ebook img

Submillimeter/millimeter observations of the high-mass star forming region IRAS 22506+5944 PDF

0.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Submillimeter/millimeter observations of the high-mass star forming region IRAS 22506+5944

ResearchinAstron.Astrophys. 2010Vol.10No.2,151–158 R esearchin http://www.raa-journal.org http://www.iop.org/journals/raa A stronomyand A strophysics Submillimeter/millimeter observations of the high-mass star forming region IRAS 22506+5944 0 ∗ 1 0 Jin-LongXuandJun-JieWang 2 n NationalAstronomicalObservatories,ChineseAcademyofSciences,Beijing100012,China; a [email protected] J NAOC-TUJointCenterforAstrophysics,Lhasa850000,China 8 2 Received2009May5;accepted2009October24 ] R S Abstract ThemappingobservationsofCOJ =2 1,COJ =3 2,13COJ =2 1 . and 13CO J = 3 2 lines in the directionof IRA−S 22506+5944−have been made.T−he h − resultsshowthatthe coresinthe J = 2 1 transitionlineshavea similar morphology p − to those in the J = 3 2 transitionlines. Bipolar molecularoutflowsare verified.The - − o prior IRAS 22506+5944 observations indicated that two IRAS sources and three H O 2 r maserswerelocatedclosetothepeakpositionofthecore.OneoftheIRASsourcesmay t s bethedrivingsourceoftheoutflows.Inaddition,theH Omasersmayoccurinrelatively 2 a warmenvironments.Theparametersofthedensecoreandoutflow,obtainedbytheLTE [ method,indicatethatIRAS22506+5944isahigh-massstarformationregion. 1 v Keywords: ISM:jetsandoutflows—ISM:kinematicsanddynamics—ISM:molecules 2 —stars:formation 9 0 5 1 INTRODUCTION . 1 0 Low-mass stars in molecular clouds are formed throughthe processes of collapse, accretion and out- 0 flow(Shuetal.1987).However,theprocessesforhigh-massstarsremainunclearbecauseoftheshort 1 evolutiontimescalesandlargedistancesofhigh-massstars.Observationalevidencesuggeststhatyoung : v high-massstars usually form in a cluster environment(Lada et al. 1993).Bipolar molecular outflows i arecommonlyfoundaroundyounghigh-massstars(Shepherd&Churchwell1996;Zhangetal.2001). X Theseoutflowsaregenerallymuchmoremassiveandenergeticthanthosefromlow-massstars.Recent r a surveyswithsingle-dishtelescopesshowthatmassiveoutflowsarecommonlyassociatedwithUCHII regions(Shepherd& Churchwell1996;Zhangetal. 2001)and H O masers(Elitzur etal. 1989).The 2 H Omasersmayoriginateinhotcores,andbeexcitedbytheshocksassociatedwithoutflows.However, 2 howtheoutflowsaredrivenispoorlyunderstood. IRAS22506+5944hasbeenproposedasaprecursorofaUCHIIregion(Molinarietal.1998).Two ofthethreeH OmasersinIRAS22506+5944arefoundclosetotheoutflowpeakposition(Jennessetal. 2 1995).Wang(1997)imagedthissourceinthenear-infraredJ,H andK bandsandfoundastarcluster within the core.Ithasmagnitudesof 17.7,14.5and 11.7,respectively.Moreover,Zhanget al. (2001) detectedbipolaroutflowsfromanobservationofCO J = 2 1inthisregion.Thebipolarmolecular − outflowsareconfirmedfromobservationoftheCOJ = 2 1line(Wuetal.2005).Inaddition,Suet al.(2004)reportedinterferometricobservationsinCOJ =−1 0,13COJ = 1 0,C18OJ = 1 0 − − − ∗SupportedbytheNationalNaturalScienceFoundationofChina. 152 J.L.Xu&J.J.Wang andthe3mmcontinuum,aswellassingle-dishobservationsinCO J = 1 0and13COJ = 1 0. − − TheIRAS22506+5944sourcewasidentifiedastheoutflowdrivingsource. Inthispaper,wereportthefirstmappingobservationsofIRAS22506+5944intheCOJ = 3 2, 13COJ = 2 1and13COJ = 3 2lines,aswellasthemappingobservationintheCOJ = 2− 1 − − − line.Duetotheobservedmolecularlinesathigherfrequencies,wecanattainhigherangularresolution, whichiscriticalforreducingthebeamdilutionandtoidentifytherelativelycompactcoreandoutflows. Also,higherJ transitionsarerelativelymoresensitivetohotgases.Suchhotgasesaremorelikelyto bephysicallyassociatedwithhigh-massyoungstellarobjects(Wuetal.2005). 2 OBSERVATIONS The mapping observations of IRAS 22506+5944 (R.A.(B1950) = 22h50m38.7s, Dec(B1950) = 59◦44′58′′)weremadeintheCOJ =2 1,COJ =3 2,13COJ =2 1and13COJ =3 2lines − − − − usingtheKOSMA3mtelescopeatGornergrat,SwitzerlandinApril2004.Thehalf-powerbeamwidths ofthetelescopeatobservingfrequenciesof230.538GHz,345.789GHz,220.399GHzand330.588GHz are130′′,80′′,130′′ and80′′,respectively.Thepointingandtrackingaccuracyisbetterthan10′′.The DSBreceivernoisetemperaturewasabout120K.Themediumandvariableresolutionacousto-optical spectrometers have 1501 and 1601 channels, with total bandwidths of 248MHz and 544MHz, and equivalentvelocityresolutionsof0.21kms−1and0.29kms−1,respectively.ThebeamefficiencyB eff is0.68at230GHzand220GHz.ThebeamefficiencyB is0.72at330GHzand345GHz.Thefor- eff ward efficiency F is 0.93. The mapping was done using on-the-fly mode with a 1′ 1′ grid. The eff × datawerereducedusingtheCLASS(ContinuumandLineAnalysisSingle-DiskSoftware)andGREG (GrenobleGraphic)software.The80′′ resolutionoftheCOJ = 3 2and13COJ = 3 2datawas convolved to 130′′ with an effective beam size of √1302 802 =−102′′. The correction−for the line intensitiestothemainbeamtemperaturescalewasmadeus−ingtheformulaT =(F /B T∗). mb eff eff × A 3 RESULTSANDANALYSIS 3.1 TheMolecularLineSpectra Figure 1 gives the spectra of the different transition lines of CO isotopes at the IRAS 22506+5944 position. Each spectrum shows broad line wings. The blue and red wings are asymmetrical and the spectral profiles are not Gaussian shaped. The observed parameters of the IRAS 22506+5944source aresummarizedinTable1.InTable1,thelargerfullwidths(FW)appeartoindicatehigh-velocitygas motioninthisregion.TherangesoffullwidthsaredeterminedfromthePVdiagram. Table1 ObservationalParametersoftheIRAS22506+5944 Source Name Tmb FWHM FW VLSR (K) (kms−1) (kms−1) (kms−1) COJ =2−1 12.8±0.1 3.98±0.03 11.11 51.43±0.01 COJ =3−2 11.9±0.1 4.15±0.06 13.63 51.59±0.02 13COJ =2−1 4.1±0.1 2.37±0.04 6.69 51.52±0.02 13COJ =3−2 4.0±0.3 2.32±0.08 7.22 51.54±0.01 3.2 DenseMolecularCore InFigure2,allthestructuresofthemolecularcloudcorearepresentedandIRAS22506+5944hasan isolated core. The cores in the J = 2 1 transition lines have a similar morphologyto those of the − J =3 2transitionlines.Basedontheresultsobservedbyotherauthors,thereisanear-infraredsource − S4whichwasdetectedbyWang(1997)aswellasthreeH Omasersinthisregion.TheIRASsources 2 Submillimeter/MillimeterObservationsofIRAS22506+5944 153 Fig.1 Spectra at the central position of the region (0, 0) of the mapping observations. andtheH OmasersarelocatedclosertothecorepeakpositiontracedbythetransitionJ =2 1,but 2 − alittledeviationfromthatisalsotracedbythetransitionJ = 3 2.TheIRASsourcesareassociated − with the H O masers. This indicates thatthey are still undergoingactivity in an early evolution stage 2 (Fellietal.1997).TheH Omasersoccurinrelativelywarmenvironments.UsingtheIRASpoint-source 2 catalog,infraredluminosity(Casoli etal. 1986)and dusttemperature(Henninget al. 1990)are given by,respectively: L =(20.653 F +7.358 F +4.578 F +1.762 F ) D2 0.30, (1) IR 12 25 60 100 × × × × × × 96 TD = , (2) (3+β)ln(100/60) ln(F /F ) 60 100 − whereDisthedistancefromthesuninkpc;F ,F ,F ,andF aretheinfraredfluxesatfourIRAS 12 25 60 100 bands(12µm,25µm,60µmand100µm),respectively.Theemissivityindexofthedustparticles(β)is assumedtobe2.ThecalculatedresultsarepresentedinTable2. ThecoreparametersarecalculatedfollowingtheprocedureofLeeetal.(1990).AssumingLTE,we writethecolumndensityas exp[hBJ(J +1)/kT ] (T +hB/3K) τ ∆V N =2.4 1014 ex ex × × cm−2, (3) × J +1 × 1 exp( hν/kT ) ex − − where B is the rotational constant of the molecule, J is the rotational quantum number and ν is the frequencyofthespectralline.∆V isahalffull-widthofspeed,T istheexcitationtemperatureandτ ex istheopticaldepth.HereweassumeN(H )/N(CO)=104(Dickman1978). 2 TheCOemissionisalwaysconsideredopticallythickwhilethe13COemissionisusuallyoptically thin.Therefore,theexcitationtemperatureT (CO)isgivenby(Gardenetal.1991): ex −1 −1 hv hv T hv hv T (CO)= ln 1+ mb + exp 1 , (4) ex k ( k (cid:20) f k (cid:18) (cid:16)kTbg(cid:17)− (cid:19)(cid:21) )! 154 J.L.Xu&J.J.Wang Fig.2 Integrated intensity maps of the core emission. In each map, the integrated range is from–53.26to–49.68kms−1.Thecontourlevelsare30%,40%,...,90%ofthepeakvalue. The redstar representsthe IRAS22506+5944sourceposition,the greenstar representsthe near-infraredsourceS4,andthefilledtrianglesindicatethepositionsofthethreeH Omasers. 2 Thedotsymbolsmarkthemappingpoints. Table 2 IRAS Fluxes and Derived Parameters Source Distance F12 F25 F60 F100 lg(F25/F12) lg(F60/F12) TD LIR (kpc) (Jν) (Jν) (Jν) (Jν) (K) (×104L⊙) IRAS22506+5944 5.1 6.37 34.74 187.50 295.10 0.74 1.47 31.90 1.38 where T =2.732K is the temperature of the cosmic backgroundradiation, and f is the beam filling bg factor.Inaddition,τ(13CO)isgivenby(Gardenetal.1991): −1 kT 1 1 τ(13CO)= ln 1 mb . (5) − ( − hv (cid:20)exp(hv/kTex)−1 − exp(hv/kTbg)−1(cid:21) ) Wealsouseanothermethodtocalculateτ(13CO): T (CO) 1 exp[ τ(CO)] mb − − . (6) T (13CO) ≈ 1 exp[ τ(13CO)] mb − − Submillimeter/MillimeterObservationsofIRAS22506+5944 155 We assume the solar abundance ratio [CO]/[13CO]=τ(CO)/τ(13CO)=89 (Lang 1980). The calculated resultsarelistedinTable3.Fromthetable,wecanseethattheopticaldepthscalculatedbytheabove two methodsare almost equal. Thus, we suggest that the abundance ratio [CO]/[13CO] in this region isnearlythesameasthatinoursolarsystem.Usingthecolumndensity,themassesofoutflowgasare obtainedby: M =µN S/(2.0 1033), (7) H2 × wherethemeanatomicweightofthe gasµ is1.36,andS isthe size ofthecoreregion.Thephysical parametersofthecorearesummarizedinTable4. Table 3 Calculated Results of the Optical Depth Name τ1 τ2 COJ =2−1 33.55 34.00 COJ =3−2 52.33 53.59 13COJ =2−1 0.38 0.38 13COJ =3−2 0.59 0.60 The optical depth (τ1) is derived based on the first method.(τ2)isderivedbasedonthesecondmethod. Table 4 Physical Parameters of the Core Name Tex τ N(COJ =2−1) N(H2) M (K) (×1017cm−2) (×1021cm−2) (×103M⊙) IRAS22506+5944 20.5 33.55 7.07 7.07 2.03 3.3 TheBipolarOutflows FromFigure3,bipolaroutflowsareclearlyrevealedintheIRAS22506+5944region.Theredwingand blue wing lobesmostly overlap,whichmay be attributed to the axis of outflowsbeingnearlyparallel with the line of sightdirection.The position-velocity(PV)diagramsin Figure 4,with a cutalongthe north-southdirection,alsoclearlyshowhigh-velocityoutflows.TheoutflowsoftheCOJ = 3 2are − muchclearerthanthoseoftheCOJ = 2 1.TwoIRASsourcesarelocatedclosetothecenterofthe − outflows,sotheymaybetheoutflowsdrivingthesource,butwecannotdistinguishwhichsourceisthe drivingsource. Under the LTE assumption, the averaged column density of the outflows can be obtained by (Scovilleetal.1986): exp[hBJ(J +1)/kT ] (T +hB/3K) τdv N =2.4 1014 ex ex T cm−2. (8) mb × J +1 × exp( hv/kT ) × [1 exp( τ)] ex − Z − − Weconsiderthattheexcitationtemperatureisuniformintheobservedregion.Theexcitationtempera- ture(T )is20.5Kfromthecalculatedresultsofthecores.Theτ canbedeterminedbyEquation(6). ex The integral is carried out in the blue and red wing regionsand the integrated ranges are determined fromthePVdiagram. Inaddition,wecanderivetheoutflows’mass(M)fromEquation(7).ThemomentumP andenergy E arecalculatedbyP = MV andE = MV2,whereV isthemeanvelocityofthegasrelativetothe cloud’ssystemicvelocity.Adynamictimescalecanbedeterminedbyt =R/V,whereRisthemean d sizeoftheoutflows.ThedrivingforceisdeterminedbyF =P/t .Themechanicalluminosityandthe d masslossrateoftheoutflowsarecalculatedusingL = E/t andM˙ =P/(t v ),wherethefinal mech d d w 156 J.L.Xu&J.J.Wang Fig.3 Leftpanel:outflowcontoursoftheCOJ =2 1aresuperimposedontheintegrated intensitymapofthecore;theintegratedrangeisfrom−–57.07to–53.26kms−1 fortheblue wing(blacksolidline)andfrom–49.68to–45.96kms−1fortheredwing(reddashedline). Right panel: outflow contours of the CO J = 3 2 are superimposed on the integrated intensitymapofthecore;theintegratedrangeisfro−m–58.96to–53.26kms−1 fortheblue wing(blacksolidline)andfrom–49.68to–45.33kms−1fortheredwing(reddashedline). Thecontourlevelsforcoreandoutflowsare30%,40%,...,90%ofthepeakvalues. Fig.4 Leftpanel:P-VdiagramconstructedfromtheCOJ =2 1transition.Contourlevels are1,2,3,4.5,6,6.5,7.5,9,10.5,12,14,...,25K.Rightpanel:P-−VdiagramforCOJ =3 2. Contourlevelsarethesameasintheleftpanel.Theleftandrightverticallinesindicate−the beginningoftheblueandredwings,respectively. windvelocityis takento be v = 500kms−1 (Martietal. 1986).The calculatedresultsarelisted in w Table5. Table 5 Physical Parameters of the Outflows Name Wing N(H2) M td M˙ F P E LMech IRAS (×1020cm−2)(M⊙)(×105yr)(M⊙yr−1)(M⊙kms−1yr−1)(M⊙kms−1)(×1046erg) (L⊙) 22506+5944 Blue 1.35 18.7 4.14 8.0×10−7 4.0×10−4 164.6 1.08 0.22 Red 1.35 18.6 4.38 8.2×10−7 4.1×10−4 179.6 1.30 0.24 Submillimeter/MillimeterObservationsofIRAS22506+5944 157 4 DISCUSSION FromFigure1andTable1,thefullwidthoftheCOJ =3 2lineislargerthanthatoftheCOJ =2 1 − − lineandthelinewingsinCOJ =2 1arebroaderthanthoseinCOJ =1 0(Wuetal.2005).These − − resultssuggestthattheoutflowsmaybecausedbystellarwindsweepingupthesurroundingmaterials indifferentintensitylayersandtheoutflowstracedbythehigherJ levelCOlinesarisefromthewarm layerclosertothecentralexcitingstar. Althoughthe color indexes of the source satisfy the criteria of Wood & Churchwell(1989),they arenotdetectedin thecentimeteror millimetercontinuumemission(Wuetal. 2005).Whetherornot itisaUCHIIregionstillneedstobedeterminedbyfurtherhighersensitivitycontinuumobservations. Sofar,themajorityofauthorshaveusedconstantvaluesofτ andT toestimatetotalmass.Because ex ourobservationsweresimultaneouslymadeinCOand13CO,wecanobtainrelativelyaccuratevalues of τ and Tex, as well as the total mass. From Table 4, the total mass of the core is 2.03 103M⊙; × the value indicates that IRAS 22506+5944is a high-mass star formation region. Wang (1997) found clustersofstellarobjectsandaninfraredjetinthisregion.Thus,weconcludethatIRAS22506+5944 is associated with molecular cloud complexes.The IRAS 22506+5944source appearsto be a deeply embeddedprotostar. Inaddition,thecontourmapsandPVdiagramoftheIRAS22506+5944sourceclearlyshowbipolar outflows in this region.The total mass of the outflows is 37.3M⊙, and the total amountof momenta is 344.2M⊙km s−1. Both parameters are much larger than the typical values in low-mass outflows. The larger outflow’s mass suggests that the outflows’ mass is not likely to originate from the stellar surface, but could be caused by the entrainmentof ambientgas (Shepherd& Churchwell1996). The IRAS22506+5944sourceisconsideredastheoutflowdrivingsourcebySuetal.(2004),whileWuet al.(2005)considerS4tobetheoutflowdrivingsource.TwoIRASsourcesarelocatedatthegeometric position of the driving source of the outflow, and we also cannot identify which one is the driving source.We needtoapplyforobservationswithamuchhigherangularresolutiontelescopetoconfirm it.L /L 1,andL /CF <1,whereL isthetotalmechanicalluminosity,suggestingthat IR Mech IR Mech ≫ despite the strong radiation from the centralsource, the radiation pressure still cannotsupply enough forcetodrivesuchmassiveoutflows(Wuetal.1998). 5 CONCLUSIONS We observed the CO J = 2 1, CO J = 3 2, 13CO J = 2 1 and 13CO J = 3 2 lines in − − − − thedirectionofIRAS22506+5944.IRAS22506+5944hasanisolatedcore.Theinfrareddataindicate that the IRAS 22506 +5944 source appears to be a deeply embedded protostar. Bipolar outflows are furtheridentifiedinthisregion.IRAS22506+5944orNIRsourceS4maybetheoutflowdrivingsource. The two IRAS sources are associated with H O masers. The H O masers occur in relatively warm 2 2 environments.Theparametersofthecoreandtheoutflowsarederived;thederivedvaluessuggestthat IRAS22506+5944isahigh-massstarformationregionandthetotalmassoftheoutflowsislargerthan thatinlow-massstarformationregions.ComparedwiththeextensionoflinewingsinCOJ = 2 1, − COJ =3 2linewingsextendfurtherinvelocity,suggestingthattheoutflowstracedbythehigherJ level12CO−linesarisefromthewarmlayerclosertothecentralexcitingstar. Acknowledgements We wouldliketothankDrs.Sheng-LiQinandMartinMillerfortheirhelpwith dataacquisitionanddiscussion.We arealso gratefulto therefereeforhis/herhelpfulcomments.This workwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.10473014). References Casoli,F.,Combes,F.,Dupraz,C.,Gerin,M.,&Boulanger,F.1986,A&A,169,281 Dickman,R.L.1978,ApJ,37,407 Elitzur,M.,Hollenbach,D.J.,&McKee,C.F.1989,ApJ,346,983 158 J.L.Xu&J.J.Wang Felli,M.,Testi,L.,Valdettaro,R.,&Wang,J.J.1997,A&A,320,594 Garden,P.R.,Hayashi,M.,Hasegawa,T.,Gatley,I.,&Kaifu,N.1991,ApJ,374,540 Henning,Th.,Pfau,W.,&Altenhoff,W.J.1990,A&A,227,542 Jenness,T.,Scott,P.F.,&Padman,R.1995,MNRAS,276,1024 Lada,E.A.,Strom,K.M.,&Myers,P.C.1993,ProtostarsandPlanetsIII,eds.E.H.Levy,&J.I.Lunine(Tucson: Univ.ArizonnaPress),245 Lang,K.R.1980AstrophysicalFormulae(Berlin:Springer-Verlag) Lee,Y.,Snell,R.L.,&Dickman,R.L.1990ApJ,355,536 Marti,J.,Rodriguez,L.F.,&Reipurth,B.1998ApJ,502,377 Molinari,S.,Brand,J.,Cesaroni,R.,&Palla,F.1998A&A,308,573 Scoville,N.Z.,Sargent,A.I.,Sanders,D.B.,etal.1986,ApJ,303,416 Shepherd,D.S.,&Churchwell,E.1989,ApJ,340,265 Shepherd,D.S.,&Churchwell,E.1996,ApJ,472,225 Shu,F.H.,Adams,F.C.,&Lizano,S.1987,ARA&A,25,23 Su,Y.-N.,Zhang,Q.,&Lim,J.2004,ApJ,604,258 Wang,J.J.1997,Ph.D.Thesis,BeijingAstron.Obs. Wood,D.O.S.,&Churchwell,E.1989,ApJ,340,265 Wu,Y.,etal.1998,A&AS,18,243 Wu,Y.,Zhang,Q.,Chen,H.,Yang,C.,Wei,Y.,etal.2005,AJ,129,330 Zhang,Q.,Hunter,T.R.,Brand,J.,etal.2001,ApJ,552,167

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.