ebook img

Substrate-mediated Stabilization of a Tetrameric Drug Target Reveals Achilles Heel in Anthrax*DS PDF

15 Pages·2010·3.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Substrate-mediated Stabilization of a Tetrameric Drug Target Reveals Achilles Heel in Anthrax*DS

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.285,NO.8,pp.5188–5195,February19,2010 ©2010byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Substrate-mediated Stabilization of a Tetrameric Drug Target Reveals Achilles Heel in Anthrax*□S Receivedforpublication,June25,2009,andinrevisedform,November13,2009 Published,JBCPapersinPress,November30,2009,DOI10.1074/jbc.M109.038166 JarrodE.Voss‡,StephenW.Scally‡,NicoleL.Taylor‡,SarahC.Atkinson‡,MichaelD.W.Griffin‡,CraigA.Hutton§, MichaelW.Parker‡¶,MalcolmR.Alderton(cid:1),JulietA.Gerrard**,RenwickC.J.Dobson‡1,ConDogovski‡, andMatthewA.Perugini‡2 Fromthe‡DepartmentofBiochemistryandMolecularBiologyandthe§SchoolofChemistry,Bio21MolecularScienceand BiotechnologyInstitute,TheUniversityofMelbourne,Parkville,Victoria3010,Australia,the¶St.VincentsInstituteofMedical Research,9PrincesStreet,Fitzroy,Victoria3065,Australia,the(cid:1)HumanProtectionandPerformanceDivision,DefenceScienceand TechnologyOrganisation,FishermansBend,Victoria3207,Australia,andthe**SchoolofBiologicalSciences,Universityof Canterbury,PrivateBag4800,Christchurch8020,NewZealand Bacillus anthracis is a Gram-positive spore-forming bacte- that Bacillus anthracis is the causative agent of the disease. riumthatcausesanthrax.Withtheincreasedthreatofanthrax Giventhetoleranceofitssporestoextremephysicalconditions inbiowarfare,thereisanurgentneedtocharacterizenewanti- andtheireaseofdissemination,theuseofB.anthracisinbio- microbialtargetsfromB.anthracis.Onesuchtargetisdihydro- terrorismandbiologicalwarfareisathreattodevelopedcoun- dipicolinatesynthase(DHDPS),whichcatalyzesthecommitted triesworldwide.Forexample,in2001anumberofletterscon- stepinthepathwayyieldingmeso-diaminopimelateandlysine. taining B. anthracis endospores were distributed via the U.S. Inthisstudy,weemployedCDspectroscopytodemonstratethat postalsystem,whichresultedin11casesofrespiratoryanthrax. thethermostabilityofDHDPSfromB.anthracis(Ba-DHDPS)is Sincethen,therehasbeenheightenedinterestinthedevelop- significantly enhanced in the presence of the substrate, pyru- mentofanti-anthraxagents(2),especiallyconsideringthelim- vate. Analytical ultracentrifugation studies show that the tet- itedrangeofcurrenteffectivetherapeuticsandtheabilityofB. ramer-dimer dissociation constant of the enzyme is 3-fold anthracis to develop antibiotic resistance (3). One potential tighterinthepresenceofpyruvatecomparedwiththeapoform. therapeutic target is dihydrodipicolinate synthase (DHDPS),3 Toexaminethesignificanceofthissubstrate-mediatedstabili- whichcatalyzesthefirstcommittedstepinthelysinebiosyn- zationphenomenon,adimericmutantofBa-DHDPS(L170E/ theticpathway(Fig.1A). G191E) was generated and shown to have markedly reduced Thebiosyntheticpathwayleadingtolysineanditsimmediate activity compared with the wild-type tetramer. This demon- precursor,meso-diaminopimelate(meso-DAP),isknownasthe stratesthatthesubstrate,pyruvate,stabilizestheactiveformof DAP pathway (4) (Fig. 1A). The first committed reaction in theenzyme.Wenextdeterminedthehighresolution(2.15A˚) thepathwayisthecondensationofpyruvateand(S)-aspartate crystalstructureofBa-DHDPSincomplexwithpyruvate(3HIJ) semi-aldehyde (ASA) to form hydroxytetrahydrodipicolinic andcomparedthistotheapostructure(1XL9).Structuralanal- acid (5), which is catalyzed by DHDPS (Fig. 1, A and B). The ysesshowthatthereisasignificant(91A˚2)increaseinburied DAPpathwayinbacterialeadstothedenovosynthesisoflysine, surface area at the tetramerization interface of the pyruvate- essentialforproteinsynthesis,andmeso-DAP,whichisavital boundstructure.Thisstudydescribesanewmechanismforsta- constituentofthepeptidoglycanlayerinthebacterialcellwall bilizationoftheactiveoligomericformofanantibiotictarget (6)(Fig.1A).Thus,targetingtheDAPpathwaythroughdisrupt- from B. anthracis and reveals an “Achilles heel” that can be ingthefirstcommittedstep,DHDPS,willyieldanovelclassof exploitedinstructure-baseddrugdesign. therapeuticagentstotreatanthrax.Thisnotionissupportedby recent work (7) that identified dapA, the gene encoding DHDPSfromB.subtilis,asoneofonly271genesessentialfor TheetiologyofanthraxwasfirstdescribedbyRobertKochin cell viability from a total of (cid:1)4,100 genes encoded by its 1876(1).Hisworkwasthefirsttodemonstrateunequivocally genome.Additionally,mammalsdonotsynthesizelysineand therefore do not possess the DHDPS enzyme. This suggests that specific inhibitors of DHDPS would have selective anti- *ThisworkwassupportedinpartbytheDefenseThreatReductionAgency bacterialactivitywithlowtoxicityinamammalianhost. (ProjectIDAB07CBT004)andbyanAustralianResearchCouncilFuture Fellowship(toM.A.P.)andaFederationFellowship(toM.W.P.). ThestructureofDHDPSintheabsenceofsubstratehasbeen □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains determinedforanumberofspeciesofbacteria,includingthat supplementalFigs.1–4. ofB.anthracis(8)(Fig.1B),Thermotogamaritima(9),Thermo- Theatomiccoordinatesandstructurefactors(code3HIJ)havebeendepositedin theProteinDataBank,ResearchCollaboratoryforStructuralBioinformatics, anaerobacter tengcongensis (10), Escherichia coli (11), Myco- RutgersUniversity,NewBrunswick,NJ(http://www.rcsb.org/). bacterium tuberculosis (12), Corynebacterium glutamicum 1SupportedbyaUniversityofMelbourneC.R.RoperResearchFellowship. (13),andStaphylococcusaureus(14,15).Theenzymeusually 2Towhomcorrespondenceshouldbeaddressed:Dept.ofBiochemistryand MolecularBiology,Bio21MolecularScienceandBiotechnologyInst.,The UniversityofMelbourne,30FlemingtonRd.,Parkville,Victoria3010,Aus- tralia.Tel.:61-3-8344-2355;Fax:61-3-9348-1421;E-mail:perugini@unimelb. 3Theabbreviationsusedare:DHDPS,dihydrodipicolinatesynthase;DAP,dia- edu.au. minopimelate;ASA,(S)-aspartatesemi-aldehyde;Ba,B.anthracis. 5188 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER8•FEBRUARY19,2010 This is an Open Access article under the CC BY license. Pyruvate-boundB.anthracisDHDPS wasamplifiedbyPCRandclonedintothepET11aexpression vector as described elsewhere (22). Briefly, recombinant pro- tein was produced in the host strain E.coli BL21-DE3 as fol- lows. Cells harboring vector were cultured at 37°C in Luria broth containing 100 (cid:1)g ml(cid:2)1 ampicillin to an A of 0.6. 600 Expression of recombinant Ba-DHDPS was induced by addi- tionofisopropyl1-thio-(cid:2)-D-galactopyranosidetoafinalcon- centrationof1.0mM.Cellswereharvested3hpost-induction and resuspended in 20 mM Tris-HCl, pH 8.0, before lysis by sonication.Ba-DHDPSwassubsequentlyisolatedbyanion-ex- changeandhydrophobicinteractionliquidchromatographyas describedelsewhere(22). Generation of Dimeric Ba-DHDPS (L170E/G191E)—The dimeric form of Ba-DHDPS was generated using the QuikChange II XL site-directed mutagenesis kit (Stratagene). Themutagenicoligonucleotideprimersets,5(cid:3)-GATGCAGGC- GGCGATGTGGAAACAATGACAGAAATCATTG-3(cid:3) and 5(cid:3)- CAATGATTTCTGTCATTGTTTCCACATCGCCGCCTGC- ATC-3(cid:3), and 5(cid:3)-GTATACAGCGGTGATGACGAATTAACG- CTACCAGCTATGG-3(cid:3)and5(cid:3)-CCATAGCTGGTAGCGTTA- ATTCGTCATCACCGCTGTATAC-3(cid:3), were designed to introduce amino acid substitutions L170E and G191E, respec- tively.Mutagenesiswasperformedaccordingtothemanufactur- er’s instructions. Briefly, 125 ng of primer and 10 ng double- stranded DNA template utilized per reaction. Second strand synthesiswasachievedthrough18cyclesofamplification.Follow- ing a 1-h DpnI digestion, plasmid was transformed into E.coli XL10-GoldUltracompetentcells.Theintroductionofpointmuta- tionswasverifiedbyDNAsequencing. DHDPS-DHDPR Coupled Enzyme Kinetic Assay—Enzyme FIGURE1.Ba-DHDPS.A,DHDPScatalyzesthecondensationofpyruvateand kineticanalysesofBa-DHDPSandBa-DHDPS(L170E/G191E) ASAintohydroxytetrahydrodipicolinicacid,whichisthefirstcommittedstep inthelysinebiosynthesispathwayinbacteria.B,crystalstructureofapo-Ba- were performed using the DHDPS-DHDPR coupled assay as DHDPSshowingthepositionofoneactivesiteandtheself-associationinter- describedinapreviousstudy(23).Assayswereroutinelyper- faces.Twomonomerscometogetheratthetightdimerinterfacetoformthe dimericunit,andthenthetwodimericunitsdockattheweakdimerinterface formed in duplicate at a constant temperature of 30°C with toformatetramer. reactionmixturesallowedtoequilibrateinatemperature-con- assemblesasatetramericprotein(16),bestdescribedasadimer trolled Cary 4000 UV-visible spectrophotometer for 12 min of tight dimers (Fig. 1B). However, a native active dimer has beforeinitiatingthereactionwith60nMDHDPS.Priortothe recently been described (14), which makes the quaternary experiment,pyruvateandASAconcentrationswereroutinely structure of this enzyme of particular interest. DHDPS from quantifiedbytheadditionoflimitingamountsofsubstrateby plants(17,18)andsomeGram-negativebacterialspecies(19)is measuringtheconsumptionofNADPHat340nmintheCary feedback-inhibitedby(S)-lysine,actingasanallostericmodu- 4000UV-visiblespectrophotometer.Initialvelocitydatawere lator through partial inhibition of catalytic activity. However, bestfittedtoaPingPongModelusingENZFITTER.4Ratever- allosteric regulation by lysine at biologically relevant concen- susenzymeconcentrationassayswerealsoconductedwithBa- trationsdoesnotoccurinDHDPSfromGram-positivespecies DHDPSconcentrationsrangingfrom2.5to120nM. (14,20),includingB.anthracis(21). CDSpectroscopy—CDspectrawererecordedusinganAVIV Recentworkinourlaboratoryhasshownthatthepurifica- 410-SF CD spectrometer. Wavelength scans were performed tionofrecombinantDHDPSfromB.anthracis(Ba-DHDPS)in between190and250nmin20mMTris,150mMNaClwith0.15 the presence of its substrate pyruvate increases the yield and mgml(cid:2)1Ba-DHDPSandBa-DHDPS(L170E/G191E)in1-mm specificactivityofthefinalproduct(22).Therefore,theaimof quartz cuvettes. Data were analyzed using the CONTINLL thisstudywastothoroughlycharacterizetheeffectofpyruvate algorithmfromtheCDProsoftwarepackage(25)andtheSP29 onthesolutionpropertiesandstructureofBa-DHDPS.Here, proteindatabase.Forthermaldenaturationscans,ellipticityat we report solution and structural studies that unravel the 222nmwasmonitoredbetween20and90°Cin1°Csteps. mechanism for substrate-mediated stabilization of the active Analytical Ultracentrifugation—Absorbance-based sedi- quaternarystructureofBa-DHDPS. mentation velocity and equilibrium experiments were per- formed in a Beckman model XL-I analytical ultracentrifuge EXPERIMENTALPROCEDURES Cloning, Expression, and Purification of Ba-DHDPS—The 4R.J.Leatherbarrow(1987)ENZFITTER,ImperialCollegeofScienceandTech- dapAgeneencodingDHDPSfromB.anthracis(Sternestrain) nology,London. FEBRUARY19,2010•VOLUME285•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5189 Pyruvate-boundB.anthracisDHDPS WINCOOT. A round of simulated annealing was performed with a starting temperature of 5000 K to assign the R set of reflections free from the apo structure (PDB ID: 1XL9) that shared the same crystal properties with the newly solved pyruvate-boundstructure(PDBID: 3HIJ).Thefinalmodelwaschecked withPROCHECK(37). RESULTS Effect of Pyruvate on the Second- ary Structure Stability of Ba- FIGURE2.SecondarystructureandthermostabilitymeasuredbyCDspectroscopy.A,wavelengthscanof DHDPS—Werecentlyreportedthat Ba-DHDPSalone(F)andinthepresenceof2.0mMpyruvate(ƒ)or0.5mMASA(E).Ellipticity(mdeg)hasbeen normalizedtomeanresidueellipticity(degcm2dmol(cid:2)1residue(cid:2)1).B,thermaldenaturationofBa-DHDPS therawenzymeactivityandyieldof alone(F)andinthepresenceofitssubstrates,2.0mMpyruvate(ƒ),and0.5mMASA(E). recombinantBa-DHDPSaresignif- icantlyincreasedwhentheenzyme usinga4-holeAn-60Tioran8-holeAn-50Tirotor.Double- is purified in the presence of its substrate, pyruvate (22). To sectorquartzcellswereloadedwith380(cid:1)lofsampleand400(cid:1)l examinetheeffectofpyruvateonthestabilityofBa-DHDPSin ofreference(20mMTris,150mMNaCl,pH8.0)forsedimenta- aqueous solution, thermal denaturation experiments moni- tion velocity, or a 100-(cid:1)l sample and a 120-(cid:1)l reference for toredbyCDspectroscopywereconductedinthepresenceand sedimentation equilibrium. Experiments were conducted at absenceofthesubstratespyruvateorASAoverthetemperature 4°Cusingarotorspeedof40,000rpm(sedimentationvelocity) rangeof20–90°C.Initially,wavelengthscanswereperformed or 12,000 and 18,000 rpm (sedimentation equilibrium) with at20°Ctomonitorglobalsecondarystructureinthepresence absorbance measured at 227 nm (1.6 (cid:1)M enzyme) or 235 nm of substrates, which revealed no change in response to either (4.8 (cid:1)M enzyme). Solvent density, solvent viscosity, and esti- pyruvate or ASA (Fig. 2A). Ba-DHDPS appears to follow a matesofthepartialspecificvolumeofBa-DHDPSandBa-DH- three-statemechanismforthermalunfoldingintheabsenceof DPS (L170E/G191E) were calculated using SEDNTERP (26). pyruvateandinthepresenceofASA,withapotentialinterme- Initialscanswerecarriedoutat3,000rpmtodetermineopti- diatepersistingattemperaturesof(cid:4)50–60°C(Fig.2B).How- mum wavelength and radial positions for the experiments. ever,inthepresenceof2.0mMpyruvate,thethermaldenatur- Samples monitored in the presence of 0.6 mM pyruvate con- ationofBa-DHDPSisdelayedwithrespecttotemperatureand tained pyruvate in both the reference and sample channels. unfoldingappearstooccurviaatwo-statemechanismwithout Sedimentationvelocitydatawerefittedtoasinglediscretespe- the propagation of an intermediate, indicating that pyruvate ciesoracontinuoussedimentationcoefficient[c(s)]model(27– stabilizesthefoldedstateoftheenzyme.Accordingly,theeffect 29)usingtheprogramSEDFIT.Additionally,vanHolde-Weis- ofpyruvateonthequaternaryandtertiarystructureofBa-DH- chet analysis (30) was performed using the ULTRASCAN DPSwassought. softwarepackage(31),whereassedimentationequilibriumdata EffectofPyruvateontheQuaternaryStructureofBa-DHDPS— werefittedtovariousself-associatingequilibriummodelsusing TocharacterizethequaternarystructureofBa-DHDPSinsolu- theprogramSEDPHAT(32). tionintheabsenceandpresenceofpyruvate,absorbance-de- Crystallization of Ba-DHDPS and X-ray Diffraction Data tected sedimentation velocity and equilibrium analyses were Collection—Ba-DHDPSwascrystallizedaccordingtomethods conducted in the analytical ultracentrifuge. The absorbance described previously (22) using sitting- and hanging-drop, versus radial position profiles of Ba-DHDPS (1.6 (cid:1)M) during vapordiffusion.Thecrystalsusedfordiffractionanalysiswere sedimentationvelocityintheabsenceofpyruvateareshownin soakedwith20mMpyruvateovernighttofacilitateligandbind- Fig.3A,whereasFig.3Bshowstheequivalentdatasetsinthe ing.Forx-raydatacollection,crystalsweretransferredtores- presence of pyruvate. Two predominant boundaries were ervoirsolutioncontaining20%(v/v)glycerolwith20mMpyru- observedforBa-DHDPSintheabsenceofsubstrate(Fig.3A). vateanddirectlyflashfrozeninliquidnitrogen.Intensitydata Bycontrast,theradialabsorbanceprofilesshowedasinglepre- were collected at the Australian synchrotron using the MX1 dominantboundaryinthepresenceofpyruvate(Fig.3B).These beamlineasdescribedbefore(22). data were analyzed initially using the enhanced van Holde- Phasing and Model Refinement—Diffraction data sets were Weischet method (30), which is a model-independent processed and scaled using the package MOSFLM (33) and approachtoanalyzingsedimentationvelocitydata.Theresult- SCALA(34).Initialphaseestimatesweresolvedbymolecular ingintegraldistributionforBa-DHDPSintheabsenceofpyru- replacementusingPHASERwiththeligand-unboundstructure vate(Fig.3C,whitecircles)suggestsitexistsinareversibleself- (PDBID:1XKY)asthesearchmodel.Structuralrefinementwas association with sedimentation coefficients ranging from 2 S performedusingREFMAC5(35)withiterativemodelbuilding through to 6 S. This is consistent with previous reports of using WINCOOT (36). Water, glycerol, sodium ion, and the DHDPSfromE.coli,whichwasdeterminedtoexistinequilib- pyruvate-boundlysineatomswereaddedatlaterstagesusing rium between a dimer and tetramer (38). In the presence of 5190 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER8•FEBRUARY19,2010 Pyruvate-boundB.anthracisDHDPS ramer, compared with the dimer, was observed (Fig. 3D, solid line). The resulting c(s) distributions shown in Fig. 3D therefore agree well with the van Holde-Weischet analyses (Fig. 3C). This effect was subsequentlyquantifiedusingsedi- mentation equilibrium analysis of Ba-DHDPSintheabsenceandpres- ence of 0.6 mM pyruvate. Samples containing0.80,1.6,and3.2(cid:1)MBa- DHDPSwerecentrifugedat12,000 and18,000rpmuntilsedimentation equilibrium was attained at each speed (supplemental Fig. 1). Con- sistent with previous studies of DHDPS (38), the global nonlinear leastsquaresbestfitofthedata(glo- bal (cid:3)2 (cid:5) 0.6) was obtained from a dimer-tetramer association model and revealed that the dissociation constant (K 4–2) ofBa-DHDPS in D the absence of pyruvate was 1.90 (cid:1)M, compared with K 4–2 of 0.66 D (cid:1)Minthepresenceofthesubstrate (Table 1 and supplemental Fig. 1). That is, the tetramerization con- FIGURE3.Analyticalultracentrifugationanalyses.Absorbanceat227nmmeasuredasafunctionofradial stantwas3-foldtighterinthepres- positionfromtheaxisofrotation(cm)forBa-DHDPS(1.6(cid:1)M)centrifugedat40,000rpmintheabsence(A)and presence(B)ofpyruvate.Therawdataarepresentedasopensymbols(E)plottedattimeintervalsof10min enceofpyruvatecomparedwiththe overlaidwiththenon-linearleastsquaresbest-fit(solidline)toacontinuoussedimentationcoefficientdistri- unliganded enzyme. Together, the butionmodel(c(s))(27–29).C,vanHolde-Weischetintegraldistributionplotfromextrapolationofrawdatain resultsofCDthermostability,sedi- AandB.Thecorrectedsedimentationcoefficientisplottedagainsttheboundaryfractionforthesamplesinthe absence(E)andpresence(F)ofpyruvate.D,c(s)plottedasafunctionofs (S)forBa-DHDPSintheabsence mentationvelocity,andsedimenta- 20,w (dashedline)andpresence(solidline)ofpyruvate. tion equilibrium analyses demon- strate that the secondary and quaternarystructureofBa-DHDPSwassignificantlystabilized TABLE1 Summaryofhydrodynamicpropertiesofwild-typeBa-DHDPS in the presence of pyruvate. To gain further insight into the K 4–2dminus K 4–2dplus importanceofthetetramericstructureofBa-DHDPS,wesub- Species Massa s b f/fc D D 20,w 0 pyruvate pyruvate sequentlysetouttogenerateadimericmutantoftheenzymeto kDa S (cid:1)M (cid:1)M assesstheactivityofthedimerincomparisontothewild-type Dimer 62 4.0 1.17 1.9 0.66 tetramer. Tetramer 124 6.5 1.27 1.9 0.66 Dimeric Mutant of Ba-DHDPS Shows Significantly Attenu- aRelativemolecularmasscalculatedfromaminoacidsequence. bStandardizedsedimentationcoefficienttakenfromtheordinatemaximumofthe ated Activity—To highlight the importance of the homo-tet- c(s)distribution(Fig.3D). ramericstructureofBa-DHDPS,adoublemutant,Ba-DHDPS cFrictionalratiocalculatedusingthev(cid:1)methodfromSEDNTERP(26). dDissociationconstantfortetramertodimer.Notethattherateofdissociation(k ) (L170E/G191E),wasdesignedtobreakapartthe“weakdimer” is10(cid:2)5.3s(cid:2)1intheabsenceofpyruvate(supplementalFig.4A)and10(cid:2)5.1s(cid:2)1oiffn interface.Leu170formsanimportanthydrophobicinteraction thepresenceofpyruvate(supplementalFig.4B). withGly191fromitsneighboringchainattheweakdimerinter- face. Therefore, by mutating both these residues to glutamic pyruvate(Fig.3C,blackcircles),theequilibriumappearstobe acid,itwasthoughtthattheresultingchargerepulsionatthis shiftedgreatlyinfavorofthelargerspecies.Todefinetheoli- site would stabilize the dimer. The purified recombinant Ba- gomericspeciesofBa-DHDPSinsolution,thedataweresub- DHDPS (L170E/G191E) product (supplemental Fig. 2, A–C) sequentlyfittedtoacontinuoussedimentationcoefficient(c(s)) retainednativesecondarystructure(supplementalFig.2D)and distribution model (27–29) (Fig. 3D). In the absence of pyru- notsurprisinglywasshowntobedimericinsolutionbysedi- vate,thec(s)distributionshowstwonon-baselineresolvedspe- mentationvelocityanalysis(Fig.4A,dashedline).Furthermore, cies, in approximately equal proportions, with standardized enzymekineticanalysisofthedimericmutantrevealedthatit sedimentationcoefficients(s )of4.0and6.5S(Fig.3Dand retainedonly1.8%ofthetotalcatalyticactivityofthewild-type 20,w Table 1). These values correspond to the DHDPS dimer and tetramericenzyme(Fig.4BandTable2).Moreover,wild-type tetramer(38),respectively(Table1).Bycontrast,inthepres- Ba-DHDPShadamaximumcatalyticturnover(k )of92s(cid:2)1, cat enceofpyruvate,asignificantlygreaterproportionofthetet- K ASAof0.25mM,andK PYRof1.2mMcomparedwith1.7s(cid:2)1, m m FEBRUARY19,2010•VOLUME285•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5191 Pyruvate-boundB.anthracisDHDPS FIGURE5.X-raycrystalstructureofBa-DHDPSincomplexwithpyruvate. A,theasymmetricunitcontainedfourmonomersassembledasahomotet- ramerofBa-DHDPSboundtopyruvate.B,activesiteresiduesoftheunbound (darkgray)(8)overlaidwiththepyruvate-bound(lightgray)structureofBa- DHDPS.Pyruvate(PYR)isshowninblackandindicatedwithanarrow.C,weak dimer interface of Ba-DHDPS showing inter-chain interactions that are uniquetothepyruvate-boundcrystalstructure(3HIJ)relativetotheunbound structure(1XL9).AnalysiswasperformedusingSTINGMILLENIUM(40). CrystalStructureofBa-DHDPSBoundtoPyruvate—Toelu- cidate the structural mechanism behind the substrate-medi- atedstabilizationphenomenonobservedinsolution,wesolved thecrystalstructureofBa-DHDPSincomplexwithpyruvate. Interestingly, the newly solved pyruvate-bound crystal struc- ture (PDB ID: 3HIJ) shared the same space group, unit cell FIGURE4.Quaternarystructureandenzymekineticpropertiesofdimeric parameters, and a similar resolution to the structure of sub- Ba-DHDPS.A,thec(s)distributionisplottedasafunctionofstandardized sedimentationcoefficientforBa-DHDPS(solidline)andLG-DHDPS(dashed strate unbound Ba-DHDPS (PDB ID: 1XL9). Crystallization line) at 4.8 (cid:1)M. Top, residuals resulting from thec(s) distribution best fits and preliminary diffraction analysis were reported recently showninpanelAplottedasafunctionofradiusfromtheaxisofrotation.B,the initialvelocityisplottedasafunctionof(S)-ASAconcentrationforBa-DHDPS (22).Theinitialstructurerevealedfourmonomersintheasym- (circles)andLG-DHDPS(triangles).Thenonlinearbestfittotheping-pong metricunit,arrangedinthebiologicallyrelevanttetramer(Fig. modelispresentedassolidlinesandresultsinthekineticparameterssumma- 5A).ThefirstroundofrefinementgaveanR of21.4%(R rizedinTable2. cryst free of23.2%),whichalsorevealedelectiondensityassociatedwith TABLE2 Lys163 in the active site of all four monomers that wasn’t EnzymekineticpropertiesofBa-DHDPS accountedforbythesearchmodel.Thisisthesitewherepyru- Enzyme Km K (ASA) k vate binds DHDPS (39). The pyruvate-bound molecule was (pyruvate) m cat modeledmanuallyatLys163(Fig.5B),andlaterroundsofstruc- mM mM s(cid:2)1 turalrefinementwereperformedusingREFMAC5.Theitera- Ba-DHDPS 1.2(cid:7)0.09 0.25(cid:7)0.02 92 Ba-DHDPS(L170E/G191E) 3.7(cid:7)0.1 0.05(cid:7)0.01 1.7 tive model-building tool, WINCOOT, was used to model in E.coli-DHDPSa 0.16(cid:7)0.03 0.13(cid:7)0.03 78 waters, Na(cid:6) ions, and glycerol molecules. To make a direct aDatawereobtainedfromRef.23forcomparison. comparison to the Ba-DHDPS substrate-unbound structure 0.05mM,and3.7mMforBa-DHDPS(L170E/G191E)(Table2). (PDBID:1XL9),aroundofsimulatedannealingwasperformed TheseresultsshowthattheBa-DHDPStetramerissignificantly onthesubstrate-boundstructure(PDBID:3HIJ)withastarting moreactivethanthedimericformoftheenzyme,whichhigh- temperatureof5000Ktoensurebothstructurespossessedthe lights the significance of the substrate-mediated stabilization sameR setofreflections.Thefinalmoleculehadanoverall free phenomenon described above. To support this we show that R of15.3%(R of21.0%)to2.15-Åresolution.Theresult- cryst free therateversusenzymeconcentrationprofileofwild-typeBa- ing model was examined using PROCHECK, which revealed DHDPS was nonlinear at low enzyme concentrations, which that99.2%ofresiduesinBa-DHDPSboundtopyruvatewerein indicatesthatthenativedimerwassignificantlylessactivethan thefavoredregionsofaRamachandranplot.The8residuesin thetetramericspecies(supplementalFig.2E). the“disallowed”regionswereTyr109andIle142fromchainsA, 5192 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER8•FEBRUARY19,2010 Pyruvate-boundB.anthracisDHDPS TABLE3 TABLE4 Structureandrefinementstatistics Interfaceanalysisofselfassociationinterfaces R a 0.153(0.170)b Buried cryst Hydrophobic Electrostatic R c 0.207(0.253)b Interface H-bondsa surface free interactionsa interactionsa areab Numberofatoms 10,075 Protein 8,894 Å2 Na(cid:6)ions 4 Tightinterface Glycerol 24 Pyruvate-unboundc 2 28 0 2780 Water 1,153 Pyruvate-boundd 8 28 0 2782 Rootmeansquaredeviationd Weakinterface Bonds(Å) 0.024 Pyruvate-unbound 2 26 6 1735 Angles 1.87° Pyruvate-bound 8 28 4 1826 AverageBfactors aAnalysiswasperformedusingSTINGMILLENIUM(40). Protein 17.8 bAnalysiswasperformedusingPISA(44). Na(cid:6)ions 22.1 cpdbID:1XL9. Glycerol 53.8 dCrystalstructureofBa-DHDPSwassolvedboundtopyruvate. Water 28.8 Ramachandranplot,no.ofresiduesin: Favoredregion 918(91.4%) suchasB.anthracis.Therefore,weexaminedtheeffectofpyru- Allowedregion 78(7.8%) vateinstabilizingtheBa-DHDPStetramer. Disallowedregion 8(0.8%) ThesolutionstabilityofBa-DHDPSwasinitiallyinvestigated aR (R-factor)(cid:5)(cid:8)(cid:1)F(cid:2)(cid:2)(cid:2)F(cid:1)/(cid:8)(cid:2)F(cid:2),whereF andF aretheobservedandcalcu- lacrtyesdtstructurefactoraomplitucdes,roespectivelyo. c atthesecondarystructurelevelusingCDspectroscopy.Neither bValuesinparenthesesareforthehighestresolutionshell. substrate of DHDPS, pyruvate nor ASA, had an effect on the cR istheR-factorcalculatedwith5%ofthereflectionschosenatrandomand ofmreeittedfromrefinement. overall secondary structure of Ba-DHDPS at 20°C (Fig. 2A). dThe root mean square deviation of bond lengths or bond angles from ideal Thisagreeswithpreviousx-raycrystallographicstudiesofapo- geometry. andsubstrate-boundintermediatestatesofE.coliDHDPS(41). However, the thermostability of Ba-DHDPS was significantly B, C, and D, which is consistent with the crystal structure of stabilizedinthepresenceofpyruvatecomparedwiththeunli- substrate-unboundBa-DHDPS(8).Tyr109isanimperativecat- ganded enzyme (Fig. 2B). By contrast, the presence of ASA, alyticsiteresidue,andIle142interactswithitsequivalentneigh- whichisthesecondsubstratetobind,showednoeffectonthe boratthetightdimerinterfaceprovidingstructuralstability.A stabilizationoftheenzyme(Fig.2B).Interestingly,theunfold- fulltableofstatisticsisprovided(Table3).Boththepyruvate- ingofligand-freeBa-DHDPSrevealedthepresenceofaninter- bound and the previously reported ligand-free structures are mediate state that persisted over a temperature range of very similar (Fig. 5). The two tetramers align at alpha carbon 50–60°C(Fig.2B).Theintermediatecouldpotentiallyrepre- atomswitharootmeansquaredeviationof0.50Å,andlittle sent a collapsed molten globule state of Ba-DHDPS that has difference could be observed in active site residues (Fig. 5B). native-like secondary structure, but a more dynamic tertiary However,the“weak”dimerinterfaceismoreextensiveinterms structure,aphenomenonthathasbeenpreviouslyobservedin of buried surface area in the presence of pyruvate (Table 4). otherbacterialenzymes(42).Thisintermediatestatewasnot Thisistheinterfacewherethetwotightdimersdocktoform propagated during thermal denaturation in the presence of the tetramer (Fig. 1A). At this interface the buried surface pyruvate(Fig.2B).Infact,thepresenceofpyruvatesignificantly area increases from 1735 Å2 in the absence of pyruvate to stabilizedthefoldedstateoftherecombinantenzymeforafur- 1826Å2whenboundtopyruvate.Bycomparison,theburied ther 20°C relative to the thermal denaturation profile in the surface area at the “tight” dimer interface has only changed absenceofpyruvate(Fig.2B).Conversely,ASAhadnoeffecton from2780Å2intheapostructureto2782Å2inthepresenceof the thermostability of the enzyme with respect to secondary pyruvate. Additionally, the number of interactions is signifi- structure (Fig. 2B), which demonstrates that the stabilization cantly greater at the weak dimer interfaces as calculated by phenomenon is specific to pyruvate and thus associated with STINGMILLENIUM(40)(Table4).Thereisalsoanincreasein Schiff-baseformationattheactivesitelysine(Lys163). hydrogen bonds at the tight dimer interface in the pyruvate- Given the observed secondary structure stabilization phe- bound structure (Table 4). In total, there were twelve more nomenoninducedbypyruvate,thepropensityforthesubstrate hydrogen bond interactions at both interfaces in the crystal tostabilizethequaternarystructureinsolutionwastherefore structureofpyruvate-boundBa-DHDPS(PDBID:3HIJ)rela- investigated. Absorbance-based analytical ultracentrifugation tivetotheapostructure(PDBID:1XL9). experiments revealed that Ba-DHDPS existed in an apparent equilibriumbetweentwooligomericstates,thedimerandtet- DISCUSSION ramer,atlowmicromolarconcentrationsat4°C(Fig.3).Sedi- TherecentlydescribedDHDPSstructurefrommethicillin- mentationvelocityanalysisshowedthatpyruvatesignificantly resistant S. aureus, the first reported native dimeric DHDPS shifted the apparent equilibrium in favor of the tetramer in enzyme,wasobservedtohavegreatersolutionstabilityinthe solution(Fig.3,CandD),therebyenhancingtetramerizationin presenceofpyruvate(14).Itisthusofinteresttoprobetherole solution.Thestabilizationofquaternarystructurewasquanti- ofthissubstrateinstabilizingtheactivequaternarystructureof fied using sedimentation equilibrium analysis (supplemental DHDPS. Disruption of quaternary structure offers a new Fig.1),showingthatthetetramerwas3-foldtighterinthepres- approach for inhibitor design of active oligomeric enzymes, enceofpyruvate(Table1).Theimportanceofthetetrameric revealing an “Achilles heel” to target in pathogenic bacteria quaternary structure of Ba-DHDPS is highlighted by kinetic FEBRUARY19,2010•VOLUME285•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5193 Pyruvate-boundB.anthracisDHDPS and solution studies of the dimeric mutant, Ba-DHDPS potentialantibiotictarget(16,24),whichhasrecentlybeenval- (L170E/G191E).Ourresultsshowthatthedimericmutantwas idatedbyknock-outstudiesdemonstratingthatDHDPSisthe significantly less active than the wild-type tetramer (Table 2 productofoneofonly271essentialgenesinBacillusspecies andFig.4B).Thisisconsistentwithrecentstudiesdemonstrat- (7).Accordingly,ourstudyprovidessignificantstructure-func- ing that the enzymatic activity of dimeric mutants of E.coli tion knowledge that can be applied to rationale drug design DHDPSpossess(cid:9)2.5%ofthecatalyticactivityofthewild-type strategies in the pipeline to generating novel anti-anthrax tetramer(43). agents.Thisstudyhasthusidentifiedan“Achillesheel”inan Toprobethestructuralmechanismgoverningthepyruvate- essentialenzymeandantibiotictargetfromasignificanthuman mediatedstabilizationoftheactivetetramericform,x-raydif- pathogen. fractionstudiesofBa-DHDPSinthepresenceofpyruvatewere undertaken. Recombinant native Ba-DHDPS, purified as Acknowledgments—Wefirstacknowledgethesupportandassistance describedpreviously(22),crystallizedinidenticalconditionsto ofthefriendlystaffattheBio21CollaborativeCrystallographicCen- thosepublishedfortheunligandedenzyme(PDBID:1XL9)(8). treatCommonwealthScientificandIndustrialResearchOrganisa- ThefinalstructureofBa-DHDPSincomplexwithpyruvatewas tionMolecularandHealthTechnologies,Parkville,Melbourne,and solved to a resolution of 2.15 Å, and initially no significant thebeamlinescientistsattheAustralianSynchrotron.Wealsothank changescouldbeobservedincomparisontothepyruvate-un- allmembersofthePeruginilaboratoryforhelpfuldiscussionsduring thepreparationofthemanuscript. boundstructure.However,uponcloseinspectionoftheweak dimerinterfaceusingPISAanalysis(44),significantdifferences wereobserved.Moreover,anincreaseinburiedsurfaceareaof REFERENCES 91Å2resultedwhentheenzymewasboundtopyruvaterelative 1. Koch,R.(1876)Beitr.Biol.Pflanz.2,277–310 to the apo structure (Table 4). This agreed with the STING 2. Brey,R.N.(2005)Adv.DrugDeliv.Rev.57,1266–1292 MILLENIUM(40)analysis,whichpredictedgreaterinter-resi- 3. Athamna,A.,Massalha,M.,Athamna,M.,Nura,A.,Medlej,B.,Ofek,I., duecontactsattheweakdimer(andalsothetightdimer)inter- Bast,D.,andRubinstein,E.(2004)J.Antimicrob.Chemother.53,247–251 facewithatotaloftwelvemorehydrogenbondsforBa-DHDPS 4. Scapin,G.,andBlanchard,J.S.(1998)Adv.Enzymol.Relat.AreasMol. whenboundtopyruvate(Fig.5CandTable4).Thisissignifi- Biol.72,279–324 cant given that the pyruvate-bound structure solved in this 5. Yugari,Y.,andGilvarg,C.(1965)J.Biol.Chem.240,4710–4716 6. Smith, H., Strange, R. E., and Zwartouw, H. T. (1956) Nature 178, study(3HIJ)sharesthesameresolution,unitcellparameters, 865–866 andspacegroupwiththepyruvate-unboundstructure(1XL9). 7. Kobayashi,K.,Ehrlich,S.D.,Albertini,A.,Amati,G.,Andersen,K.K., Furthermore,thisexplainstheincreasedthermostability(Fig. Arnaud,M.,Asai,K.,Ashikaga,S.,Aymerich,S.,Bessieres,P.,Boland,F., 2B)andthetetramerizationpropensityofBa-DHDPS(Fig.3)in Brignell,S.C.,Bron,S.,Bunai,K.,Chapuis,J.,Christiansen,L.C.,Danchin, thepresenceofpyruvategiventhegreaternumberofnoncova- A.,Debarbouille,M.,Dervyn,E.,Deuerling,E.,Devine,K.,Devine,S.K., Dreesen,O.,Errington,J.,Fillinger,S.,Foster,S.J.,Fujita,Y.,Galizzi,A., lentinteractionsformedatthetetramerizationinterfaceupon Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C. R., substratebinding. Hecker,M.,Hosoya,D.,Hullo,M.F.,Kakeshita,H.,Karamata,D.,Kasa- In addition, temperature-dependent dynamic disorder of hara, Y., Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., atomsinthecrystal,representedbycrystallographictempera- Ishimaru,M.,Ishikawa,S.,Ishio,I.,LeCoq,D.,Masson,A.,Maue¨l,C., ture factors, can be used to predict potential conformational Meima,R.,Mellado,R.P.,Moir,A.,Moriya,S.,Nagakawa,E.,Nanamiya, dynamicswithinthestructure.Interestingly,thecrystalstruc- H.,Nakai,S.,Nygaard,P.,Ogura,M.,Ohanan,T.,O’Reilly,M.,O’Rourke, M.,Pragai,Z.,Pooley,H.M.,Rapoport,G.,Rawlins,J.P.,Rivas,L.A., turesofpyruvate-boundand-unboundBa-DHDPSshareavery Rivolta,C.,Sadaie,A.,Sadaie,Y.,Sarvas,M.,Sato,T.,Saxild,H.H.,Scan- similartrendacrossallresidueswithrespecttoaveragemain- lan,E.,Schumann,W.,Seegers,J.F.,Sekiguchi,J.,Sekowska,A.,Se´ror,S.J., chain temperature factor, except for a region of 15 residues Simon,M.,Stragier,P.,Studer,R.,Takamatsu,H.,Tanaka,T.,Takeuchi, fromposition220to235(supplementalFig.3).Inthisregion M.,Thomaides,H.B.,Vagner,V.,vanDijl,J.M.,Watabe,K.,Wipat,A., thetemperaturefactorsforthepyruvateunboundstructureare Yamamoto,H.,Yamamoto,M.,Yamamoto,Y.,Yamane,K.,Yata,K.,Yo- much higher than in other positions in the enzyme. Not sur- shida,K.,Yoshikawa,H.,Zuber,U.,andOgasawara,N.(2003)Proc.Natl. Acad.Sci.U.S.A.100,4678–4683 prisingly,mostoftheseresiduesarelocatedattheweakdimer 8. Blagova,E.,Levdikov,V.,Milioti,N.,Fogg,M.J.,Kalliomaa,A.K.,Bran- interface,wherethegreateststructuralchangeswereobserved nigan,J.A.,Wilson,K.S.,andWilkinson,A.J.(2006)Proteins62,297–301 upon substrate binding (Fig. 5C). This suggests that pyruvate 9. Pearce,F.G.,Perugini,M.A.,McKerchar,H.J.,andGerrard,J.A.(2006) reducesconformationaldynamicsattheweakdimerinterface Biochem.J.400,359–366 andthusenhancestetramerizationandthermostabilityofthe 10. Wolterink-vanLoo,S.,Levisson,M.,Cabrie`res,M.C.,Franssen,M.C., enzyme. andvanderOost,J.(2008)Extremophiles12,461–469 11. Dobson,R.C.,Griffin,M.D.,Jameson,G.B.,andGerrard,J.A.(2005)Acta Finally,substrate-mediatedstabilizationofquaternarystruc- Crystallogr.DBiol.Crystallogr.61,1116–1124 ture and enhanced thermostability have been previously 12. Kefala, G., Evans, G. L., Griffin, M. D., Devenish, S. R., Pearce, F. G., reportedforanotherenzyme,namelyL-tryptophan2,3-dioxy- Perugini,M.A.,Gerrard,J.A.,Weiss,M.S.,andDobson,R.C.(2008) genase, from Bacillus brevis (45, 46). Thus, this phenomenon Biochem.J.411,351–360 could be of much broader utility and biological relevance to 13. Rice,E.A.,Bannon,G.A.,Glenn,K.C.,Jeong,S.S.,Sturman,E.J.,and Rydel,T.J.(2008)Arch.Biochem.Biophys.480,111–121 oligomericenzymes. 14. Burgess,B.R.,Dobson,R.C.,Bailey,M.F.,Atkinson,S.C.,Griffin,M.D., In conclusion, this study describes the structural basis for Jameson,G.B.,Parker,M.W.,Gerrard,J.A.,andPerugini,M.A.(2008) substrate-mediatedstabilizationoftheactiveoligomericform J.Biol.Chem.283,27598–27603 of Ba-DHDPS. Bacterial DHDPS has long been considered a 15. Girish,T.S.,Sharma,E.,andGopal,B.(2008)FEBSLett.582,2923–2930 5194 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER8•FEBRUARY19,2010 Pyruvate-boundB.anthracisDHDPS 16. Dogovski,C.,Atkinson,S.C.,Dommaraju,S.R.,Hor,L.,Dobson,R.C., Methods(Scott,D.J.,Harding,S.E.,andRowe,A.J.,eds)pp.210–229, HuttonC.A.,Gerrard,J.A.,andPerugini,M.A.(2009)inEncyclopediaof RoyalSocietyofChemistry,Cambridge,UK Life Support Systems (Doelle, H. W., and Rokem, S., eds) Vol. 11, pp. 32. Vistica,J.,Dam,J.,Balbo,A.,Yikilmaz,E.,Mariuzza,R.A.,Rouault,T.A., 116–136,EolssPublishersCo.Ltd.,IsleofMan,UK andSchuck,P.(2004)Anal.Biochem.326,234–256 17. Frisch,D.A.,Gengenbach,B.G.,Tommey,A.M.,Sellner,J.M.,Somers, 33. Leslie,A.G.(1991)inCrystallographicComputing5:FromChemistryto D.A.,andMyers,D.E.(1991)PlantPhysiol.96,444–452 Biology(Moras,D.,Podjarny,A.D.,andTherry,J.C.,eds.)pp.50–61, 18. Dereppe,C.,Bold,G.,Ghisalba,O.,Ebert,E.,andScha¨r,H.P.(1992)Plant OxfordUniversityPress,Oxford,UK Physiol.98,813–821 34. Evans,P.R.(2006)ActaCrystallogr.DBiol.Crystallogr.62,72–82 19. Laber,B.,Gomis-Ru¨th,F.X.,Roma˜o,M.J.,andHuber,R.(1992)Biochem. 35. Winn,M.D.,Isupov,M.N.,andMurshudov,G.N.(2001)ActaCrystal- J.288,691–695 logr.DBiol.Crystallogr.57,122–133 20. Cremer,J.,Treptow,C.,Eggeling,L.,andSahm,H.(1988)J.Gen.Micro- 36. Emsley,P.,andCowtan,K.(2004)ActaCrystallogr.DBiol.Crystallogr.60, biol.134,3221–3229 2126–2132 21. Domigan,L.J.,Scally,S.W.,Fogg,M.J.,Hutton,C.A.,Perugini,M.A., 37. Laskowski,R.A.,Moss,D.S.,andThornton,J.M.(1993)J.Mol.Biol.231, Dobson,R.C.,Muscroft-Taylor,A.C.,Gerrard,J.A.,andDevenish,S.R. 1049–1067 (2009)Biochim.Biophys.Acta1794,1510–1516 38. Perugini, M. A., Griffin, M. D., Smith, B. J., Webb, L. E., Davis, A. J., 22. Voss, J. E., Scally, S. W., Taylor, N. L., Dogovski, C., Alderton, M. R., Handman,E.,andGerrard,J.A.(2005)Eur.Biophys.J.34,469–476 Hutton,C.A.,Gerrard,J.A.,Parker,M.W.,Dobson,R.C.,andPerugini, 39. Blickling,S.,Beisel,H.G.,Bozic,D.,Kna¨blein,J.,Laber,B.,andHuber,R. M.A.(2009)ActaCrystallogr.Sect.FStruct.Biol.Cryst.Commun.65, (1997)J.Mol.Biol.274,608–621 188–191 40. Melo,R.C.,Ribeiro,C.,Murray,C.S.,Veloso,C.J.,daSilveira,C.H., 23. Dobson,R.C.,Valegård,K.,andGerrard,J.A.(2004)J.Mol.Biol.338, Neshich,G.,Meira,W.,Jr.,Carceroni,R.L.,andSantoro,M.M.(2007) 329–339 Genet.Mol.Res.6,946–963 24. Hutton,C.A.,Perugini,M.A.,andGerrard,J.A.(2007)Mol.Biosyst.3, 41. Blickling,S.,Renner,C.,Laber,B.,Pohlenz,H.D.,Holak,T.A.,andHuber, 458–465 R.(1997)Biochemistry36,24–33 25. Sreerama,N.,andWoody,R.W.(2000)Anal.Biochem.287,252–260 42. Pedone,E.,Bartolucci,S.,Rossi,M.,Pierfederici,F.M.,Scire`,A.,Caccia- 26. Laue,T.M.,Shah,B.D.,Ridgeway,T.M.,andPelletier,S.L.(1992)in mani,T.,andTanfani,F.(2003)Biochem.J.373,875–883 AnalyticalUltracentrifugationinBiochemistryandPolymerScience(Har- 43. Griffin,M.D.,Dobson,R.C.,Pearce,F.G.,Antonio,L.,Whitten,A.E., ding,S.E.,Rowe,A.J.,andHorton,J.C.,eds)pp.90–125,RoyalSocietyof Liew,C.K.,Mackay,J.P.,Trewhella,J.,Jameson,G.B.,Perugini,M.A.,and Chemistry,Cambridge,UK Gerrard,J.A.(2008)J.Mol.Biol.380,691–703 27. Schuck,P.(2000)Biophys.J.78,1606–1619 44. Krissinel,E.,andHenrick,K.(2007)J.Mol.Biol.372,774–797 28. Perugini,M.A.,Schuck,P.,andHowlett,G.J.(2000)J.Biol.Chem.275, 45. Matsumura,M.,Osada,K.,andAiba,S.(1984)Biochim.Biophys.Acta 36758–36765 786,9–17 29. Schuck,P.,Perugini,M.A.,Gonzales,N.R.,Howlett,G.J.,andSchubert, 46. Forouhar,F.,Anderson,J.L.,Mowat,C.G.,Vorobiev,S.M.,Hussain,A., D.(2002)Biophys.J.82,1096–1111 Abashidze,M.,Bruckmann,C.,Thackray,S.J.,Seetharaman,J.,Tucker, 30. Demeler,B.,andvanHolde,K.E.(2004)Anal.Biochem.335,279–288 T.,Xiao,R.,Ma,L.C.,Zhao,L.,Acton,T.B.,Montelione,G.T.,Chapman, 31. Demeler, B. (2005) in Analytical Ultracentrifugation: Techniques and S.K.,andTong,L.(2007)Proc.Natl.Acad.Sci.U.S.A.104,473–478 FEBRUARY19,2010•VOLUME285•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5195

Description:
Technology Organisation, Fishermans Bend, Victoria 3207, Australia, and the . change and hydrophobic interaction liquid chromatography as.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.