically, C. splendens larvaehaveanelongate abdomenand clasping legs(CORBET, 1999).Theseadaptations facilitatetheirhabitationoflotichab- itats by allowingthemto cling to asubstrate, such as vegetation stems.Indeed, thelarvaehavebeen observedtoinhabittheroot andstemregions ofsubmerged vegetation, insiltandmud-bottomedstreamsandrivers(MERRITT etah, 1996; BROOKS, 2004). Substrateselectionin Calopteryxsplendens larvae 71 Thisstudyaimsto determinetherelationship betweensubstratecompositions, withandwithoutthepresenceofanemergencesupport,andthespatialdistribu- tionofF-l andF-2instar larvaeof C. splendens. METHODS ThelarvaeofC.splendensusedforsubstratumselectionexperimentswerecollectedfromtheRiver MedwayinKent,southeastEngland(suppliedbyBladesBiologicalSupplies). All larvaeweresorted into instarsaccordingtohead width (C.Schutte,pers. comm.),andwereclassified asstagesF-l and Each ofthree glassaquaria(0.48x0.36m) weredivided by twolongitudinalblack perspex sheets into three sections ofequal dimensions. Within each sectiontherewerethree equalsized areas, each containing one ofthree substrate types: coarsegraveland small pebbles, medium sand,andsilt/clay(aftertheWentworth Classifi- cation ofsubstrate particlesize). Priortotheex- perimentthesubstrataweresetoutintheaquaria toadepthof0.02m and theaquariafilledwith Fig. 1.AquariadesignusedforExperiment1. watertoadepthof0,12 m.Thewaterwasleft to stand for 36 hours with airstones to aeratethe water. In order tokeep the water aerated throughouttheexperiment,oneairstonewaspositioned abovethe centresubstrate ineachblock ofthree,in such apositionthatthe larvaecould notcling toit.Inallexperimentsawatertemperatureof 12°Canda 12:12hour 1ightidarkphotoperiodwere maintained. DuringallexperimentsthelarvaewerefedbyplacingoneChironomus larvaoneachsubstratetype, unlessotherwisestated. C. splendenslarvaewerefedin thiswayonalternatedaystopreventtheset- tlingofuneatenfooditems influencingsubstrate selection. Observationsofthepositionofthe lar- vaewererecordedeveryhourfrom1000until 1800(GMT)fortendays,between FebruaryandApril 2001. EXPERIMENT1.- An experimentwascarriedouttocontrolforlarvalpreferenceforposition intheaquaria.Eachsectioncontained asinglesubstratetypeand onelarva wasplacedoneachsub- strate(i.e.ineach section)inoneofthreestartingpositions(A,BorC).This wascarriedoutforeach startingposition(Fig. 1). This preliminaryinvestigationrevealed asignificant difference in the observed positions of C. splendensintheaquaria(x2=16.47,d.f.=2,P<0.001).Atotalof40%oftheobservations (n=810) werein themiddleregion(B),whereas 29.3%and30.7%ofthe observationswereinregionsAand C,respectively. EXPERIMENT 2, SUBSTRATE SELEC- TION. - The followingexperiments were per- formed todetermine therelative importanceof larvalchoiceforsubstratetypeand/orvegetation. Eachareawithin each sectioncontained adifer- entsubstrate. Arandomisedorderoftheposition ofthesubstrateswasusedinallexperiments(Fig. 2): (a) Intheabsenceofaverticalsupport- Inthe firsttank(1ato1c)oneindividual wasplaced ineachpebblearea,inthesecondtank(2ato Fig.2.AquariadesignusedforExperiment 2. 72 L. Ward&P.J.Mill 2c) ineach silt areaandin the thirdtank (3ato3c)ineach sand area(Fig.2). Twotrials were conductedwith ninelarvaeusedineach(18replicates). (b) Inthepresenceoflowdensity‘vegetation’- Onepiece ofartificial‘vegetation’,inthe formof adowelrod (5mmdiameter),wasplacedinthe centreofeach substrate (i.e,ineachofthe nine areas) tosimulate sparse vegetation andtherebytoinvestigateifsparsevegetationismoreim- portantthanasedimentsubstrate orvice versa.The experimentalprocedurewasthesameasin experiment2(a). (c) in thepresence ofhighdensity ‘vegetation’— Sixteen dowel rods werespacedevenly ineach substrate (i.e.ineachofthe nineareas)tosimulatedense vegetationandhenceitsimportancein relation tosparsevegetationand substrate.The experimentalprocedurewasthe sameasin ex- periment2(a). However, duetothehighmortalityrateoftheexperimentalanimals,onlyonetrialofexperiments bandcwasperformed.Atotalof 12individuals wereused intheseexperiments,whichhad allbeen used intheprevious substrate-onlyexperiment. RESULTS SUBSTRATESELECTION INTHEABSENCEOFAVERTICAL SUPPORT Inthe absence ofa verticalsupport,the distributionof Calopteryxsplendens differedsignificantly betweenthe threesubstratetypes(%2=832.45, d.f. = 2,P < 0.0001)withobservationsoflarvaeonthepebblesubstratebeing recordedsignifi- cantly moreoften thanthoseoneitherthesiltorthesandsubstrates (Tab. I). SUBSTRATESELECTION WITHA LOWDENSITYOFVERTICAL SUPPORTS Theintroductionofaverticalsupport,intheformofone dowelrodperblock, reducedtheproportion ofobservationsrecordedin thepebble substrateareasin comparison to the absence ofa verticalsupport(Tab. I) butthenumberofob- servationsinthepebble substrateareas(i.e. thoseonthesubstrateitselftogether withthoseon thedowelrods inthatsubstrate) werestillsignificantly greaterthan ineitheroftheothertwo substrateareas((%2= 182.31,d.f.=2, P<0.0001) (Tab. Table I Influence ofsubstrate and ofdowelrods (simulatedvegetation)onsub- strate selection by larval Calopteryxsplendens. Data are larval occu- pancy of each substrate area(%)with the number of observationsin parentheses Sedimentareachoice P Pebbles Silt Sand Substratum alone 66.9(1084) 19.8(321) 13.3(215) <0.001 1dowel rod 52.6(562) 26.0 (278) 21.4(228) <0.001 16dowel rods 32.1 (343) 32.0(342) 35.9(383) N.S. N.S.=notsignificant Substrateselectionin Calopteryxsplendenslarvae 73 I). However, the lar- vae were recorded significantly moreof- ten onthedowelrods (53.7%) than on the substrate (46.3%) (x2 = 5.99, d.f. = 1, P = 0.01). Ofthoseclinging to thedowelrods, 38.2% of the observations were in the silt sub- strateareascompared Fig. 3.Theproportionofobservations(n=1068)oflarvaeineachsub- with34.2%and27.7% strateareainthe presence ofonedowelrodper substrate type. in thepebble andsandsubstrate areas,respectively (Fig. 3);this differencewas significant(x2=9.58,d.f. =2, P=0.01).Nevertheless, considering onlythoselar- vae thatwere locatedonthesubstrateitself,theywere stillrecordedsignificantly moreoftenonthepebble substrate(x2=367.67, d.f.= 2,P<0.0001) thanonei- therthesand orsiltsubstrates(Fig. 3). SUBSTRATESELECTIONWITHAHIGHDENSITYOFVERTIAL SUPPORTS Withthe increasein density of vertical supports to 16dowelrods per block, there was no significant differencebetween the numberof observations in the threesubstrateareas(i.e. thoseonthe substrateitselftogetherwiththoseonthe dowelrods inthatsubstrate) (x2= 3.07,d.f. = 2,P =0.22)(Tab. I). Thenumberofobservations oflarvae onthesubstrateitselfdecreased signif- icantly (x 2= 226.65, d.f. = 1, P < 0.001), with 73% of the ob- servations record- ed on the dowelrods and the number on the latter was signifi- cantly greater in the sand substrate areas (X2= 17.22,d.f. = 2,P = 0.0002), thanin ei- ther thepebble or silt substrate areas (Fig. 4). Again, consider- Fig. 4. Theproportionofobservations (n= 1068)oflarvaein each ing only those larvae substrate areain thepresence of 16dowelrodspersubstrate type. 74 L.Ward&P.J.Mill thatwere located on the substrateitself, the numberof observationsof larvae on thepebble substratewas stillsignificantly greaterthan oneither sandor silt (X2= 13.56,d.f. = 2,P= 0.001) (Fig. 4). DISCUSSION Inthe current study, Calopteryx splendens larvae showed a clear preference forapebble substrate as opposed to sandor silt,when all threesubstrates were equallyavailable.AsimilarpreferencehasbeenfoundforPteronarcys californica (Plecoptera), Arctopsyche grandis(Trichoptera), Ephemerella grandis(Ephemero- ptera)andBrachycentrus sp.(Trichoptera), undercomparable laboratorycondi- tions(BRUSVEN&PRATHER, 1974).Furthermore,undernaturalconditions, aquatic insects withrelatively long larval lifecycles of two to three years,such as some dragonflies andstoneflies(Pteronarcys, Paragnetina),are commonly as- sociated with bouldersubstrates, possibly because theyare more likely to find shelter during highwater flow(DE MARCH, 1976;MINSHALL, 1984). Inad- dition,severalauthorshavestatedthathabitationofstonysubstrates mayresult in reducedpredation by fish(SUHLING, 1994;McPEEK, 1990;BRUSVEN & ROSE, 1981).Inadditionto predation,otherimportant factorsin microhabitat selection arecompetition (SUHLING, 1996) andthe physical characteristics of the habitat. Calopteryx larvae have a high oxygen requirement, which effectively limits membersofthe genusto lotichabitats(WILDERMUTH, 1994).Furthermore, ERIKSEN(1966) hasshownthatthe presenceofsiltand finesand can cause a significant reductionintheoxygencontentwithinthesubstratum.Inaddition, silt maysignificantly affect thehabitability of asubstratumby altering watermove- ment and food quality(MINSHALL, 1984). Heavy silting generally results in reducedinsect species diversityand productivity (MINSHALL, 1984). Several authors havenotedthatthepresenceoflargeamounts ofsiltandsandcoincide withareductionin theabundanceand diversityofstream insects(CHUTTER, 1969;MINSHALL,I984;NUTTAL,1972;PENNAK&VANGERPEN, 1947). Thisisofsignificance to C. splendens whoselarvae are carnivorous. Severalauthorshavereported a gradualincreaseinspeciesabundancefrombare substrateto thepresenceofvegetation (PERCIVAL & WHITE,1929;WHITE- HEAD, 1935;MINCKLEY, 1963)anditisestablishedthatthepresenceofaquat- ic plants can lead to increaseddiversityof faunainaquatic habitats(MACAN, 1977;MACAN& MAUDSLEY, 1968),thusproviding a ready foodsupply for predatory invertebratessuch as C. splendens. Thecurrent studyshowedthatthesubstratetypedecreasedinimportance asthe density ofdowelrods increased. C. splendens are generallyconsideredtoinhabit silty areas (BROOKS, 2004), although thisobservationpresumably resultsfrom thepresenceofaquatic vegetation insiltsubstrates, whichlarval C.splendens use Substrateselectionin Calopteryxsptendens larvae 75 forcover, asanemergencesupportand, intheadultstage,as aperch.Wherethe flowrate ofariver ismorerapid, sedimentdoesnot settleandtheresultantsub- strateispredominantly pebbles andboulders.Theseconditionsarenot conducive toeasyestablishmentof vegetation communities.Incontrast, in slowerflowing regions, wheresilt settles outon theriverbed,plant communitiesare moreread- ilyestablished. GOODYEAR (2000) compared theenvironmentalrequirements of larval C. splendens and C. virgo.Ingeneral thepredominant substratewhereC. splendens wasfoundwassiltand detritus,although atthreeoutoften sites, sandandgrav- elwas thedominantsubstratetype.GOODYEAR (2000) concludedthat,forC. splendens, thegeneralpatternisastrongpreference, butnotanecessity,formuddy bottoms,wherereadyestablishmentofmacrophyteandriparianplant communi- tiesoccur. MINSHALL(1984) suggested thatcertainspecies ofEphemeroptera, Tricho- pteraand Odonataarerestricted to vascularplants, partlybecausethey provide a substrateforclinging to. Additionally, since oxygen levels are much lower in silt andmudsubstrates(see above) ahighoxygen intakemaybeachieveddirect- ly from aplant surfacesince, during daylight, plants produce oxygen. However, forspecies with aparticularly highoxygenrequirement, suchas Calopteryx virgo (MERRITT etah, 1996;GOODYEAR,2000), whichare predominantly found on apebble substrate, theflowrateof theriveris generallymorerapid, thus gen- erating therequired oxygen leveland hencetheneed foroxygen produced from aquatic vegetation is reduced. As aspecies inhabiting lotichabitats, larval C. splendens haveadaptations for clinging to asubstrateandhavebeendescribed as thigmotactic inhabit(COR- BET, 1999).Thus,intheabsenceofaverticalsupport,such asavegetation stem, pebbles wouldbe thefavouredhabitatbecausethey provide afirmsubstratefor attachment. Formerly consideredasouthernspecies, there is no doubtthatthe northern rangeofC. splendens hasexpandedintonorth-easternEngland and,fromitsbase innorth-westernEngland, intosouthernScotland(CLARKE, 1999; JEFFRIES, 2001;WARD & MILL, 2004). Rivers inthe northofEngland and inScotland tendtobefast flowingovermuchoftheirlengthand, consequently, thesubstrate particle size tendsto be greaterinthis sortoflotichabitat. C. splendens larvae havethepotential tothriveinthis habitatsincethemorphologicaladaptation to clingingto asubstratecanbeutilisedequally ina vegetated habitatandahabitat predominated bypebbles andcobbles. ACKNOWLEDGEMENTS LWwassupportedbytheJohnHenryGamerScholarship,UniversityofLeeds. 76 L. Ward&P.J.Mill REFERENCES BAKER,R.L.,1981. Behavioural interactions and useoffeedingareasbynymphsofCoenagrion resolutum (Coenagrionidae:Odonata).Oecologia49: 353-358. BATTY,R,2007. Changesin Scottish dragonflies.DragonflyNews51:20-21. BROOKS,S„ 2004.FieldguidetothedragonfliesanddamselfliesofGreatBritainandIreland. [2ndedn] BritishWildlife Publishing,Hook,Hampshire,UK. BRUSVEN, M.A.&K.V PRATHER, 1974. Influence ofstreamsedimentsondistribution ofma- crobenthos. J.ent. Soc. Br. Colomb. 71:25-32. BRUSVEN, M.A.& S.T.ROSE, 1981. Influence ofsubstrate compositionand suspended sedi- ment oninsectpredationby theTorrent Sculpin, Cottusrhoteus. Can. J. Fish, aquat. Sci. 38: 1444-1448. CHUTTER,F.M., 1969. Theeffectsofsilt and sandonthe invertebratefaunaofstreamsand riv- ers.Hydrobiologia34; 57-76. CLARKE,D., 1999. TheoutpostpopulationsoftheBanded Demoiselle Calopteryx splendens(Har- ris) intheSolwayFirtharea,Cumbria:historicalperspectiveand recentdevelopments.J.Br. DragonflySoc. 15:33-38. CORBET, P.S., 1962. Abiologyofdragonflies.Witherby,London. CORBET,P.S., 1999. Dragonflies:behaviour andecologyofOdonata. HarleyBooks,London. CUMMINS,K..W.&G.H.LAUF, 1969.The influence ofsubstrateparticlesizeonthemicrodistri- bution ofstreammacrobenthos. Hydrobiologia34: 145-181. DE MARCH,B.G.E., 1976.Spatialandtemporalpatternsinmacrobenthic streamdiversity.J.Fish. Res. BoardofCan.33: 1261-1270. ERIKSEN,C.H., 1966. Benthicinvertebrates and somesubstrate-current-oxygeninterrelationships. Spec. Publ. PymatuningLab. Ecol.4:98-115. JEFFRIES,M.,2001. TheNorthumbrian frontierofthe Banded Demoiselle Calopteyx splendens (Harris). J.Br.DragonflySoc. 17;5-58. GOODYEAR, K.G.,2000.Acomparisonoftheenvironmentalrequirementsoflarvaeofthe Band- ed Demoiselle Calopteryx splendens(Harris) and the BeautifulDemoiselle C. virgo(L.).J. Br. DragonflySoc. 16:33-51. HUGGINS, D.G. & MB. DUBOIS, 1982.Factors affectingthe microdistribution of twospecies ofburrowingdragonflylarvae,with notesontheir biology(Anisoptera:Gomphidae).Odo- natologica11:1-14. JAENIKE,J.& R.D.HOLT, 1991.Geneticvariation forhabitatpreference: evidence andexplana- tions. Am. Nat. 137(Suppl.):67-90. JOHANSSON, O.E., 1978. Co-existence of larval Zygoptera(Odonata)commontothe Norfolk Broads. Oecologia32: 303-321. KEETCH, D.P.&V.C. MORAN, 1966. Observations onthebiologyofnymphsofParagomphus cognatus(Rambur)(Odonata:Gomphidae).I.Habitatselection inrelation tosubstratepar- ticle size. Proc. R ent.Soc. (A)41: 116-122, LAWTON,J.H., 1970.ApopulationstudyonlarvaeofthedamselflyPyrrhosomanymphula(Sulzer) (Odonata:Zygoptera). Hydrobiologia36: 33-52. MACAN,XT., 1966.Predation by Salmotruttoinamoorland fishpond.Verb.int. Ver. theor. angew. Limnol. 16: 1081-1087. MACAN,XT.&R,MAUDSLEY, 1968. TheinsectsofthestonysubstratumofWindermere. Trans. Soc. Br. Ent. 18; 1-18, McPEEK, M.A., 1990. Determination ofspeciescompositionin the Enallagmadamselflyassem- blagesofpermantlakes. Ecology71:83-98. MERRITT,R„ N.W.MOORE& B.C.EVERSHAM, 1996. AtlasofthedragonfliesofBritainand Ireland. [ITEResearch Publ. 9],HMSO,GreatBritain. Substrateselection inCalopleryx splendemlarvae 77 MINCKLEY,W.L., 1963. The ecology ofa spring stream: Doe Run,Meade county,Kentucky. Wildl. Monogr. 11: 1-24. MINSHALL,G.W.,1984.Aquaticinsect-substratumrelationships.In:VH.Resh&D.M.Rosenberg, [Eds], Theecologyofaquaticinsects. Praeger,New York, NUTTAL,P.M.,1972. The effectsofsanddepositionupon themacroinvertebrate fauna oftheriver Camel,Cornwall.Freshw. Biol. 2: 181-186. PENNAK,R.W.& E.D.VAN GERPEN, 1947. Bottom faunaproductionand physical natureof thesubstrate inanorthColorado trout stream.Ecology28:42-48. PERCIVAL,E.&H.WHITE, 1929. A quantitativestudyofthefaunaofsometypesofstreambed. J.Ecol. 17:282-314. SUHLING,F., 1994. Spatialdistribution ofthelarvae ofGomphuspulchellusSelys (Anisoptera: Gomphidae).Adv.Odonatol.6: 101-111. SUHLING,R, 1996. Interspecificcompetitionandhabitatselection bytheriverine dragonflyOny- chogomphusuncatus.Freshw. Biol. 35:209-217. WARD,L.&P.J.MILL,2004.Distribution oftheBandedDemoiselle Calopteryxsplendens(Harris) in northern England:anexampleofrangeexpansion?J.Br. DragonflySoc. 20:61-69. WARD,L.& P.J.MILL,2007.Longrange movementsbyindividuals asavehicle forrangeexpan- sioninCalopteryxsplendens(Odonata;Zygoptera). Europ.J. Ent. 104: 195-198. WHITEHEAD,H., 1935.AnecologicalstudyoftheinvertebratefaunaofachalkstreamnearGreat Driffield,Yorkshire. J.anim. Ecol. 4:58-78. WILDERMUTH,H„ 1994. Habitatselektion bei Libellen, Odonatologica6: 223-257.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.