ebook img

Subprovincial estimation of undercoverage in the 1991 Canadian Census. PDF

12 Pages·1991·0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Subprovincial estimation of undercoverage in the 1991 Canadian Census.

S NOT FOR L ATCNAATWI/Sv1nIACjC STCATANIADA NE S'EMPR'UNTE PAS'"10 LIBRARY SUBPROVINCIALESTIMATATIONOFUNDEECOVERAGE INTHE1991CANADIANCENSUS PETERDICKANDDONROYCE SUB*PROVINCIALESTIMATIONOFUNDERCOVERAGEINTHE1991CANADIANCENSUS PeterDickandDonRoyce,Statistics Canada Ottawa,Ontario,Canada,K1A0T6 Abstract FollowingeachCanadianCensus,anevaluationstudyknown Oneofthekeyquestionsindecidingonadjustmentis astheReverseRecordCheckiscarriedouttoestimatethe whether,andifsohow,adjustmentsmadeathigherlevelsof levelofundercoverage.Thesamplesizeofthisstudyissuch aggregation(e.g.,provinces]shouldbe"carrieddown"to that reliableestimatesofundercoveragecanbeproduced lowerlevelsofdetail.Thecoveragestudiescanonlysupply foreachprovince,andforcertainage-sexgroupsatthe reliableestimatesofundercoverageatrelativelyaggregated nationallevel,butnotforage-sexgroupsattheprovince levels,butadjustingatsomelevelsbutnototherswould level.Theuseofsyntheticestimationtechniqueshasbeen causesevereproblemsfordatausers.Animportantpartof investigatedforthislatterpurpose, butthesehavethe theresearch,therefore,wasaninvestigationofestimation disadvantage.thattheyarebasedoninherentlyunverifiable techniquesforsmalldomainsthatwouldmaintaintheoverall assumptions.Cressie(1989)proposedacompromisemodel consistencyoftheestimatesprogram. thatcombinesthedirectsurveyestimateandasynthetic estimate. WegeneralizeCressie'smodeltoadmitthe Onesuchtechniqueisthatofsyntheticestimation.However, rpeossusilbtisliotnyopfobsisaisblientghaeinssurtvoeybeestmimaadtees,bayndemipnlcolyudiengsotmhies wsiytnhtherteilciaebsletimeasttiiomnatteesndosftoutnrdeeatrcalolvsemraalglearaeraestarliekaet.edAretahse model.Theseresultsareillustratedwithdatafromthe1986 same as areas with unreliable, or no, estimates of ReverseRecordCheck. undercoverage.Inanefforttocombinethebestfeaturesof synthetic estimation and direct survey estimates of undercoverage,Cressiein aseriesofpapers ((1988a), 1.Introduction (1988b),(1989))examinedanEmpiricalBayesmethodology andillustrateditwithresultsfromthe1980U.S.CensusPost- TheCensusofCanadaisconductedeveryfiveyears,the EnumerationProgram(PEP). mostrecenthavingbeenonJune4th1991.Censuscounts serveavarietyofuses,suchastheallocationofseatsinthe InthispaperweexamineCressie'smodelforundercoverage federalParliament,thetransferofmoneybetweenvarious andanalyzethesensitivityofitsresultstochangesinsome levelsofgovernment,andtheplanningofessentialservices ofthe model's keyassumptions. Section 2 describes suchashealth,education,andlocaltransportation. Cressie'smodelandreviewshisbasicfindingsconcerning theriskfunctionsfortheCensus,synthetic,and Bayes Fortheperiodbetweencensuses,StatisticsCanadaalso estimatorsofapopulation total. Section 3then varies pmraondyucoefsthaesseraimeseopfurpoppousleast.iTonheessetipmoaptuelsatwihoinchesatriemuatseesdafroer Chraevsisnige'tsomeosdteilmabtye:t(hi)einsvyenstthiegtaitcinagdjthuestemfefencttfoancttohres,rirsaktshoefr ocbetnasiunsedcobuyntasd,dianngdbisruthbstraancdtiinng-mdiegartahnstsatnodtheoumto-smitgrraenctesn.t tpohsasnibialsitsyumthiantgthethsaturvtehyeyestairematkensoowfn,und(eii)rcoalvleorwaignegmtahye Whennewcensusresultsbecomeavailable,theestimatesfor bebiased,and (iii)consideringtheeffectofhavingto thepastfiveyearsarerevisedtobringtheminlinewiththe estimatethevariancecomponentsusedintheEmpirical newcensuscounts. Bayesestimator.InSection4weillustratetheeffectsofthese variationsinthemodelwithresultsfromthe1986Canadian Until1986,thismethodologyforpopulationestimateswas, Reverse Record Check. Section 5 summarizes our byandlarge,acceptabletomostusers.Howeverthe1986 conclusionsandindicatesdirectionslorfutureresearchwork. Censussawasubstantialincreaseinundercoverage.Atthe nationallevel,estimatedundercoveragerosefromthe2% levelexperiencedin1971,1976and1981toover3%.There 2.Cressie's ModelofUndercount wasalsoconsiderablevariationinundercoverageamong provinces,amongageandsexgroups,andamongvarious Cressie(1989)takesashisbasicstartingpointthatthe othersub-groupsofthepopulation. population of interest has been stratified such that undercountingishomogeneouswithineachstratum. In The unprecedented levels of undercoverage caused formulatingthemodel,thefollowingdefinitionswillproveto considerabledisruptioninthepopulationestimatesprogram beuseful. Let: andinseveralotherprogramswhichdependonpopulation etishnvteeipsmotapitugelasta.etiAtohsneeaspotsirsemisabutiltel,istpyitroofwgacrshaamndtgeoiciningdceltduhdeeinmaenetaahrllolydoow1la9no8cg9eyftooofr Vfjji=be1,t2h,e..t.ruJe)pionputhleatii-othnacroeuant(ifo=rt1,he2,j-.t.h.I)s;tarnatdum censusundercoverage.Kshouldbenotedthatthepublished Cj|bethecorrespondingobservedCensuscount 1991 Censusdatathemselveswillnotbe adjustedfor forthej-thstratuminthei-tharea(assumedtobe undercoverage;onlythepopulationestimatesbasedon alwaysnon-zero). censuscountswouldbeaffected.Fromatechnicalviewpoint, however,theissueissimilartothequestionofcensus Theratioofthetruepopulationcounttotheobserved adjustmentwhichhasbeenthesubjectofmuchdebatein Censuscountforthej-thstratumandthei-thareaisdefined theUnitedStates. as 15 varianceremainasstatedthentheresultsofthissectionare FfHi=—cYH (l) vnraoertdiuaccneocdmepttrheoermmnidsueempdbe.enrdsoHfoopnwaetrvhaeemrea,rteetarhsiasnidnattshhseeumsmptortdaietoulnm.shiCnarcseesstnihoeet argues,however,bybothaBayesianandafrequentist argument,thatthevariancecanbewrittenas ThenetnumberofpersonsmissedbytheCensusinthej-th stratumandthei-thareaisdefinedas 2 (7) * c Mji "Yfi"Cfl (2) providedthattheCensuscountC,,islarge.Thisreducesthe HalltheFj,areknowncompletelythenitiseasytoseethat numberofparametersfromIxJto2J. foranyareaithetruepoprulaFti.onCcanbewrittenas Afurtherlevelofrandomizationoccursinthismodelbecause (3) theadjustmentfactorsF«arenotdirectlyobservedbuthave tobeestimatedusingdirectestimates^fromasurvey. Cressiestatestwhisdependencethroughthefollowingmodel: oBbveyedrseuafminnmyiinsngetgthooefvaeadrrjeauanssythmtaewsnotbaferaeecntaosarcaihnnidtehvsiesedef.ianshTgihotinhs,atccatonhnesbihesitgseheneecrny- N(FH •i) (8) leveladjustmentfactorcanbewrittenas wheretheXrepresentsthedirectsurveyestimateofthe Ffn F.C.. (4) adjustmentfactorando*representsthesamplingvariance. 1ji&i C, + C, Csraemspslieedseismipglnifoifesthtehi1s98m0odUeSlPofsutrtEhnerumberyatniootninSgurtvheatyctahne beassumedtobeprobabilityproportionaltosizewithin strata.Thispermitsthesamplingvariancetobemodelledas Thisshowsthattheadjustmentfactoratanyhigherlevelof aagdgjruesgtamteinotnfiasctmoerrse.lytheweightedaverageofthelowerlevel (9) *fl Ifthe adjustmentfactors f], are unknown, then some acawbpesanoyrsnyuftulehsmbdcetpetrlptbayemiatrossaumiondmicstetghsmartyiutonhssteuwthtipheptathobjtiipeincustlmehrtaeaaehtlcdeiasheotts.rinsaaottnfmirsTofeahrhiitcepaaua:cntmsiryiotomnhsapesrhleaaeaadslsljttubtoashestebesmenauermndcepteaattrfsireaiocri.etnmdoiTrtnohhfeuiaodtstr TsftIunratnhucrbesetaiuoftaarimusrdmspmejtldauusjlsrstytayaamgneteesdrhntaestinatnm,arfdataetotecahesmteodtirreherbeairytqnaourrttt.eahhhleeteTswthjdro-teiutrhhesesetcsaeattdcsgrjtsoeaurunstsardutttvmomuesmeyttanahnetgledseeftvCatiesrclhmteteaasotatsrieedis-.sjtehfutomsharoatretdmeaeeatclnhih.tes r, (5) Assumingtheaboveformulation,Cressieusestheresultsof Undley and Smith (1972) to show that the posterior distributionofF«,thetrueadjustmentfactorinthej-th TxhiJ)stroedJu.ceHsotwheevneurmtbheeraosfsupmaprtaimeotneorfsipnertfheectmostdreatliffircaotmio(nI setsrtaitmuamtea>^ndhatshebeei-nthobasreear,vedg,iviesn: thatthedirectsurvey sCreeesmssiesrterloangx.esthisassumptionbyallowingtheadjustment FJi | X, -N(F, o>/Xy, -JT), (10) fwaictthoranforexapneycatreedalvaalnudeswthriacthumdjetpoecndosmeonflryomonatdhisetrsitbruattiuomn butwithavariancespecifictothestratumandthearea.This canbewrittenas where F* 'N(F, tj) (6) (ID Tnohtesdtiriscttrliybnuteicoensshaarsy.beAesnlaonsgsuamsetdheteoxbpeecNtoerdmvaallubeutantdhisthies IftheFjandthevariancecomponentst*ando*areknown, . . andifasquarederrorlossfunctionisused,themeanofthe Synthetic: aCrbeosvseieditshternibcuotimopnaprreosvitdheesrtishkesBoafyuessiinagndiefsfteirmeantteesotfimK,ators (f?-rt)2 ~ 2 Cf (18) ofYJusingthefollowinglossfunction: m - (ff° -Y,)2 (12) Bayes: *i> (C>(« - Yjr wherethepopulationofanyareaiisestimatedby r-E^c, (13) (19) andthesuperscript(e)representstheestimatorthatistobe eCvleiadrelnyttfhreofmoltlhoiswidnegvienleqoupamleitnitesthceonrcieskrsnicnagntbheeroirsdkseraerdesaesl:f used. (20) Cressiedeterminestherisks,orexpectedloss,forthree Bayes « Synthetic s Census ceosutnitm,atoarssyonftthheetitcrueesptoipmualtaotrioanncdoutnhteYjB:aytehseiaacntuaelstCiemantsours. oTpvaherrraomuteghteheomruotvdaeltlhuiefssoradFrejevaeknlndoop^wm,nenatnditthiesexapsescutmateidontihsattaktehne TeesqhtueiamlaittmooprltihcwaiatltlioofanltwhoaefyasctthhueaasvleeCeianneslqouuwaselrictoiureinsstk.,isorthaattwotrhsetBaayriessk Thethreeestimators(seefootnote1)forthepopulationof 3.Modifications toCressie's Model areaicanbewrittenas Asisevidentfromtheprevioussectiontherearemany Census : if =£C„; (14) aBsasyeusmipatnionmsodtehla.thaTvheisbeseenctmiaodneeixnatmhienedseveCrleospsmieen'stobfastihec modelwhenthreeofhisassumptionsarerelaxed. Rrst,we examinetheimpactontheriskswhenestimatesoftheFare usedinsteadofassumingthemknown(thiswasdescribed inCressie(1988b)butisrepeatedhereforthesakeof Synthetic : Y? =£F,C„.; (15) acsosmupmaprtiisoonntooftuhnebriiasskesdprdeisreencttedsurinveSyecetsitoinma2)t.esNexwitl,ltbhee replacedbyusingsurveyestimatesthatarepossiblybiased. Finally,usingresultsofPrasadandRao(1990),weexamine theeffectsontheriskofusingestimatesofthevariance componentsinplaceofthetrue,butunknown,variance 2toy«:lf =£(F, + »j(X, -F})C, components. 3.1 RisksAssociated withEstimating theF.s (16) Wpoepuelxaatimoinnewhtheenefefsetcitmoatnetsheofritshkesosftrtahteumthrleeveelesatdijmuatsotrmsenotf Therisksforeachestimatorcanbewrittenas fsaeccttoirosn,tthheatFjSb,omthustthbeemuosdeed.lIvtairsiaasnsceumaenddthtrhoeugshaomuptlithnigs varianceareknown. Census: SincetheCensusestimatordoesnotinvolveanyofthe modelparameters,theriskofusingtheCensuscountswill C, j J C, (17) TnohtecrhisaknogfeusainndgwtihllerSeynmtahientiacsmiond(e1l7).willchangebecauseV +Ed-*,)2f; isnowestimatedby (21) 17 tuUossiibnneggatnheesmtoidmealtedoefvetlhoepSeydntehaerltiiecre(s(t6)imaantdor(c6)a)n,tbheesrihsokwonf (Mfi *Cn) _ Mjt *Cfi (25) C C * Ji c yc, > (22) sothat r2t n2 t2 E(M )-M i ci cj ci «/< = JiCfi ji (26) ThisriskissimplytheriskofusingtheoriginalSynthetic Thatis,alpharepresentsthebiasintheestimateofmissed modelwith an added term representing the riskfrom dividedbytheactualCensuscount. estimatingtheFjS. From(22)itcanbeseenthatwhenthe samplingvarianceandmodelvarianceareequalineach Biasintheestimationofundercoveragemayarisefrom stratumtheaddedriskduetoestimatingtheF.siszero. manysources.HoganandWolter(1988)describethemajor However,Ifthesamplingvarianceislargerthanthemodel sourcesoferrorintheU.S.PostEnumerationSurvey(PES), variancethentheriskofusingtheSyntheticmodelwith while Burgess (1988) describes similar issues for the estimatedFjSwillgrow.Notealsothatitispossibletohave CanadianReverseRecordCheck(RRC). Amongtheseare twhheenristkhedecslaimnpeleinvgenvwarhieannceestiismastmianlgletrhethFa,n.Tthhiesomcocduerls nofont-hreesPpEoSn)sea,nmd,aticnhithnegcerarsoers,ofcotrhreelRaRtiCo,ntbhieasfaficnttthheaicatshee variance. RseReCmmeprausduernets,girnosasn,ynaostsneest,smuendnetrcofovreirskasg,e.toThcuosn,siidtewroutlhde Underthemodelassumptionsin(6)and(8),theriskofusing possibilitythatthesurveyestimatesofundercoverageare theBayesestimatorcanbeshowntobe biased. ConsideringtheSyntheticestimatefirst,usingthemodelof — tshheowbniatshadtetvheelroipsekdofaubsoinvgeth(2e4)Syn(tahnedtiucseisntgim(a6t)o)ritwhceanntbhee C1 directsurveyestimateXjissubjecttobiascanbewrittenas Ej C,Cj j)(1 -aj) (t™ -Y? C c, (23) — {(C—- —C ) (Bias(Mj) )2) ThisisjusttheriskofusingtheBayesestimatewhentheFs J J areassumedknownplusanadditionaltermduetothe (27) estimationoftheF,s. Notethatthisaddedtermwillalways addtotheriskofusingthisestimator,unlikethesynthetic casewheretheriskcanactuallydeclinewithestimationof tlehsesF,th.aCnreosrsieequ(a1l98t8ob)thsehroiswkeodftthhaettshyinsthreitskic(2e3s)tiwmaastoarlw(2a2y)s, tThheisliasststaemremabseitnhgeSaynntahdedteicdrbiiskas(2t1e)rmd.evelopedearlierwith andalsogaveasufficientconditionfortheriskofthe syntheticestimator(22)tobelessthanthatofoftheCensus TheEmpiricalBayesmodelwithbiascanbedeveloped (17). similarly. ItcanbeshownthattheriskofusingtheBayes 3JBiasintheDirectSurreyEstimates esus^btjiemcattetofobri£aasnyisarea|iwhenthe^directsurveyestimateis Inthissub-sectionwemodifyCressie'smodel bynow smpueorrdvmeeiylt.ti(8nW)geftorhcWeathnpeowssrsuiitbrievletiyhtiyWessomtfoidbmiiafatiescseadtaiseosntitmoa%tCerse,ssiX,e',sfro(ro2im4g)itnhael C1 J C; BiasW) - M *«,.; cc f i j lwperheresmreecntatnhIenbaealllspaehreaenacsboaymnpwdorinstetirnnagttat.rheeApneroextspheenectrtseidnatvebraiplaruseettaoetfiroXmn,toahfsatthiiss Tahdidsedistthoersefalmecetrtihsekaasddditeivoenlaolperidskind(u2e2)tboutuswiintgh(ab2i8ta)esremd estimatesfromthesurvey.Notethattheaddedbiastermfor theriskoftheEmpiricalBayesestimateisthesameasthat 3wfioJlrltshtEieslltSibymenattlhieeostnsictheoasfntietmqhauetael.VtaoHreitnhaencceSeytnhtCehoeEmtmpipcoinrreiiscnkat.lsBayienstrhisek e_(C - iof2)2, Var(t2) (32) Bayesian Model / O, +T, O, +"C, Inprevioussections,theestimatordevelopedunderthe Bayesian framework has assumed that the variance componentsareknown. Inpractice,however,theywillnot where,approximately, beknownandanEmpiricalBayesestimatorwouldbeused. TsathsaesgueEmsm:ipnifgirristtch,aelthvBeaarBiyeaesnstceeLscitnoiemmapartooUnrnebniistaassceatrudaelPklryneoddiwecnvt,eorlaonipsdeodtbhtieannitntwehdoe Var(<?) ft •<]? (33) variancecomponentsarereplaced byestimatesofthe variancecomponents.However,PrasadandRao(1990)have noted that ignoring the uncertainty in the variance assumingnormalityofthemodelandsamplingerrors. componentsandthenusingthestandardMeanSquareError a(sMSaEn)acpaplcruolxaitmiaotnioofntthoetbheestcolrinreeasrpuonnbdiiansgedMSprEedoifcttohreotfwo^- hParvaesabdeeanndgeRnaeorantoetdeftrhoamtaifntohremamloddiesltraibnudtiosnamthpilseseecrroonrds stageestimatorcanleadtoseriousunderstatementofthe orderapproximationissatisfactory. Theyalsonotethatby MSE. ignoringthefinaltermin(29)thattheMSEcalculationofthe estimatecanbeunderstatedbyupto20%dependingonthe ToestimatetheMSEofthetwo-stageestimator,Prasadand assumederrordistribution. Thesameconclusionscanbe RaoquotearesultfromKackerandHarville(1984)thatstates appliedtotherisksthatweredevelopedfortheBayesmodel. that MSE(1™) =MSE()f) (29) Trbiheseksdtuoumteamlatrroiisezksetfdoirmbatyth:ieonEmopfirtihcealvaBraiaynecseecsotmimpaotneeinntcslucdainngntohwe E(Yp> -if)2 (r)Ar«V - rtY =E7c^a;u-",) where ^-Ec,(VV*j.-4>&0) Ec£«tfa-«P where 6,I =—««;2 * •/ Bias(Mj) Ii-j C^j o;a-wp (34) Thesimilarityto(16)isobvious: allparametersin(16)are nowreplacedwiththeirestimates.Noteweassumethatthe estimateofthesamplingvarianceisnotsubjecttosampling error. TherelationshipbetweentheMSE(Yj)andtheloss function(12)thatCressieusedcanbeseentobe: 4.EmpiricalResults MSE(tt) E(tt - Yi)2 (31) 4.1.Reverse RecordCheckResults from1986 c> c, WefirstapplythemethodsofSection2tothe1986Reverse RecordCheck.TheobjectiveoftheReverseRecordCheckis to provide estimates of the number of persons and aCHrneednscsiReea.oa'pasrtrefsrulotmstahpeplmyultdiiprleicctalytivteoctohnestraisnkta(s1/dQe)f,inPerdasabdy fhmooolurlsoeweshf.uolllIdynsi1nm98iB6su,sregsdeosmisne(t31h69e8.80C)0a,0nbapudetirasbnroineCsfelwnyestruhese.saeIptlpeirsctodeaedcshcforriisbteahdes studyfromthefollowingfourframes: PrasadandRaoshowthatasecondorderapproximationof (29)canbewritten(suitablymodifiedtocorrespondtothe persons enumerated in the 1981 Census of originallossfunction(12))intwoparts.Thefirstcomponent Canada; isjusttheMSEJV^'jandwasshownfortheBayesmodelin personsmissedinthe1981CensusofCanada (28)(forthecasewherethesurveyestimateissubjectto (availableintheformofasampleofpersonsso bias). The second part of (29) can be shown to classifiedinthe1981ReverseRecordCheck); approximatelyequalto: abirthframecontaining all births in Canada 19 . betweenthe1981Censusandthe1986Census; taonCIamnmiagdraanbtetfwreaemenctohnettaiwnoincgenasulisstesof.immigrants .2 Var(Mj) (37) Eachpersoninthesamplewasthentracedtotheir1986 CensusDayaddressandthe1986Censusquestionnairefor thataddresswascheckedtodetermineifthepersonhad ThesecondapproachistouseaGeneralizedVariance beenenumeratedornot. FunctionassuggestedbyWolter(1985).Toestimatethiswe firstset Thesamplesizeandthesampledesignaresufficientto paergxoeav-mispdelexe,recflooimrabbilinendaeitsvitidioumnaasltepasrtoavttihtnehceensparttoihovenianrlecseullletevvieenll.gacInonedff1fi9oc8ri6es,notmfooefr log VarM(Mj) a + p Mj +y,(38) variationsvariedfromunder6%forOntariotoover37%for PrinceEdwardIsland.Howeverestimatesatthelevelof provincebyagegroupandsex,whichwouldberequiredfor anyadjustmentOfthepopulationestimatesprogram,are anduseleastsquarestoestimatetheunknownparameters veryoftennotreliable.In1991,theReverseRecordCheck in(48).Wethenusetheestimatingequation samplehasbeenincreasedtoapproximately50,000persons ubuntacmcaepntyaboflythlearegsetiCmVast.esbyprovince-age-sexwillstillhave .2 = c exp(o + p M.) (39) Theunknownparametersthathavetobeestimatedarethe FF1,o9sl8,l9to)hwweinemguotsdheeeltdheveavmreeilatonhpcomedentojtfimanonMdmaertnihttezssatanomdpelsLitwinimgnatv(eaSretichateinocF,new2oi.*t8h, tnoumgbeenreroaftemiesssteidmapteerssoonfst(h^e)isnamepalcihngstrvaatruima.nceforthe Usingeitheroftheseestimates(37)or(39)andsubstituting (35) tlharegeresnuultmbdierrectolfyzinetroo(e36s)t,imitatweassffoorunthdethmaotdtehlerevarwiearnecea. Cressie,inthissituation,suggestscollapsingthestrata. Doingsoresultedin4strataineachcase.Thestratadiffered slightlyinthedetailsofthecollapsing(seeTables1and2). wtRhheeecroi-retdhXCarheeiasc.kthoeftdhiereacdtjussutrmveenytefascttiomratinethferoj-mthtshteraRteuvmearnsde TsRaaebvmleperlsi1enggiRvevecasorritadhnecCeehseticiskm;aetsetdTiamvbaaltreeidan2cdeidricesocptmllpayyosnfertnohtmesetwshhteiemn1at9te8hd6e Ubseiwnrgitotuernnaost:ation,theestimateforthemodelvariancecan vsamroioatnhceedc.omponentswhenthesamplingvariancehasbeen UsingtheestimatesfromTable1andTable2,theestimated EC,(/i-,i-t,f ».o (36) aTTadhbjeluesrtems3.uelnttsTfhoaefcttfohirresstfmoeersttthihomedatBseayoefinsSieeaacntcimhoondceel2llawgrieevreepsrcetashleecnutldeaidtreedci.tn surveyestimateoftheadjustmentfactorcalculatedfromthe ReverseRecordCheck. Notetheentriesthathavean TdheisscriisbedthienPsraamseadaapnpdroRaacoh. used byCressieand also ampdeejrausnsotntmsheaintntttfhhaeicstRcoeerlvleo.frsT1eh,eRseuscceohcroadnsCdAhlrebocewrktwaeistmthaiilnmeaestae6cd5hnacoenlmdligsoivsveeerds, Tsuhrevesyamupsliinnggvsaarmipalnicnegmucsotnsibdeereasttiiomnast.edWdeireccotnlsyifdreormttwhoe ftohretShyentahgeet-iscexesntaitmiaotnealtheasttiimsadteet.erminedsolelybythetotal possibleapproaches. ThethirdrowandfourthrowsineachcellgivetheEmpirical eTsCsahhtmeeipcmflkiairtsnetfgosmrvefaetrraohicmoahndtcaheiegsteshp-iaustmbeplxilisyssphttreroodaduttuusamceb.eltdeheTbchyadeintrehsbceaetmRpedelsevtiteinermgrsametvieanRreoeifdcaontrbchdyee vTcBaaoarbymilepaesoncnee1es.tnfitrTmsoahtmebeast.fshoeeTudrhRteoehntvheritrrohsdweerdowRiwraeecwscoatrsbedsactsaCilehmcdeaucltkaeo,tsnedoaftsuhtsedhiienssgpsmvlaoaamorypiteladhinencidgen taking estimatesofthesamplingvariancesasgiveninTable2. Theextremesoftheadjustmentfactorforeachcellentryare alwaysthedirectsurveyestimateandtheSyntheticestimate. ThetwoBayesianestimatesrepresentcompromisesbetween theseextremes.Forcellswithverysmallsamples,asisthe caseinPrinceEdwardIslandforMales45-54,theBayesian approachsmoothstheadjustmentfactorbackalmosttothe 20 . Syntheticestimate. InthelargerprovincesofOntarioand Censuscount,forboththeusualBayesandEmpiricalBayes Quebectheestimatesforboththedirectsurveyandthe methods.Whentheeffectoftheestimationofvariance ESmypnitrheitciaclBeasyteismateestiamraetesusduoalelsynovteryaffeccltoseei.theHrenescteimatthee creolmaptioonnesnhitpssamraeyconnosildoenrgeerd,hohlodw.eAvletrh,ouitgahptpheearrissktshaftortbhoetshe greatly. thesyntheticandEmpiricalBayeswerealwaysfoundtobe lessthan the Censuscounts, taking theeffect ofthe 4JEvaluationofRisks estimationofthevariancecomponentsintoaccountcan resultinasituationwherethesyntheticestimatorhasalower 4.2.1Estimated Risks ofeach Procedure inthe 1986 riskthantheEmpiricalBayesestimator. Reverse RecordCheck Inthefuture,wehopetoidentifyspecificalgebraicconditions Theriskofusing eachproceduretoestimatethetrue underwhichtheriskforthe EmpiricalBayesestimator, adjustmentfactorforeachareaIcanbeevaluatedforthe includingthecomponentduetothe.estimation of the 1966Census. RecallthefinalrisksforeachoiCensus(17), variancecomponents,islessthanorequaltotheriskforthe Synthetic(27)andBayes(34). syntheticestimator.Thiswouldrepresentanextensionof conditionsgiveninCressie(1988b).Inthenumericalexample Substitutingtheestimatesofthevariancecomponentsand given,theestimatedsamplingvariancesweremuchlarger thestratumleveladjustmentfactorsFjintotheabove,wecan thanthemodelvariances.Sincetheadditionalterminthe estimatethecomponentsandthetotalriskforthethree riskisafunctionofthesamplingvariance,itcouldbethat estimators(seefootnote2).ThesearedisplayedinTable4. lowersamplingvarianceswouldleadtoasituationwherethe ThesequenceofthetermsinTable4fortheriskofusingthe riskoftheEmpiricalBayesestimator,evenallowingforthe cSoynrtrheestpiocndesttiomattheeantdertmhseiBnay(e2s7)esatnidmat(e34a)r.eorTdheeredbiatso lefofweecrttohfaensttihmeastyinntghetthiecveasrtiiamnacteorc.omponents,wouldstillbe componentwasestimatedbyassuminganoverallrelative biasofapproximately5%. Wewillalsoinvestigateothermodelsfortheadjustment ThefirstpointtonoticeaboutTable4isthatforeveryarea fcaocntsoirss.tencTyhewitmhodtehelntahtaitonCarlesasgiee-psreoxpoasdejdust(6m)enrtesfualctstorisn theriskoftheCensuscountisalwaysconsiderablyhigher butnotwiththe provincial level estimates. Tocreate thantheriskofeitherthesyntheticestimateortheEmpirical consistency on both margins, other models will be Bayes estimate. Since the 'model* component of the investigated.ArecentpaperbyBarry(1990)describesan syntheticestimatorIsequaltothefirstcomponentofthe Empirical Bayesapproach, usingalogitmodel,tothe Censusrisk(seeequation(17)),itcanbeseenthatalmostall estimationofbinomialprobabilities(e.g.,undercoverage oftheCensusriskarisesfromthesecondtermin(17). rates)intwo-waytablesthatpreservesbothrowandcolumn Second,unliketheresultsofSections2,3.1and3.2,therisk margins. Empirical Bayesmethodsthatcombine direct oftheEmpiricalBayesestimatorisactuallyhigherthanthat surveyestimateswithIterativeProportionalFittingestimates ofthesyntheticestimator.ThereasonIsbecauseofthe willalsobeinvestigated. additional term in the risk representing the effect of estimating thevariancecomponents.Withoutthislatter 6.References component,theriskoftheEmpiricalBayesestimatewould havebeenlowerthanthatofthesyntheticestimate.The Barry,D.(1990)EmpiricalBayesestimationofbinomial effectoitheestimationofthevariancecomponentsonthe probabilities in one-way and two-way layouts. The totalriskoftheEmpiricalBayesestimateissubstantial. Statistician 39,pp.437-453. ThefiguresinTable4assumedarelativelysmallamountof Burgess,RD.(1988)EvaluationofReverseRecordCheck relativebias(5%)intheestimationofthenumberofpersons estimatesofundercoverageintheCanadianCensusof missed.Toexaminethepotentialimpactofhigherlevelsof Population.SurreyMethodology 14:137-156 biasonthetotalrisk,thebiascomponentofPrinceEdward Islandwasre-writtenas Cressie,N.(1988a)Estimatingcensusundercountatnational Bias(J0y)=rMt (54) CtahenendsCusesunbsnuFasot,uirotnWhaalsAhlnienvneuglatsl.onRPerDos.ceCea.erd,cih1n2g3sC-o1n5fo0efrtehneceB.ureBauureoafuthoef andthengammawasallowedtovaryfrom0,representingan Cressie,N.(1988b)Whenarecensuscountsimprovedby uHnobwieavseerd,oensltyimwahteenofgamimsmsaedappperrsooancshefsro1mdotehesstuhrevreiys,kftroo1m adjustment?SurreyMethodology 14:191-f208. eithertheSyntheticortheBayesestimateapproachtherisk Cressie, N. (1989) Empirical Bayes estimation of the fmoirsstheedwCielnlsounsl.yimThpuasc,tothnetihempoarcdteroifngbiofastehdeeresltaitmiavetersisokfs Aumnedreirccaonu.ntStatiinstitchael dAescseocninaitailonce8n4s:us1.033-J1o0u4r4n.al of the inextremesituations. 5.Conclusions andFutureResearch aHopgoasnt,-eHn.uRm.earnatdiWoonltseurr,veKy..M.Su(r19v8e8y)MMeeatshuordiolnoggayccu1r4a:cy99i-n 116. Cressieinhispapersdemonstratedthattheriskofusingthe eBsatyiemsateestwihmiactheiwnatsurlneswsatshaanlwtahyesrlieskssotfhuasninugsitnhgetShyentahcettuiacl sKtacaknadra,rdRe.rNr.orsanodfeHsatrivmilalteo,rsDoAffi(x1ed98a4)ndArpparnodxoimmaetfifoecntsfionr 21 mixedlinearmodels.JournaloftheAmericanStatistical Association 79:853-862. Undley,O.V.andSmith,A.F.M.(1972)Bayesestimatesfor thelinearmodel.JouraaloftheRoyalStatistical Society Series B34:1-34. Maritz,J.S.andLwin,T.(1989)EmpiricalBayesMethods, 2ndedition.Loudon: ChapmanandHall. Prasad,N.G.N,andRao,J.N.K.(1990)Theestimationofthe meansquarederrorofsmall-areaestimators.Journalofthe AmericanStatistical Association 85:163-171. Wolter,K.M.(1985) IntroductiontoVarianceEstimation. NewYork:Springer-Verlag Footnotes 1.CressiealsoconsideredaconstrainedBayesestimator, howeverwedonotdealwithitinthispaper. 2.Infact,PrasadandRaoshowthatanunbiasedestimator, teoquoa(ll't1o),tohfethseufmirsotfcothmepofnirestntanodftlhaestBtaeyremssriisnki(n34)(34w)itihs estimatesofthevariancecomponentssubstitutedthusthe figuresinTable4fortheBayesriskareunderestimates. Table1 VarianceComponents EstimatedDirectlyfromSurvey .„ Stratum »? «; Male20-24 61.43 7.76 0.112 | Male15-19.25-44 54.35 11.32 0.172 I Male -14.45plus 30.86 8.59 0.172 | | Female 37.88 13.99 0.270 | Table2 VarianceComponents Estimated fromSmoothed Variances .Stratum •', *? "' 1 Male15-24 1 73.58 9.04 0.109 1 Male25-44 1 42.23 21.80 .340 | Male -14,45plus 1 29.48 9.97 0.253 1 Female | 39.52 12.35 0.238 EtilmaMTaAbdi)cuM3n.wntFactor* MALE FEMALE 9C ALTA SASK MAN ONT QUE N8 NS PB NFUJ BC ALTA SASK MAN ONT QUE NB NS PEI NFLD To» 1.026 1.011 1.006 1.032 1.022 1.008 1.021 1.008 1.015 00-14 1.028 1.025 1.028 1.047 1.034 1.020 1.004 1.015 1.000 1.023 111...000222578 111...000222856 111...000222292 111...000222152 111...000222757 111...000222545 111...000222152 111...000222544 111...000222115 111...000222353 111,..000222777 111...000222777 111...000222777 111...000233722 111...000222979 111...000222755 111...000222127 111...000222744 111...000222170 111...000222766 "1111....000055574468 11I1....00002554134S 1111....000085550847 1111....000075557467 1111....00006555S485 1111....000045550423 1111....00008S551455 1111....000035551402 1111....000029450480 1111....000015549406 15-18 1111....000054448899 1111....000054448688 1111....000034448644 1111....000034137628 1111....000044448886 1111....000044442655 1111....000034441262 1111....000055948806 1111....0000442412S6 1111....000033403560 T111....111163334825 1111....111143338244 1111....111123331112 1111....111143337244 1111...111134333323 1111....111131331620 1111....011173224268 1111...,011163228277 1111....011163228255 1111....011153224233 20-24 1111....101159001064 1111....000069981140 1111....010009999054 1111....000089882088 1111....000088988408 1111....000079883058 1111....010091992065 1111....000085981702 1111....000069661023 1111....000088897990 111...000797155 111...000768128 111...000746108 111...000767170 111...000767140 111...000777192 111...000787102 111...000777192 111...000736169 111...000476118 29-34 111...000645550 111...000444354 111...000243298 111...000243299 111...000444999 111...000444655 111..,000434563 111...000243359 111...000745553 111...000344752 1.079 1.068 1.060 1.070 1.069 1.074 1.074 1.074 1.059 1.081 1.049 1.044 1.039 1.039 1.045 1.049 1.043 1.040 1.052 1.043 111...000454174 111...000413177 111...000454153 111...000343119 111...000433139 111...000454123 111...000474187 111...000423168 111...000143116 111...000423188 111...000212660 111...000111899 111...000221178 111...000110855 111...000111487 111...000122804 111...000111989 111...000101803 111...000110830 111...000011635 1.048 1.033 1.048 1.036 1.038 1.045 1.053 1.036 1.031 1.036 1.020 1.018 1.020 1.015 1.017 1.019 1.018 1.014 1.014 1.015 1,025 1.019 1.011 1.031 1.038 1.018 1.010 1.013 1.146 1.026 1.030 1.040 1.023 1.038 1.017 1.016 1.013 1.015 1.003 1.010 1.026 1.028 1.026 1.026 1.028 1.028 1.026 1.026 1.026 1.026 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.026 1.025 1.023 1.027 1.028 1.025 1.023 1.023 1.052 1.026 1.023 1.028 1.021 1.025 1.020 1.016 1.019 1.018 1.016 1.018 1.026 1.024 1.023 1.028 1.029 1.024 1.022 1.023 1,057 1.028 1.023 1.025 1.021 1.025 1.020 1.020 1.019 1.019 1.016 1.018 1,055 1.020 1.023 1.018 1.026 1.017 1.013 1.032 1.018 1.011 55-64 1.057 1.022 1.030 1.006 1.027 1.029 1.057 1.000 1,000 1.011 1.028 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.029 1.026 1.028 1.029 1.029 1.029 1.029 1.029 1.029 1.032 1.024 1.025 1.024 1.028 1.024 1.023 1.027 1.024 1.023 1.037 1.028 1.030 1.023 1.029 1.029 1.037 1.021 1.021 1.024 1.033 1.024 1.025 1.024 1.028 1.023 1.022 1.027 1.024 1.022 1.038 1.028 1.030 1.024 1.029 1.029 1.036 1.022 1.022 1.025 1.051 1.000 1.003 1.022 1.024 1.022 1.009 1.058 1.000 1.021 1.042 1.028 1.025 1.027 1.024 1.038 1.031 1.029 1.047 1.038 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.029 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.019 1.020 1.024 1.025 1.024 1.021 1.032 1.019 1.024 1.034 1.030 1.026 1.030 1.029 1.033 1.031 1.030 1.035 1.033 1.031 1.019 1.019 1.024 1.025 1.024 1.021 1.033 1.019 1.024 1.034 1.030 1.030 1.030 1.029 1.033 1.031 1.031 1.035 1.033 PROVINCIAL 1.057 1.040 1.035 1.037 1.042 1.040 1.037 1.034 1.029 1.026 HATE 1.041 1.043 1.041 1.042 1.042 1.042 1.042 1.042 1.041 1.042 FF\j\luussiinnggrdiargercetssvJaorniavnacreianceectimata* 11..004454 11..004422 11..004400 11..004400 11..004412 11..004412 11..004411 11..004400 11..003399 11..0033S9 23

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.